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Abstract. A general methodology is presented to integrate
complex simulation models of hydrological systems into op-
timization models, as an alternative to scenario-based ap-
proaches. A gradient-based hill climbing algorithm is pro-
posed to reach locally optimal solutions from distinct start-
ing points. The gradient of the objective function is esti-
mated numerically with the simulation model. A statistical
procedure based on the Weibull distribution is used to build
a confidence interval for the global optimum. The method-
ology is illustrated by an application to a small watershed in
Ohio, where the decision variables are related to land-use al-
locations and the objective is to minimize peak runoff. The
results suggest that this specific runoff function is convex in
terms of the land-use variables, and that the global optimum
has been reached. Modeling extensions and areas for further
research are discussed.

1 Introduction

Understanding watershed hydrological processes and their
linkages to land cover changes is important for controlling
nonpoint source (NPS) water pollutants, which are produced
by land-based activities (Novotny, 2003) and carried into wa-
terways by stormwater runoffs. Effective management of
NPS pollution calls for methods to identify pollution sources
and pathways, and to minimize pollutants production and
delivery. Computer simulation models of complex water-
shed processes can provide a better understanding of the in-
teractions among the various physical systems in a water-
shed, and predict the hydrological impacts of changes in land
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management practices (Beven, 1989; Grayson et al., 1992).
They have been used to develop Best Management Practices
(BMP) and to predict the effects of future climate changes
(Quilbé et al., 2008).

However, these simulation models necessarily consider
only a small number of scenarios, precluding the optimal se-
lection and location of BMPs, and cannot explicitly link pol-
lution sources to yields. Optimization methods have recently
emerged as an alternative modeling framework to efficiently
search for the best possible alternative, under given objec-
tives (performance measures) and constraints (Haith, 1995).
Srivastava et al. (2002), Nicklow and Muleta (2001), Muleta
and Nicklow (2002), Seppelt and Voinov (2002), and Kaur et
al. (2004) have integrated optimization methods into simula-
tion models to overcome the limitations of a scenario-based
approach. However, there is little evaluation of the obtained
solution in terms of its closeness to the global one (Lee and
El-Sharkawi, 2008). This would require a thorough under-
standing of the relationship between the watershed system
and the decision variables.

The purpose of this research is primarily to propose a gen-
eral methodology for the efficient use of simulation models
of natural systems within an optimization framework. These
simulation models can be viewed as implicit functions re-
lating inputs to outputs, with some inputs representing deci-
sion variables and the outputs representing favorable and/or
unfavorable impacts. The methodology is illustrated with
a hydrological runoff simulation model applied to a small
catchment in Ohio, and the decision variables are related to
land-use allocation. The optimization procedure involves the
simulation-based numerical approximation of gradient vec-
tors at each step of a hill-climbing algorithm. A large num-
ber of local optima is generated, and the Weibull distribution
is used to statistically assess convergence towards the global
optimum.
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The remainder of this paper is organized as fol-
lows. Section 2 describes the methodology, including
the optimization-simulation procedure and the statistical as-
sessment of local optima using the Weibull distribution.
Section 3 describes an application of the methodology, in-
cluding the data, the hydrological simulation model, the re-
sults for a small catchment, and model extensions. The
structure of the peak runoff function is further analyzed in
Sect. 4 in light of the underlying mechanics of the hydrolog-
ical model. Conclusions and areas for further research are
presented in Sect. 5.

2 Methodology

2.1 Optimization-simulation procedure

Most natural systems (hydrological, atmospheric, or ecolog-
ical) can be represented by simulation models of varying de-
grees of sophistication and complexity. The inputs to these
models include exogenous variables, decision variables, and
parameters. In the specific case of NPS pollutants/runoff
models, these could be:

E= vector of exogenous variables, such as the geographic
distributions of soil types, topography, shallow aquifers, sur-
face stream network, channel length, and weather (precipi-
tation, temperature, solar radiation, wind speed, relative hu-
midity). For a given site/region, these variables cannot be
modified, at least in the short and middle terms, and are taken
as given;

X= vector of decision variables, which represent various
possible management and planning interventions, such as
the allocation of land uses, the sitting and sizing of eco-
logical engineering technologies (e.g., constructed wetlands
or filtration systems), rainwater harvesting, and agricultural
practices (application and management of nutrients and pes-
ticides, conservation tillage, contour farming, crop residue
management, irrigation);

P= vector of the parameters that characterize the various
equations/relationships that make up the simulation model
(e.g., CN number, Manning’s coefficient, canopy intercep-
tion of precipitation, etc.).

