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Abstract. Probabilistic predictions are becoming increas-
ingly popular in hydrology. Equally important are methods
to test such predictions, given the topical debate on uncer-
tainty analysis in hydrology. Also in the special case of hy-
drological forecasting, there is still discussion about which
scores to use for their evaluation. In this paper, we propose
to use information theory as the central framework to evalu-
ate predictions. From this perspective, we hope to shed some
light on what verification scores measure and should mea-
sure. We start from the “divergence score”, a relative entropy
measure that was recently found to be an appropriate mea-
sure for forecast quality. An interpretation of a decomposi-
tion of this measure provides insight in additive relations be-
tween climatological uncertainty, correct information, wrong
information and remaining uncertainty. When the score is
applied to deterministic forecasts, it follows that these in-
crease uncertainty to infinity. In practice, however, deter-
ministic forecasts tend to be judged far more mildly and are
widely used. We resolve this paradoxical result by proposing
that deterministic forecasts either are implicitly probabilis-
tic or are implicitly evaluated with an underlying decision
problem or utility in mind. We further propose that cali-
bration of models representing a hydrological system should
be the based on information-theoretical scores, because this
allows extracting all information from the observations and
avoids learning from information that is not there. Calibra-
tion based on maximizing utility for society trains an implicit
decision model rather than the forecasting system itself. This
inevitably results in a loss or distortion of information in the
data and more risk of overfitting, possibly leading to less
valuable and informative forecasts. We also show this in an
example. The final conclusion is that models should prefer-
ably be explicitly probabilistic and calibrated to maximize
the information they provide.
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1 Introduction

Over the last decades, probabilistic prediction has become
increasingly important in the field of hydrology. Forecasts
are predictions about the future and are the main focus of
this paper. The theoretical arguments we present, however,
are valid for predictions in general, hence we use the terms
interchangeably. Lacking enough information to completely
eliminate uncertainty, probabilistic forecasts are intended to
reduce uncertainty of the user about future events and com-
municate the remaining uncertainty (Krzysztofowicz, 2001;
Montanari and Brath, 2004; Montanari et al., 2009; Ramos
et al., 2010). In hydrology, the development of methods for
evaluating such forecasts, however, has not kept pace with
the development of methods of generating them (Laio and
Tamea, 2007; Bröcker and Smith, 2007). This is an impor-
tant problem, given the fact that science is required to make
testable predictions and therefore needs unambiguous meth-
ods for testing those predictions. Furthermore, the lack of
methods for the evaluation of hydrological forecasts may hin-
der acceptance of those forecasts by the public. Forecast
evaluation is therefore also an important topic within sev-
eral international initiatives that address the development of
reliable hydrological probabilistic forecasts, mainly through
the use of ensemble forecasts (Thielen et al., 2008). Ex-
amples are the Hydrological Ensemble Prediction EXperi-
ment (HEPEX), the European Flood Alert System (EFAS)
and MAP D-PHASE, which is aimed at flood prediction in
the Alps. These initiatives seek to optimize hydrological
(flood) forecasts by addressing the characterization of vari-
ous uncertainties and by bringing together experience from
the meteorological and hydrological communities and end-
users. Attribution of uncertainties is important to achieve
reliable probabilistic forecasts. To test this reliability and
improve it by calibration, ultimately the produced uncer-
tainty estimates must be tested against observations (see e.g.
Thirel et al., 2010; Bartholmes et al., 2009). These tests can
be done for every subcomponent of the forecasting system
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that gives testable predictions of e.g. precipitation, temper-
ature (the meteorological component) or streamflow, snow-
pack (the hydrological component). This is achieved by eval-
uating the forecasts.

In this paper we approach forecast evaluation from an
information-theoretical point of view. Although applications
are important to evaluate the significance and implications
for practice, the objective of this paper is to present a purely
theoretical viewpoint, using logical reasoning and building
on basic desiderata for scores, which are the basis for their
justification. By using a decomposition recently developed
by Weijs et al.(2010) in combination with some results from
information theory, we provide insights into what evaluation
scores measure and what, in our opinion, they should mea-
sure. The most important insights are that deterministic fore-
casts are not testable without additional assumptions and that
the purpose of a model should not influence the measure that
is used for its calibration.

