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Abstract. In the past years there have been many attempts
to produce and improve global soil-moisture datasets and
drought indices. However, comparing and validating these
various datasets is not straightforward. Here, interannual
variations in drought indices are compared to interannual
changes in vegetation, as captured by NDVI. By comparing
the correlations of the different indices with NDVI we evalu-
ated which drought index describes most realistically the ac-
tual changes in vegetation. Strong correlation between NDVI
and the drought indices were found in areas that are classified
as warm temperate climate with hot or warm dry summers.
In these areas we ranked the PDSI, PSDI-SC, SPI3, and NSM
indices, based on the interannual correlation with NDVI, and
found that NSM outperformed the rest. Using this best per-
forming index, and the ICA (Independent Component Anal-
ysis) technique, we analyzed the response of vegetation to
temperature and soil-moisture stresses over Europe.

1 Introduction

Having reliable information on the spatial and temporal vari-
ability of soil-moisture is a key to many practical and sci-
entific problems. Reliable soil-moisture data crucially im-
prove long-term weather forecasts (Seneviratne et al., 2006;
Ferranti and Viterbo, 2006), and help to prepare better for
drought. In addition, long-term changes in soil-moisture and
especially droughts, induced by climate-change (Sheffield
and Wood, 2007), can have important effects on the ter-
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restrial biosphere, which feedback into the climate system
through the carbon cycle (Angert et al., 2005; Fung et al.,
2005).

Given these needs, there have been many attempts to pro-
duce and improve global soil-moisture and drought indices
datasets (Dai et al., 2004; Dutra et al., 2008; McKee et al.,
1993; Palmer, 1965; Wells et al., 2004). Allegedly, some of
these datasets have advantages over others. However, com-
paring and validating these various datasets is not an easy
task.

Ground-based soil-moisture measurements are accurate,
but hard to compare to the large scale datasets because of
their point-based nature, their limited coverage, and the well-
known high spatial variability of soils. Remote sensing meth-
ods on the other hand, provide extensive spatial and temporal
coverage of soil-moisture, but these methods can only sense
the top few centimeters of soil, and become less sensitive
to soil-moisture in vegetated regions as the vegetation wa-
ter content increases (Wang et al., 2007). Another approach
focuses on assessing soil-moisture, not by modeling, but by
remote sensing of vegetation.

This approach uses a well-known index for assessing veg-
etation spatial and temporal variability: the Normalized Dif-
ference Vegetation Index (NDVI). This index is based on the
differential absorption of red and near infrared (NIR) light
by leaves, and is linearly correlated with the fraction of pho-
tosynthetic active radiation absorbed by plants (Tucker and
Sellers, 1986). The basic idea of this approach is that tem-
poral variations in soil-moisture cause changes in vegeta-
tion, which can be captured by NDVI. However, the corre-
lations between soil-moisture estimated by this approach to
field measurements are low (Tadesse et al., 2005; Wang et al.,
2007), probably because soil-moisture is not the only factor
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controlling vegetation and factors like temperature and man-
agement can also come into play. Using NDWI (Normalized
Difference Water Index) instead of NDVI did not produce
improved correlations (Gu et al., 2008).

Due to the limitations of the various methods for val-
idating soil-moisture indices discussed above, we suggest
here a somewhat different approach for using the NDVI sig-
nal. In the current study, interannual variations in indices
for drought are compared to interannual changes in vegeta-
tion, as captured by NDVI. The NDVI signal is affected by
changes in vegetation leaf area and chlorophyll content, in-
duced not only by soils-moisture but also by other natural
and anthropogenic factors such as temperature, and manage-
ment. However, in areas and seasons in which soil-moisture
is the main limiting factor, a better drought (as an indicator
of soil-moisture stress) estimate will result in a better cor-
relation with NDVI. Thus, comparing the correlation of the
different indices with NDVI will enable to evaluate which
drought index provides the most reliable representation of
water stress. This is of course true only if all drought indices
are derived independently of NDVI (for example, no opti-
cal reflectance data were used to create them). One should
emphasize that the correlation for a single pixel may be ran-
domly high. However, by integrating large areas, and by
focusing on long time series of interannual variability, we
mostly eliminate this problem. We have set our focus on the
time of year when drought stress is mostly expected – namely
summer (and to a lesser extent, spring). In addition to rank-
ing the drought indices based on correlation with NDVI, we
have explored the spatial distribution of this correlation, and
its relationship with other variables. In particular we have
looked on how the relationship between soil-moisture and
NDVI changes with land-cover.