Let Y be the vector of the simulation outputs. Assume
that there aren outputs, withY=(Y 1Y 2.... Y k...Y n). In the
case of watershed simulation models such as the SWAT (Soil
and Water Assessment Tool) model (Arnold et al., 1998),Y

includes the (1) peak runoff, (2) sediment load, (3) phos-
phorous load, and (4) nitrogen load. These outputs can
be watershed-wide aggregates, or disaggregated by location
(e.g., Hydrologic Response Unit – HRU). The simulation
model can be symbolically represented by the vector func-
tion F=(F 1,F 2...F k...F n), with:

Y = F (E,X,P ). (1)

The functional relationship (1) is implicit and cannot be
expressed in closed mathematical form because of the spatial
and temporal complexity of the simulation model, which is
generally run for a discrete number of scenarios pertaining
to the decision vectorX, and/or for different geographical
settings (vectorsE andP ). Various technological, environ-
mental, and socio-economic constraints must be accounted
for, that limit the feasible space forX, with:

G(E,X,P ) ≤ O. (2)

A variety of objective functions may be considered. For
instance, letY k be the peak runoff at the watershed outlet,
and assume that the only goal is to minimize this runoff.
Then, the problem is to findX that minimizes

Y k = F k(E,X,P ) (3)

subject to constraint (2). Some of the other outputs (e.g.,
pollutant loads) may be constrained by pollution standards
Y ∗

j (maximum load or maximum concentration), with:

F j (E,X,P ) ≤ Y ∗

j . (4)

Finally, in the context of multi-objective optimization, the
search for the Pareto frontier of non-inferior solutions (Co-
hon, 1978) involves the minimization of the weighted func-
tion (wi ≥0):

L =

∑
i

wiY i =

∑
i

wiF i (E,X,P ). (5)

For the sake of exposition simplicity, ignore the exogenous
componentsE and P . Let F (X) be the unidimensional
function to be minimized. Consider an algorithmic process
wherein a sequence of solution pointsXk={xk

j } is generated.
Consider the vectorZ={zj } in the neighborhood of thek-th
trial point Xk. The functionF(Z) can be approximated in
this neighborhood by the following linear function based on
a first-order Taylor’s series expansion:

F (Z) ≈ F
(
Xk
)
+

J∑
j=1

∂F (Xk)

∂xj

(
zj−xk

j

)
. (6)

With Xk fixed, F (Z) is linear in Z. However, this linear
approximation is not straightforward to obtain, because the
objective function is not analytically closed, and the partial
derivatives must be approximated numerically. The∂F (Xk)

change inF
(
Xk
)

resulting from a very small increment∂xj

in each component ofXk, leaving all other components un-
changed, is computed with the simulation model, and the par-
tial derivative is estimated as the ratio of the two increments.

The goal is to minimize the second term in (6), subject to
constraints. If these constraints are linear, then the implic-
itly nonlinear program can be solved using sequential linear
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programming, also known as the method of convex combina-
tions (Venkataraman, 2001). If the constraints are nonlinear,
various gradient-based feasible directions algorithms can be
used (Bazaraa et al., 2006).

In the case of minimization, the algorithm produces the
globally optimal solution only if (1) the constraint domain
is convex, and (2) the objective function is convex over the
feasible domain, which requires that its Hessian matrix be
positive definite everywhere (Intriligator, 1976). The Hes-
sian matrix is made up of the second-order partial derivatives
of the objective function. Since the objective function cannot
be expressed analytically, it is impossible to directly assess
its convexity. In order to keep the focus on the objective func-
tion, assume that the constraint set is convex. The algorithm
is presumed to generate a locally optimal solution for each
distinct starting point (initial solution). Using a large number
of different initial solutions, two situations may emerge:

(1) the same local optimum is obtained in all cases, which
indicates that the functionF is convex and the global opti-
mum has been found; or

(2) distinct local optima are obtained, which indicates that
the function is not convex; in this case, a probabilistic method
is proposed in Sect. 2.2 to assess the closeness of the best
local optimum to the global optimum.

The complexity and computational requirements of the
proposed methodology beg the following question: why is
it important to obtain the global optimal solution, and why
would a good solution be insufficient? There are two funda-
mental reasons for searching for the global optimum. First,
using simulation only would necessarily lead to a limited
number of solutions, which may all be significantly inferior.
In any case, it would be difficult to assess the quality of a so-
lution, unless the global optimum is known. Second, maybe
more importantly, the global optimum is the benchmark to be
used when assessing heuristic procedures that yield good, but
not necessarily optimal solutions. Heuristics are much less
computationally demanding, but have no value if they cannot
be evaluated. The operations research literature has offered
many heuristics for difficult-to-solve optimization problems
(Pearl, 1984).

A second issue is related to the uncertainty in the inputs
P and E. This uncertainty has been alleged to make the
search for an optimum meaningless. For instance, Beven
and Freer (2001) discuss the concept of equifinality, whereby
the same outputY can be obtained with different sets of the
inputs P and E, which are characterized by measurement
or other uncertainties. However, uncertainty is a very gen-
eral modeling issue, characterizing both natural and socio-
economic systems models. It can be tackled, in part, through
sensitivity analyses of the solution over ranges of parameter
values, or with stochastic programming techniques. The fo-
cus of the proposed methodology is not on the vectorsP /E
but on the vectorX – the management/planning decision
variables.

2.2 Statistical assessment of local optima

It is possible to assess how close a local optimum is to
the global one by using a statistical method developed by
Golden (1978) and Los and Lardinois (1982). The idea is to
generate independent local optima and to obtain a point esti-
mate for the global optimum by applying statistical extreme-
value theory. Golden (1978) investigates how far a heuristic
solution is from the global optimum in the case of the trav-
eling salesman problem. Los and Lardinois (1982) apply a
hill-climbing technique to solve the optimal network design
problem.