1.1 What is a good forecast?

In this paper, we regard the forecast as the final prediction
that is given by the forecaster to the user. The forecaster
is usually not literally one person, but is often a complex
system involving both human experts and computers, see e.g.
Ramos et al.(2010). The forecaster processes information
from various sources to give an estimate for some quantities
that are of interest for the user. The user may combine these
forecasts with other information or use them at face-value to
eventually make decisions. To determine the merit of these
estimates, they are compared to observations. It is important
to note that the information or interpretation that the user may
add to the forecasts is not part of the forecasts and should
therefore not influence their evaluation.

In general, the evaluation of forecasts can have several pur-
poses. Evaluation may serve to assign a level of trust in the
forecast, to reward good forecasters, to diagnose problems in
forecasting models, and to provide an objective function for
calibration of the forecasting models. All these purposes for
evaluation have in common that the measures should allow
comparisons between forecasts or between forecasting sys-
tems, i.e. series of forecasts. Assigning a level of trust only
makes sense if there are also alternatives; rewarding a good
forecaster has no use if there is no other forecaster or no other
period of forecasts to compare to; diagnosing problems is not
possible if there is no reference of what the quality should
be; optimization works by continuously comparing different
models or parameter sets.

For directly comparing two (series of) forecasts, prefer-
ences must be complete (a forecast must either be better than,
worse than, or equally good as another one) and transitive
(preferences can not form a loop likeA>B>C>A, where
> denotes “is better than”), which are the same requirements
that are applicable to probability (Peterson, 2009). These two
requirements naturally lead to measures that take the form of

a scalar real number. In contrast to this requirement for a one-
dimensional measure, however,Murphy(1993) argued that it
is possible to distinguish three different dimensions of fore-
cast “goodness”:

– Consistency: correspondence between forecasts and
judgments;

– Quality: the correspondence between forecasts and ob-
servations;

– Value: incremental benefits of forecasts to users.

Consistency requires that what the forecaster communi-
cates, the forecast, corresponds to his best judgment. This
judgment is internal to the forecaster and ideally should be
a rational distillation of all information available to him. Be-
cause a forecaster has only limited access to information and
is not completely rational,his best judgment may not bethe
best judgment, but by definition he can never knowingly let
his internal best estimate diverge fromthebest estimate given
the available information, or it would not be his best estimate.
Consistency is therefore a desirable property, which can be
interpreted as honesty, because it is about the match between
the internal beliefs and the external forecast.

Quality is the dimension that is most important in pure
science, as it concerns putting the predictions to the test by
comparing forecasts with observations. It is important to note
in this respect that an observation is also just an estimate of
the truth and therefore does not fundamentally differ from
a forecast. In fact, we are comparing one estimate of truth
with another. The estimate that we regard as most trustwor-
thy, usually the one that is made in hindsight, is called ob-
servation, the other estimate is the prediction or forecast. In
a future paper, the effect of observation uncertainty on fore-
cast evaluation will be addressed. In meteorology, the evalua-
tion of quality is called verification (Latin: veritas = truthful-
ness). This term is somewhat misleading, because establish-
ing whether a model corresponds to the truth is impossible
(Oreskes et al., 1994).