It must be stressed that in our view, NDVI cannot serve
as a direct proxy for soil-moisture, both because no NDVI
dataset captures perfectly the changes in vegetation, and be-
cause of the other, natural and manmade, factors which con-
trol vegetation (mentioned above). In a perfect situation, val-
idation and ranking of drought indices would be done ver-
sus in-situ measurements. In practice however, the extent of
datasets covering in-situ, point based, measurements, is far
from providing a complete temporal and spatial coverage,
against which large-scale drought products can be tested.
Thus, while point based measurement will continue to be the
primary source for validation, the NDVI approach we sug-
gest here can be very useful in complementing it.

2 Data and methods

2.1 Drought indices

In the current research we have used five indices for drought.

2.1.1 The Palmer Drought Severity Index (PDSI)

This index is a standardized measure of surface soil-moisture
conditions which integrates moisture inputs (precipitation),
and outputs (drainage and evapotranspiration) as well as the
local Available Water Content (AWC) of the soil. Here, we
have used the global PDSI calculated by Dai et al. (2004)
at a resolution of 2.5◦ by 2.5◦, based on observed monthly
surface air temperature and precipitation.

Despite its popularity, PDSI has several limitations; these
include an inherent time scale, and the uncertainty of the in-
dex to the amount of water available for plant use in different
soil types. A common critique of the PDSI is that the behav-
ior of the index at various locations is inconsistent, making
spatial comparisons of PDSI values difficult (Heim, 2002;
Lloyd-Hughes and Saunders, 2002; Sims et al., 2002).

2.1.2 The Self-Calibrating PDSI (SC-PDSI)

This index was suggested to be a more appropriate index
for geographical comparison of climates of diverse regions
(Wells et al., 2004). SC-PDSI improves the performance
of the PDSI by automating the calculations of the empiri-
cal constants used in the PDSI algorithm. This was achieved
by determining, for each location, the climatic characteristic
weighting factor (K) using the historical climatic data from
only that location. In a similar way, the duration factors are
calculated separately for wet and dry spells, thus influenc-
ing the sensitivity of the index for changes in the moisture
regime (Van Der Schrier et al., 2006). Due to the computed
modifications, the SC-PDSI is claimed to behave in a con-
sistent, predictable manner as well as to represent the cli-
mates of diverse locations in a more realistic way (Wells et
al., 2004). We have used a 0.5◦ grid, monthly temporal reso-
lution dataset (Van Der Schrier et al., 2006).

2.1.3 The Standardized Precipitation Index (SPI)

The Standardized Precipitation Index, proposed by McKee
et al. (1993) is an alternative to PDSI, and was designed to
quantify the precipitation deficit for multiple time scales. SPI
represents a statistical z-score or the number of standard de-
viations (following a gamma probability distribution trans-
formed to a normal distribution) for the deviation of pre-
cipitation, accumulated over a given period, from the mean.
One advantage of SPI is that it can be tailored to specific
needs. For example, SPI is routinely calculated for 1, 3,
and 6, months (Heim, 2002; McKee et al., 1993), and other
time scales, up to 48 months, are also in use. An obvious
disadvantage it that SPI accounts only for moisture inputs,
but not for outputs (i.e., variability in the rates of evapo-
transpiration or drainage is not considered). In the current
study we have calculated SPI3 (i.e., with 3 months aggrega-
tion period), which was previously reported to provide best
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correlations with NDVI (Ji and Peters, 2003). The SPI3 was
calculated from two precipitation datasets:

1. The Global Precipitation Climatology Project (GPCP),
which merges data from over 6000 rain gauge stations
and from satellite observations into a 2.5◦ global grid,
monthly rainfall dataset (Xie et al., 2003).

2. The European Centre for Medium-Range Weather Fore-
casts (ECMWF) Re-Analysis project (ERA-40), which
produces a long time-series of consistent meteorologi-
cal analyses based on simulations with the best-fit be-
tween modeled results and observations (Uppala et al.,
2005). We have used the 1◦ spatial resolution and av-
eraged over the daily precipitation accumulation data to
monthly temporal resolution.