The local optima generated from different initial states
are analyzed with the Weibull Distribution (WD), which has
been used to analyze survival data, to assess stability, and to
measure risk (Aitkin and Clayton, 1980). In hydrology, the
WD has been used to fit hydrographs (Bhunya et al., 2006)
and analyze trends in extreme events, including annual peak
discharges, annual minimum flows, and annual maximum
rainfall intensities (Clarke, 2002). One of its advantages is
its independence from the parent distribution. Parent distri-
bution assumptions are often critical in constructing a con-
fidence interval (CI), because they help derive the statistical
parameters that determine the lower and upper bounds of a
CI. However, the optimization algorithm only provides ex-
treme values (maximum or minimum), and the underlying
probability distribution is unknown. The WD does not re-
quire any assumptions to derive the probability of the ex-
treme values, as long as there are enough available data
(Roberts, 1971). It is derived as the asymptotic distribution
of the smallest order statistics, known as Type III (Fisher and
Tippett, 1928; Gumbel, 1958). Its cumulative distribution
function8(x) and density functionδ(x) are:

8(x) = 1−exp

[
−

(
x −a

b

)c]
(7)

δ(x) =
c

b

(
x −a

b

)c−1

exp

[
−

(
x −a

b

)c]
, (8)

x ≥ a > 0;c > 0,b > 0.

The parametersa, b, andc are defined as the location, scale,
and shape parameters, with8(a+b) = 1−e−1(≈ 0.63). The
parametera, the lower bound of the WD, is also the lower
bound of the parent-distribution, and is considered the global
optimum (minimum). The best local optimum is used as an
estimate of the global optimum, and its reliability is statis-
tically evaluated by analyzing the empirically fitted WD of
local optima. IfR observations (i.e., sample size) are drawn
from a WD, and ifxh

(l), the best local optimum, is the first
element (i.e., smallest number) in an ordered set, it follows
that:

Pr{xh
(l) ≤ a+b} = 1−Pr{xh

(l) > a+b}

=1−{1−8xh
(1)

(a+b)}{1− 8xh
(2)

(a+b)}...

{1−8xh
(R)

(a+b)} = 1−(e−1)R = 1−e−R.

(9)
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The estimator̂a for the location parametera is used as point
estimator for the global optimum (̂x∗). Its confidence inter-
val, with a significance level of 100(1-e−R) %, is (Golden
and Alt, 1979; Dergis, 1985):

Pr{xh
(l) − b̂ ≤ x̂∗ ≤ xh

(l)} ≈ 1−e−R. (10)

However, the interval calculated by this formula is too large.
It was tightened by Los and Lardinois (1982), using a real
numberV , with:

8(a+b/V ) = 1−exp
[
−(1/V )c

]
. (11)

Then, the confidence interval is given as:

Pr
{
xh
(l) − b̂/V ≤ x̂∗ ≤ xh

(l)

}
= 1−exp

(
−R/V c

)
. (12)

The confidence level (1-α) is expressed as

1−exp
(
−R/V c

)
= 1−α, (13)

and the real numberV is

V = (−R/lnα)1/̂c. (14)

Estimating the global optimum value and its confidence in-
terval can then be used to assess convergence toward the
global optimum.

3 Application

3.1 Data

The Old Woman Creek (OWC) watershed, part of the Na-
tional Estuarine Research Reserve (NERR) system, is se-
lected for a pilot study because of the availability of the de-
tailed physical and socio-economic data needed to develop,
parameterize, and validate the model. Data on watershed
characteristics was collected from remote sensing images,
historical land use maps, soil maps from the soil survey
geographic database (SSURGO), technical reports from the
NERR center, and farmer surveys from the local USDA-
NRCS (US Department of Agriculture, Natural Resources
Conservation Service) office. These data, which provide
a comprehensive description of surface characteristics, are
used to derive proper values for the model parameters.

Due to the large computing requirements and the need to
generate many independent local optima, the numerical ap-
plication is performed on a small catchment of the OWC wa-
tershed, with a few land-use categories, a simple drainage
network, and simple spatial distributions of land uses and soil
types. The catchment is overlaid by a grid of 1732 30-m cells
(approximately 1.6 km2), with land-use/cover classified into
three categories: agriculture, conservation, and urban. The
catchment is predominantly agricultural (78%), conservation
land uses (grass/woods) represent 12.6 % of the area, urban
land use makes up 1.5%, and the remainder represents wa-
ter (8%). Roads make up most of the urban land (25 cells),

except for one cell of built-up structures. The land-use, soil,
and topography structures of the catchment are illustrated in
Fig. 1. See Yeo et al. (2004) for further descriptions of the
OWC and data sources and processing.

3.2 Hydrological simulation model

The relationshipF(X) between a land-use patternX and the
resulting peak discharge rate at the watershed outlet is ana-
lyzed with a spatially explicit hydrological model, by mod-
ifying the SCS curve number (CN) method. This method
has been chosen, because (1) the relationship between land-
use and peak runoff is expressed in terms of hydrologic
soil groups and land use/cover conditions (McCuen, 1982;
USDA, 1986; Bingner and Theurer, 2001), (2) it is imple-
mentable under available computing resources, and (3) it is
simple and accurate. The CN method has been embedded
into various watershed models for hydrology, flood analysis,
and water quality modeling (Garen and Moore, 2005), in-
cluding the Soil and Water Assessment Tool (SWAT) (Arnold
et al., 1998), the AGricultural Non-Point Source Pollution
Model (AGNPS) (Bingner and Theurer, 2001; Young et al.,
1989), and the Erosion Productivity Impact Calculator or
the Environmental Policy Integrated Climate (EPIC) model
(Williams et al., 1984; Williams and Meinardus, 2004).
There have been continuous efforts to modify the CN values
under different physiographic and climatic conditions (Ponce
and Hawkins, 1996; Arnold and Fohrer, 2005; Grunwald and
Frede, 1999), and to merge the CN method with distributed,
variable source area concepts (Walter and Shaw, 2005).

The conventional CN method yields lumped effects by us-
ing weighted averages of the parameters. To better account
for the impacts of spatial variability in land use, a 30-m cell
is selected as the modeling unit, consistent with the smallest
spatial resolution for a number of input data, including soil,
land use, and DEM. Therefore, the spatial heterogeneity and
variability of the input data are fully considered, and lump-
ing is minimized by not using average input values at the cell
level. The volume of runoff (Q) is computed as:

Q =
(P −0.2S)2

P +0.8S
, (15)

whereP is the precipitation andS the moisture retention,
estimated from the runoff curve number (CN ):

S = 254

[
100

CN
−1

]
. (16)

The quantitiesP , Q, and S are measured in millimeters
[mm]. Groundwater flows are not modeled, and the an-
tecedent soil moisture condition is considered by using the
default estimation of the SCS method (USDA, 1986). Details
are provided in McCuen (1982), USDA (1986), and Bingner
and Theurer (2001).

Runoff flows are accumulated by following the flow paths
determined by topography. The flow routing direction is de-
termined by the D-8 method, which assigns the runoff on
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Figure 1:  Characteristics of the Study Area 
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SCS-CN number method, related to the soil infiltration capacity.  There is no soil type D in the 
study site.  
 

Fig. 1. Characteristics of the Study Area. Note: the hydrologic soil distribution (soil type A, B ,C, D) is the soil grouping used in the SCS-CN
number method, related to the soil infiltration capacity. There is no soil type D in the study site.

a given cell to the lowest-elevation cell among the eight
surrounding cells (O’Callaghan and Mark, 1984). The on-
site cell infiltration capacity (i.e., the initial abstraction),
which depends only on cell characteristics (soil, land use,
antecedent soil moisture), is compared with the precipita-
tion depth at the cell, and the excess precipitation is trans-
formed into cell runoff while accounting for the upstream
runoff routed through the flow path, in a way similar to the
routing method in SWAT (Gassman et al., 2007). The ex-
cess runoff over a flow path is then obtained by summing
up the storm runoffs occurring at all the cells along the flow
path, and the total runoff volume at the watershed outlet is
obtained by summing up the runoffs occurring along all flow
paths in the watershed (Olivera 1996). This process is illus-
trated in Fig. 2.

A similar approach is applied to estimate the time of con-
centration,Tc. Instead of computingTc from a predefined
longest distance to the watershed outlet, the model calculates
it by keeping track of the flow time of every pathway, to bet-
ter account for land spatial variability. The travel time of a
flow path is calculated by summing up the travel times for
all the cells along the path. The maximum travel time across
all paths is selected as the time of concentration. The travel
time for each cell is determined according to its flow type
– overland flow, shallow concentrated flow, or channel flow
(USDA, 1986), which accounts for routing and decay. See
the extended TR-55 for details (USDA, 1986; Bingner and
Theurer, 2001).

After calculating the time of concentration and the total
amount of runoff, the peak runoff rate is determined using
the extended TR-55 procedure (Bingner and Theurer 2001),
with:

Qp = 2.78·10−3P24Da ·

[
ap +(cp·Tc)+(ep ·T 2

c )

1+(bp ·Tc)+(dp ·T 2
c )+(fp ·T 3

c )

]
(17)

whereQp is the peak discharge [m3/s], Da the area of the
spatial unit [ha],P24 the 24-h effective rainfall over the total

drainage area [mm],Tc the time of concentration [hr], and
the coefficientsap,bp,cp,dp,ep, andfp, are determined by
the ratio of initial abstraction (Ia) to 24-h precipitation (P24).
See Bingner and Theurer (2001) for the values of these coef-
ficients.

The hydrological model was calibrated and validated
by comparing model output with historic precipitation and
stream flow data. First, the daily precipitation data available
for the site were fitted using the Extreme Value Type I prob-
ability distribution function (Chow et al., 1989) to determine
the design storms. Since the data are only available in daily
steps, it is assumed that the precipitation pattern follows a
SCS II rainfall time distribution (USDA, 1986). Then, the es-
timated design storms were used as inputs to the hydrological
model, and the peak stream runoffs were simulated and com-
pared with the observed stream flows. As the simulation was
event-based, a flood frequency analysis was carried out with
observed stream data and the Bulletin 17B method (IACWD,
1982). After determined the frequency curve, the stream
runoff rates corresponding to the probabilities of 1-, 2-, 5-,
and 10-year storms were determined. These stream runoff
rates were comparable with the simulation outputs at a 95%
confidence level. The flood analysis uses daily stream data
over the period 1987–2002. Daily precipitation data were
obtained from the National Weather Service Center from the
period 1985–2002. See Yeo et al. (2004) for the values used
for parameterization and further information on model vali-
dation and calibration.