2.1.4 The Normalized total depth Soil Moisture (NSM)

The Normalized total depth Soil Moisture is a model-based
drought index proposed recently (Dutra et al., 2008). This
index represents the standardize anomalies in soil-moisture.
Soil-moisture is calculated by the TESSEL land surface
model (Viterbo and Beljaars, 1995; Van den Hurk et al.,
2000) forced by the ERA-40 precipitation, downwelling ra-
diation and near surface meteorology. The model uses four
soil layers that vary in depth (0–7, 7–28, 28–100 and 100–
289 cm). The NSM is based on the integrated soil-moisture
over these four layers. So far the NSM dataset is available for
Europe. The model output 1◦ spatial resolution was averaged
into monthly time scale.

2.2 NDVI data

In this study, we have used the Global Inventory Modeling
and Mapping Studies (GIMMS) version-g NDVI dataset on
1◦ by 1◦, and 8 km spatial resolutions and monthly temporal
resolution from 1982 to 2002 (Pinzon et al., 2005; Tucker et
al., 2005).

2.3 Land-cover data

The Vegetation Continuous Fields (VCF) collection contains
estimates of the proportional coverage of woody vegetation,
herbaceous vegetation, and bare ground in each grid-cell
(500 m resolution). The product is derived from all seven
bands of the MODerate-resolution Imaging Spectroradiome-
ter (MODIS) sensor onboard NASA’s Terra satellite (Hansen
et al., 2003a, b).

2.4 Statistical analyses

All drought indices datasets were re-gridded to 1◦ by 1◦ by
linear interpolation (or by averaging), to enable comparison
with the NDVI dataset.

For NDVI (1◦ resolution) and for each drought index,
the average summer (June, July, August – JJA) and spring

(March, April, May – MAM) values were calculated for ev-
ery grid cell in Europe for the period 1982–2002 (45X66 grid
cells). The interannual variability was captured by calculat-
ing the JJA and MAM normalized anomalies.

The linear correlation coefficient (r) between the time se-
ries of NDVI anomalies and the soil-moisture anomalies in
each of the indices was calculated for every grid cell in Eu-
rope. In addition, we have calculated the linear correlation
coefficient (r) between the time series of area-mean NDVI
anomalies and the area-mean soil-moisture anomalies, for
specific areas (see results and discussion). We have also
applied to the NDVI data set the Independent Component
Analysis (ICA), which is an advanced method for separating
a multivariate signal into additive subcomponents (Hyvrinen
and Oja, 2000). By this analysis we have tried to separate the
response of NDVI to temperature and soil-water stress.

One area, Iberia, was chosen for a more detailed case
study, in which we examined the correlation between NSM
and NDVI at higher resolution of 16 km (re-gridded from the
8km dataset), and the relations between the strength of this
correlation and land-cover.

3 Results and discussion

The strength of the correlation between summer NDVI and
each drought index is shown in Fig. 1. The correlation maps
show few broad areas, where positive correlations are evident
in all indices. Other, mostly northern areas, show negative
correlation, which is probably related to the correlation be-
tween summer temperature and precipitation, and the strong
control of temperature on vegetation in these areas. Some
areas show positive correlation only with part of the indices.
For example, the SPI3-EMCWF and SPI3-GPCP maps show
strong correlation in parts of Eastern Europe. However, for
all indices, significant positive correlations were found in
the rectangle areas covering Iberia (9.5◦ W–0.5◦ W, 36.5◦ N–
43.5◦ N), parts of North Africa (6.5◦ W–11.5◦ E, 35.5◦ N–
37.5◦ N) and Western Turkey (26.5◦ E–31.5◦ E, 36.5◦ N–
41.5◦ N). In these areas, the mean correlation coefficient (r)
exceeded 0.4 in the two best performing indices, NSM and
SC-PDSI, and the mean p-value was<0.01 (P is < 0.01 for
r > 0.51 andp < 0.05 forr > 0.37). For these three areas, we
have also calculated the correlation between the time-series
of NDVI (averaged over each area), and drought indices (also
averaged over each area). This averaging brought all datasets
to the same (very coarse) resolution, and thus removed bias
caused by the different original resolutions.