3.3 Land-use optimization model

A simple land use optimization model is integrated with
the hydrological model to delineate the land-use pattern that
minimizes the peak storm runoff at the watershed outlet:

Min F (X)= Peak Runoff Rate (18)
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Figure 2:  Runoff process and flow path 
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Fig. 2. Runoff process and flow path.

Subject to:

N∑
i=1

xil = Tl ∀l=1,2,...,L (19)

L∑
l=1

xil = Ai ∀i = 1,2,...,N (20)

wherexil is the amount of land usel in cell i, Tl is the
total land target for land usel in the watershed, andAi is
the area of celli. F(X) is the objective function that eval-
uates the peak discharge at the watershed outlet resulting
from the land-use pattern (X). It is numerically evaluated
with the runoff simulation model. Constraint (19) guarantees
the achievement of watershed land-use targets, and constraint
(20) guarantees the full occupation of celli by land uses.

3.4 Results

Five hundred land-use maps have been generated by ran-
domly assigning land uses to the 1567 catchment cells that
are neither road nor water. The total land-use areas are kept
constant across these maps: 22 urban cells, 1307 agricultural
cells, and 237 conservation cells. These totals correspond to
the optimal land allocation in Yeo et al. (2007). The com-
bined simulation-optimization model is then applied to these
500 land-use allocations at the 30-m cell level, and the result-
ing optimal allocations that minimize peak stormwater runoff
at the catchment outlet are further analyzed statistically. Nine
identical local solutions obtained from clearly different ini-
tial maps were eliminated in order to satisfy the assumptions
of the Fisher-Tippett theorem, which requires independence
of the observations in the sample (Los and Lardinois, 1982;
Dergis, 1985).

In order to illustrate the wide range of the 491 initial so-
lutions, the catchment is divided into three sub-regions, as
illustrated in Fig. 3, and statistics for the numbers of agri-
cultural, conservation, and urban cells allocated to each sub-
region are reported in Table 1, confirming that these alloca-
tions vary significantly within each sub-region. This range
is mirrored by the range of the corresponding peak discharge
rates, which vary from 0.25 m3/s to 0.5 m3/s (Fig. 4a). In

Fig. 3. Sub-regions in the OWC Catchment.∗ Denotes cells that
are neither water nor road.

contrast, the optimal allocations generated by the model dis-
play little variability, with much smaller standard deviations
and coefficients of variations (Table 1). The correspond-
ing peak discharges vary within the very narrow range of
[0.254073–0.254298] m3/s (Fig. 4b). Figure 5 displays five
maps corresponding to the optimal allocations for the 1-, 25
-, 50-, 75-, and 100 percentiles of the peak runoff flow, and
the five initial land allocations leading to these optimal al-
locations. The optimal maps are very close to each other,
but significantly different from the initial allocations used to
generate them. At the optimum, most of the urban land is
allocated to upland areas, near the upland boundary of the
catchment, away from the waterways and roads, and at low
density. Urban land is buffered by conservation land to off-
set its impacts on runoff volume and travel time to the stream.
Denser conservation land is allocated near the catchment out-
let along the waterways, and at the edge of the catchment,
where the slope is steep, but is avoided in areas with low in-
filtration capacity (i.e., soil type C or D), increasing the travel
time of runoff flows but reducing the runoff volume.
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Table 1. Summary Statistics for the initial and optimal allocations.

Sub-Region 1 Sub-Region 2 Sub-Region 3

Initial Optimal Initial Optimal Initial Optimal
Statistical Measure Land Use allocation allocation allocation allocation allocation allocation

Mean Urban 5.152 4.192 7.435 9.151 9.413 8.658
Agriculture 298.635 294.271 454.994 470.403 553.371 542.326
Conservation 51.559 54.646 83.571 66.446 101.870 115.908

Median Urban 5.000 4.197 7.000 9.169 9.000 8.639
Agriculture 298.000 294.225 455.000 470.386 553.000 542.314
Conservation 52.000 54.719 84.000 66.391 102.000 115.937

Minimum Urban 0.000 3.217 2.000 7.776 3.000 7.616
Agriculture 282.000 292.932 433.000 467.995 534.000 540.212
Conservation 37.000 53.122 59.000 64.396 77.000 113.875

Maximum Urban 11.000 5.010 14.000 10.655 17.000 10.200
Agriculture 315.000 295.935 481.000 472.956 573.000 544.603
Conservation 68.000 55.852 102.000 69.312 125.000 117.635

Standard Deviation Urban 2.037 0.307 2.359 0.502 2.442 0.432
Agriculture 6.049 0.569 7.151 1.065 7.239 0.711
Conservation 5.580 0.514 6.809 0.874 6.801 0.672

Coefficient of Variation Urban 0.395 0.073 0.317 0.055 0.259 0.050
Agriculture 0.020 0.002 0.016 0.002 0.013 0.001
Conservation 0.108 0.009 0.082 0.013 0.067 0.006

Note: the numbers in the table indicate the number of cells (30-m) assigned to the different land uses.
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Figure 4:  Distributions of the Peak Discharge Rates 
 

0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

160

180
Peak Flow Obtained from the Initial Maps

Qp, m3/s

F
re

qu
en

cy
 o

f 
O

cc
ur

re
nc

e

0.25405 0.25410 0.25415 0.25420 0.25425 0.25430
0

50

100

150
Peak Flow Obtained from the Optimal Maps

Qp, m3/s

F
re

qu
en

cy
 o

f 
O

cc
ur

re
nc

e

(A) Peak flow obtained from the initial maps  (B) Peak flow obtained from the optimal maps 
 

Qp  [m3/s] Qp  [m3/s] 

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e 

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e 

Fig. 4. Distributions of the Peak Discharge Rates.