The correlations of the area-mean time series indicate (Ta-
ble 1) that the NSM index outperformed in two areas, Iberia
and Western Turkey, while SC-PDSI gave the highest corre-
lations in one – Northern Africa. Hence, we conclude that
these two indices represent the actual soil-moisture better
than the PDSI, SPI3-EMCWF and SPI3-GPCP indices. Sur-
prisingly, SPI3-GPCP performed worse than SPI3-EMCWF,
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Fig. 1. Coefficients (r) of correlation between interannual anomalies in Europe JJA NDVI and soil moisture indices: PDSI(a), SC-PDSI(b),
SPI3-EMCWF(c), SPI3-GPCP(d) and NSM(e).

Table 1. Correlation coefficients (r) between the (area-mean) in-
terannual variability in summer (JJA) NDVI and soil-moisture esti-
mated by various indices.

SPI3- SPI3- PDSI SC- NSM NSMS
GPCP EMCWF PDSI

Iberia 0.33 0.71 0.70 0.73 0.78 0.80
N. Africa 0.33 0.68 0.67 0.78 0.76 0.84
W. Turkey 0.31 0.65 0.45 0.56 0.78 0.79

although the former is based on observed precipitation, and
the later on modeled one. As we have expected, the corre-
lations between soil-moisture and NDVI in spring (MAM)

are not significant in Iberia and Western Turkey (r < 0.04 for
NSM), and much weaker than in summer in Northern Africa
(r = 0.25 for NSM versusr = 0.76 in summer). This is since
soil moisture stress (and the respective drought stress) and its
impact on vegetation is higher in summer when compared to
spring.

The positive correlation found in Iberia, parts of North
Africa and Western Turkey, is expected to relate to high sen-
sitivity to soil-moisture. Indeed, these areas are relatively
dry, and according to the TESSEL simulation the mean JJA
soil-moisture is less than 83% of that of the mean value
for Europe. The mean JJA temperature (EMCWF) is above
21◦C, versus less than 13.5◦ C for Europe on average. Ac-
cording to the Koppen-Geiger classification (Kottek et al.,
2006) these areas are almost entirely under climate classified
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Table 2. The mean coefficient of correlation (r) between interan-
nual variability in summer NDVI of 16 km by 16 km grid-cells in
Iberia, and NSM, stratified by fractional land cover.

r Grass Cover r Tree Cover r Bare Cover

0.15 0–40% 0.35 0–5% 0.22 0–5%
0.26 40–60% 0.30 5–15% 0.30 5–10%
0.31 60–70% 0.28 15–30% 0.32 10–20%
0.30 70–80% 0.21 30–40% 0.37 20–30%
0.30 80–90% 0.18 40–60% 0.44 30–40%
0.25 90–100% 0.14 60–100% 0.44 40–100%

as warm temperate climate (CS) with hot (CSa) or warm
(Csb) dry summers. In agreement, the NDVI in these ar-
eas is reduced in summer, while the mean for Europe shows
seasonal maximum at this time (Fig. 2). We have also
found no significant correlation (atP < 0.05) between in-
terannual variation in JJA temperature and NDVI at these re-
gions, which strengthen the conclusion that soil-moisture is
the leading source of variability. In addition, the plant func-
tional type (PFT) distribution in these areas is different than
those of the rest of Europe. According to the Vegetation Con-
tinuous Fields dataset (Hansen et al., 2003b), the percentage
of area not cover by trees is 85% in Iberia, 95% in Northern-
Africa, and 84% in Western-Turkey, while only 78% in entire
Europe. Finding theses high NDVI-drought correlations ex-
actly where they are expected, i.e., water limited ecosystems,
support our claim that the NDVI signal can be used for rank-
ing drought indices.

We have performed a more detailed case study for Iberia,
using a 16km spatial resolution NDVI dataset (Table 2). The
correlations coefficient in this resolution was found to be
much lower than that obtained when correlating the time se-
ries of each broad geographical area (Table 1). The signif-
icant correlations in areas classified as “bare soil” indicate
that at least some of these areas are sometime vegetated. The
correlation with NSM was found to increase with lower tree
cover. Hence, it seems that the response of grasses to soil-
moisture stress is higher. Grasses, in contrast to trees, have
no access to deep soil water, and as a result, we have ex-
pected that areas with low tree cover will have better corre-
lation with the normalized soil-water of the first three model
layers (down to 100 cm depth) that are used to derive NSM,
than with NSM itself. Indeed, the correlation (r) of NDVI
at 16km resolution with the normalized soil-water in the
surface layers (which we named NSMS – Normalized Soil
Moisture at the Surface) at grid-cells where the tree cover is
less than 10%, is 0.39 on average, versus 0.33 for the same
grid-cells when we use all layers (NSM). In grid-cells where
the tree-cover was high (>50%) the correlation of NDVI
with the fourth layer (100 cm to 289 cm) was not significant
(r = 0.19) as was the correlation with NSM (r = 0.13). It is
possible that in areas with high tree-cover the Photochemi-

Fig. 2. Mean seasonal changes in NDVI over Europe (green), Iberia
(red), Northern Africa (black) and Western Turkey (blue).

cal Reflectance Index (PRI) will be better suited for tracing
drought stress than NDVI (Goerner et al., 2009). A follow-up
study should also investigate if there is a different response
for evergreen and deciduous trees, as well as time lags be-
tween drought-stress at monthly time resolution, and vegeta-
tion response.

Based on the above results, we have calculated also the
correlation of NDVI in 1◦ degree resolution with NSMS. The
results, summarized in Table 1, show that NSMS is better
correlated with vegetation than NSM, in the three geographi-
cal areas with relatively high correlations. Moreover, NSMS
had higher correlations than any other drought index; mak-
ing it the most reliable one based on the criterion we have
defined. The higher correlation of tree-covered surface with
the fourth layer indicates that NSM also has good reliability,
when the interest is estimating the soil-moisture anomalies
also at deeper levels. The highly parameterized formulation
of PDSI, or the simple approach of the SPI was shown to be
less reliable than the more physically based water balance of
the NSM, including its four layer structure. These factors
seem to be major ones, and not so much the forcing data,
since both the NSM and one of the SPI indices were driven
by the same ERA-40 precipitation.

We have utilized the NSM to assess the relative importance
of temperature and soil-moisture on NDVI in summer and
spring. We divided Europe into three regions, based on sum-
mer (JJA) mean temperature (“Hot”>19◦C, “Cold”<16◦C,
16◦C< “Warm”<19◦C), and performed an ICA analysis on
the JJA NDVI interannual anomalies in each region. The
leading ICAs were then correlated with the area-mean JJA
temperature, with NSM (representing soil-moisture), and
with the original NDVI signal (to asses the percentage of
variability captured by each IC).
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Table 3. ICA analysis results for summer (JJA) and spring (MAM)
NDVI for three regions of Europe, separated by the mean sum-
mer temperature. Displayed is the percentage of NDVI variance
explained by the two leading IC’s, and the coefficient of determina-
tion (r2) between each IC and the regions anomalies of temperature
and soil moisture (NSM). Empty fields indicate that no second IC
was found.

JJA MAM
Hot warm Cold Hot warm Cold

IC1-% Expl. 63 61 47 50 24 59
IC2-% Expl. 32 20 41 11 21
IC1-Temp. 0.10 0.09 0.32 0.52 0.29 0.34
IC2-Temp. 0.00 0.08 0.31 0.17 0.00
IC1-Moist 0.36 0.29 0.06 0.12 0.05 0.02
IC2-Moist 0.02 0.06 0.10 0.27 0.01

This process was then repeated for MAM. The results,
summarized in Table 3, indicate that in summer the leading
ICs for the hot and warm regions are correlated only with
soil-moisture, and there is no evidence for temperature effect
on NDVI. In contrast, the hot and warm regions do show de-
pendence of NDVI on temperature in spring, and only a weak
soil-moisture effect. The cold region shows only temperature
effect both in summer and spring. These results indicate that
in areas with mean summer temperature above 16◦C, it is
possible to separate the contribution of temperature and pre-
cipitation on NDVI (and maybe also productivity) by focus-
ing on different seasons.

4 Conclusions

The correlations between interannual variations in NDVI and
the drought indices are highest in areas with hot and dry
summers, as expected. Higher correlation is associated with
grassland than with forests. The NSMS index was found
to have the highest correlation with NDVI, having the best
representation of the interannual variations in the surface
soil-moisture stress. NSM carries additional information on
deeper soil-moisture. These results have obvious implica-
tions for further soil-moisture based studies. ICA analysis of
entire Europe found that in areas with summer temperature
above 16◦C, the vegetation (as captured by NDVI) responses
in summer, on the interannual time scale, only to variation in
drought-stress and not to temperature. However, in spring
the vegetation in these areas does show sensitivity to temper-
ature. These findings have implication for change in vegeta-
tion and the carbon cycle under changing climate.
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