These optimal peak runoff values are obtained at con-
vergence, that is, when the sum of the squared differ-
ences between the land allocations of two consecutive iter-
ations in the optimization procedure

((
1Xk

)T (
1Xk

))
is

less thanε=10−8. It is very likely that with a much smaller
convergence criterionε, the algorithm would converge to the

same optimum for all the initial solutions. However, because
the model is gradient-based, the convergence becomes very
slow after about 10 iterations, and reaching the exact global
optimum might take a huge amount of computing time. In
addition, the optimized peak runoffs are extremely close to
each other, with differences only at the 6th decimal point.
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Figure 5:  Initial and Optimal Land Use Maps  
 
 

 

Note:  The optimal land maps (4.B) are generated using three land use categories for illustration 
purpose only: urban (Urb), Agriculture (Ag), and Conservation (Con).  Only the dominant land 
use category is coded for each cell, except in the case where two land categories are in the same 
density group.  Three density groups are used: Low = 0-30 %, Med (medium) = 30-60%, High = 
60-100 %.

               (A) Initial Land Patterns 

               (B) Optimal Land Patterns 

Fig. 5. Initial and Optimal Land Use Maps. Note: the optimal land maps (4b) are generated using three land use categories for illustration
purpose only: urban (Urb), Agriculture (Ag), and Conservation (Con). Only the dominant land use category is coded for each cell, except
in the case where two land categories are in the same density group. Three density groups are used: Low=0–30%, Med (medium)=30–60%,
High=60–100%.

These differences are meaningless in a physical sense, and
make a strong case for global optimality and the convexity of
the peak runoff function.

The statistical methodology presented in Sect. 2.2 can be
applied to the 491 “optimal” peak discharge rates, which
can be viewed as a random sample forε-level convergence.
A three-parameter Weibull distribution is estimated and the
results are presented in Table 2. The distribution of the
sampled data is presented in Fig. 6. The global optimum
and its confidence interval (CI) are estimated from theε-
level optimal values, and the results are summarized in Ta-
ble 3. The best value from the numerical experiment (i.e.,
xh
(l) or the upper bound of the CI) is 0.254073, approxi-

mately 0.01% above the point estimate of the global optimum
(̂x∗=0.254047). The lower bound of the CI is 0.254023,
about 0.02% below the best local optimum (xh

(l)).

3.5 Model extensions

Different optimal land patterns would be obtained with
different-size storms, as demonstrated in Yeo et al. (2004),
who show that land management as a BMP is most effective
with a small size storm. As the focus is here on the effec-
tiveness of land use as a BMP to reduce the peak runoff, it
was reasonable to choose a small design storm, such as 1-
year storm. However, optimizing under 1-year design storm
is clearly different from optimizing for the annual load, or
multiple storms. The proposed methodology can be easily
extended to deal with multiple storms and to delineate the
corresponding optimal land-use pattern, by employing a con-
tinuous watershed model, instead of an event-based model, to
simulate the annual load. Consider a representative year sub-
divided intoT (t=1→ T ) precipitation periods. For a given,
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Table 2. Data fitting with a weibull distribution.

Parameter Estimation Estimate

Location (Threshold):a 0.254047
Scale:b 0.000156
Shape:c 4.448359
Mean of Sample Data 0.25419
Standard Deviation of Sample Data 0.000034
Minimum of Sample Data 0.254073
Maximum of Sample Data 0.254298

Goodness-of-Fit Tests for Weibull Distribution

Test Statistic P -Value

Cramer-von Mises W-Sq 0.356 Pr>W-Sq 0.084
Anderson-Darling A-Sq 2.593 Pr>A-Sq 0.036
Chi-Square Chi-Sq 42.572 (d.f .=10) Pr>Chi-Sq <0.001
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Figure 6:  Observation vs. Fitted Cumulative Density Function  
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Fig. 6. Observation vs. fitted cumulative density function.

Table 3. Estimation for the global optimum and confidence interval.

x̂∗ = 0.254047 R = 491
xh
(l)

= 0.254073 α = 0.05 (95% CI)

V = 3.1466
xh
(n)

= 0.254298 95% CI of̂x∗ = (0.254023, 0.254073)

time-independent, land-use pattern subsumed by vectorX,
the peak runoff for periodt would beFt (X), as computed by
the simulation model under the conditions of periodt . Min-
imizing, for instance, the aggregate annual runoff,

∑
t

Ft (X),

could be implemented with the same procedure. It simply
would be lengthier and more computationally demanding be-
cause gradients would have to be calculated for each period.

The land allocation model is very simplified. It only con-
siders total land use targets and land availability per cell, and
only one objective – peak runoff minimization. It does not
consider other ecological (e.g., carbon fixation, animal and
vegetal species preservation, etc.) and socio-economic fac-
tors in the watershed. This was done purposefully, to al-
low for a focus on the simulation of the peak runoff, and to
generate, with the available computer resources, the largest
possible set of feasible solutions (land-use allocations) over
which to search for the global optimum. Therefore, the
obtained minimum peak runoff can be viewed as the lower
bound for the minimum peak runoff that would be obtained
if more constraints were added to the model. The method-
ology could be integrated into a much more comprehen-
sive land allocation model, with not only more constraints,
but also multiple objectives. There is a literature on multi-
objective optimization models applied to watershed issues,
but these models are of an aggregate nature and do not deal
with detailed allocations at the cell (or HRU) level. For
instance, Sadeghi et al. (2009) allocate land to five agri-
cultural land uses while minimizing erosion and maximiz-
ing economic benefits. Chang et al. (1995) allocate land
to forest conservation, agriculture, recreation, and residen-
tial development, while minimizing the discharges of five
distinct pollutants and maximizing employment and income.
Gabriel et al. (2006) develop a mixed-integer quadratic pro-
gram to select parcels for development while (1) maximiz-
ing the compactness of the development area, (2) minimiz-
ing its imperviousness, (3) minimizing the development of
environmentally-sensitive parcels, and (4) maximizing the
total value of the development parcels.
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4 Characterization of the peak runoff function

If the local minimum generated by a hill-climbing algorithm
always turns out to be the global one, the objective function
is necessarily convex. The previous results suggest that the
peak runoff function is convex in terms of the land-use vari-
ables. However, as this function cannot be expressed ana-
lytically in a closed form, its convexity cannot be proven by
analyzing its Hessian matrix. As discussed in Sect. 3, the
total runoff volume and travel time are involved in estimat-
ing the peak discharge. The effects of the land-use variables
on these two components and the whole hydrological system
are further examined, to provide additional support (though
no formal proof) for the convexity of the objective function.

4.1 Estimation of runoff volume

As described in Eq. (15), the CN method is used to estimate
the volume of runoff (Q) as a function of precipitation (P )
and moisture retention (S). While precipitation is exogenous
to the simulation model,S is solely a function of the curve
number (Eq. 16), which is endogenous, as it depends upon
land cover and soil type. Letxil be land usel in cell i, and
cil the curve number for land usel in cell i. Since soil types
do not vary across the watershed, the curve number (cni) for
cell i is:

cni =

∑
l

cilxil (21)

Therefore, the parameterSi and the runoff volumeQi of
cell i are functions of the vector of the land-use variables
Xi=(xi1,. . . xil,..xil) , with:

Si = f (Xi) (22)

Qi = g(Xi) (23)

The runoff volumeQpa along the flow pathpa to the water-
shed outlet is estimated by summing the runoff volumes in
all cellsi in the path, with:

Qpa =

∑
i∈pa

Qi =

∑
i∈pa

g(Xi) =

∑
i∈pa

[
(Pi −0.2f (Xi))

2

Pi +0.8f (Xi)

]

=

∑
i∈pa



[
Pi +0.2

(
100∑

l

cilxil
−1

)]2

Pi +0.8

(
100∑

l

cilxil
−1

)
 (24)

Pi is the amount of precipitation in celli. The routing path
is determined by the D-8 method. Equation (24) is identi-
cal to Eqs. (15)–(16), but applies to the runoff volume along
the flow path, instead of to a single cell. Although the total
runoff is expressed analytically as a function of the land-use
variables, it is difficult to characterize the convexity of the
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Figure 7:  Numerical Assessment of Peak Discharge Rate with Varying Curve Number  
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Fig. 7. Numerical assessment of peak discharge rate with varying
curve number.

function presented in Eq. (24), because of the termf (Xi). A
numerical analysis has been conducted to better understand
this function. With the given land allocation and soil distri-
bution (Fig. 1), the CN values (

∑
l

cilxil) only vary over [77–

82] in the catchment, because most of it is used for agricul-
ture and conservation. The runoff volume (Qpa ) generated
for these CN values was computed. The results, presented in
Fig. 7, show a monotonously increasing and slightly convex
relationship betweenQpa and CN. As CN is a linear function
of theXi ’s, Qpa is then a convex function of theXi ’ s.

4.2 Estimation of runoff travel time

As discussed in Sect. 3.2, the most influential parameters for
flow times are land uses and topography. The overland flow
is a function of Manning’s roughness coefficient, flow length,
and slope; the shallow concentrated flow is determined by
slope; the channel flow is computed with Manning’s rough-
ness coefficient, channel length and area, and slope. Man-
ning’s roughness coefficient, a parameter for surface friction
and resistance, is a function of land-cover, and topography
determines flow directions, slopes, and drainage patterns.

The hydrological model keeps track of all flow paths to
the watershed outlet, and assigns a specific flow type to each
cell on each path. This is necessary to account for the im-
pacts of site-specific land-use changes, as surface cover af-
fects the Manning’s roughness coefficient used in flow time
estimation. Then, the flow time is explicitly calculated for
each celli, and the total flow time over pathpa is estimated
as the sum of the travel times over all the consecutive flow
segments along the flow path. The time of concentration
Tc is determined by the flow path with the maximum travel
time. Since flow path and type are determined by water-
shed topography and geography, the time component of the
hydrological model is necessarily a function of the land-use
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Figure 8:  Regression Coefficients for Peak Discharge (Bingner and Theurer, 2002) 
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Fig. 8. Regression Coefficients for Peak Discharge (Bingner and Theurer, 2002).

variables vectorX:

Tc = H(X) (25)

4.3 Estimation of peak discharge

The peak discharge rate at the watershed outlet is estimated
using the extended TR-55 method (Bingner and Theurer,
2002), which requires the following inputs: the runoff vol-
ume, the time of concentration, and the unit peak regression
coefficientsap −fp. These coefficients are determined by
the rainfall distribution and the ratioIa/P24. The initial ab-
straction (Ia,i) of cell i is estimated as 20% of the moisture
retentionSi (Eq. 16), which is itself dependent upon the land
uses in celli (USDA, 1986), with:

Ia,i = 0.2·Si = 0.2

254

 100∑
l

cilxil

−1


= y(Xi) (26)

The initial abstraction for the watershed is then estimated as
the average value ofIa,i :

Ia/P24=
∑

i

Ia,i/P24=

∑
i

y(Xi)/P24= Y (X). (27)

The constantsap −fp are derived from a look-up table, and
Fig. 8 presents their values as functions of the ratioIa/P24,
for Type II rainfall. Except for coefficientap, these curves
are strongly nonlinear. Once the values of the parameters
ap−fp are determined, the peak discharge rate is computed
as:

Qp = 2.78×10−3P24Da ·

[
ap +(cp ·Tc)+(ep ·T 2

c )

1+(bp ·Tc)+(dp ·T 2
c )+(fp ·T 3

c )

]

= 2.5×10−2
NP a∑

1

QP aL(H(X),Y (X)) (28)

whereY (X) represents the ratioIa/P24 that determines the

regression coefficientsap−fp (Eq. 27),H(X) represents the
time of concentrationTc (Eq. 25), andNpa is the number of
all possible paths. The right-hand side of Eq. (28) is essen-
tially identical to Eq. (17), as the total runoff at the watershed

outlet (
NP a∑

1
QP a) is equal to the product of the total drainage

area by the effective rainfall (P24Da), which is the amount of
precipitation that is neither retained by the land surface nor
infiltrated into the soils. Equation (28) relates two compo-
nents, the total runoff volume and the time of concentration,
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Figure 9:  Numerical Assessment of ( ( ), ( ))L H YX X  Under Type II Rainfall Distribution  
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Fig. 9. Numerical Assessment ofL(H(X),Y (X)) Under Type II Rainfall Distribution.

to the peak runoff. As the runoff volume (
NP a∑

1
QP a ) has been

shown to be convex (Sect. 4.1), Eq. (28) is further analyzed
by focusing on the componentL(H(X),Y (X)).

The functionL(H(X),Y (X)) is computed with selected
values forTcand theIa/P24 ratio for the study area. Numer-
ical results are presented in Fig. 9 forIa/P24=(0.00, 0.25,
0.50, 0.75) andTc in the range [0–2 h], which covers all pos-
sible Tc values in the 500 initial land-use patterns. The re-
lationships presented in Fig. 8 are either convex or linear.
However, the convexity of Eq. (28) cannot be guaranteed, as
the multiplication of two convex functions,L(H(X),Y (X))

and
NP a∑

1
QP a , cannot be mathematically proven to be convex.

5 Conclusions

This paper has presented a general methodology for integrat-
ing complex simulation models of natural systems into op-
timization models that account for various socio-economic
and environmental objectives and constraints. In the specific
case of hydrological watershed models, the decision vari-
ables are related to land-use allocations, sitting and sizing
of structural BMPs, agricultural practices, and non-structural
BMPs, and the environmental outputs include peak runoff
and sediment, phosphorous, and nitrogen loads. The gradi-
ent of the objective function is estimated numerically with
the simulation model, and a hill climbing algorithm is im-
plemented to reach either a local optimum or the global op-
timum. A statistical procedure based on the Weibull distri-
bution is next used to estimate the global optimum out of a
large number of model-generated local optima.

The methodology has been applied with a peak runoff sim-
ulation model to the OWC watershed in Ohio. The decision
variables are land-use allocations, and the objective is to min-
imize peak runoff at the watershed outlet. A large number of
solutions has been generated from distinct initial solutions,
and these solutions turned out to be very close, strongly sup-
porting the case for a convex relationship between peak dis-

charge and land-use variables. The convexity of the objective
function has been further investigated by examining the un-
derlying mechanics of the hydrological model (i.e., the SCS-
CN method) in terms of land-use variables, and by perform-
ing numerical evaluations of its main components. The nu-
merical results also support, though do not fully prove, the
case for convexity.

The methodology can be adapted to deal with other op-
timization and simulation models, and to design watershed
structural BMPs, alternative agricultural practices, and
non-structural BMPs (e.g., use of pervious material in urban
areas). The modeling scope can be extended to (1) include
multiple storms, and (2) account for socio-economic and
other environmental factors. To further assess the method-
ology, numerical experimentations should be undertaken
with other simulation models, objectives, constraints, and
sites/regions. The search for and derivation of the global
optimum should provide the basis for designing heuristic
procedures that yield very good, though not necessarily
optimal, managerial and planning decisions.

Edited by: N. Verhoest
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