Value is related to a decision problem attached to the fore-
cast and more closely related to engineering than to science.
It is therefore not only dependent on the forecasts and the
observations, but also on who is using the forecasts. Hy-
drological forecasts may, for example, have significant value
for reservoir operation, evacuation decisions, and agriculture.
Good forecasts for dam operation can for example lead to
more hydropower, less flood damage, and, at the same time,
fewer unnecessary pre-releases for flood protection. One
could attempt to express these benefits in monetary terms,
but from a decision-theoretical point of view, it is better to
use the more general term utility. This takes into account that
not every unit of money necessarily has the same value and
that other things than money might be important. By defini-
tion, the utility of an uncertain event is equal to the expected
utility of that event (Von Neumann and Morgenstern, 1953).
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In engineering, risk is defined as expected damage or loss
(disutility). Risk is therefore the opposite of utility. For ad-
verse events, like floods, anticipation can reduce risk and the
value of hydrological forecasts can thus be expressed as the
reduction in risk they provide when used in decision making.
At first sight, this seems to be an appropriate criterion for
evaluation of real world forecasts and a good guideline for
optimizing them.

1.2 Problems with evaluation of hydrological forecasts

The current problem in defining a framework for the evalua-
tion of forecasts lies partly in that the distinction between the
latter two dimensions, quality and value, is not always ex-
plicitly made. It is thus not always clear what is measured by
the scores. Given some fundamental requirements on mea-
sures of quality, we will argue that many scores that are be-
lieved to measure forecast quality only become meaningful
when interpreted in terms of utility (i.e. value). For example,
Weijs et al.(2010) noted that the Brier score could be in-
terpreted either as a second order approximation of forecast
quality or as a measure of value or utility for the case of a
body of users that has a uniform distribution of cost-loss ra-
tios between zero and one. Based on theoretical arguments,
we will measure the quality dimension on an “information-
uncertainty scale”, while the value dimension is measured on
a “utility-risk scale”.

As most purposes of evaluation require a one-dimensional
measure of goodness, a choice between value and quality
must be made. We will argue that for decision making on
investment in a forecasting system, the value must be con-
sidered, but for decisions on model structure and parame-
ters (i.e. science questions, calibration, learning), an unam-
biguous quality measure must be defined that can not rely on
user preferences, but should be justified by building on basic
desiderata.

The hydrological and meteorological literature, however,
offers a wide range of verification measures. Although the
properties of these measures are well-studied, it is not always
clear what is actually measured.Laio and Tamea(2007) give
an overview of some commonly used measures in meteorol-
ogy that could be applicable in hydrology. What is missing
from this overview, and also in two standard works about
forecast verification (Wilks, 2006; Jolliffe and Stephenson,
2003), are measures for forecast evaluation based on in-
formation theory (Weijs et al., 2010). We will argue that
information-theoretical scores are measures for quality par
excellence, for forecasts stated in terms of probability.

Apart from probabilistic forecasts, two other types of fore-
casts are commonly used and presented in the overview given
in Laio and Tamea(2007): deterministic forecasts and inter-
val forecasts. However, these types of forecasts can in prin-
ciple not be evaluated unambiguously without reference to
external assumptions relating to probability or utility. The
result that the intervals contain 90% of the observations is

meaningless if the intervals are not stated in terms of proba-
bility. The result that a deterministic forecast has an error of
10 m3 s−1 does not have meaning if it is not known what the
implications are (cf. utility-risk) or how likely we think this
error was (cf. information-uncertainty).

Instead of seeing this as a problem of the evaluation meth-
ods, we will argue that this should be seen as a problem of
the forecasts themselves. They do not fulfill the requirement
of testable predictions. Moreover, deterministic forecasts are
not consistent with judgments, which, given that we know
a model is an approximation, are better described in terms of
probability.

Notwithstanding these problems with deterministic fore-
casts, they are still common in hydrology and are usually
evaluated with measures like Nash-Sutcliffe efficiency, mean
squared error and mean absolute error. Therefore, it is likely
that there exists some reason that makes deterministic fore-
casts acceptable from a practical point of view. Also here the
information-theoretical viewpoint could provide some new
insights.

1.3 Outline

In this paper, we propose to use information theory as the
central framework for forecast quality. By viewing the fore-
cast evaluation problem from an information-theoretical per-
spective, we hope to shed some light on what is measured and
what should be measured by verification scores. We build on
results from a recent paperWeijs et al.(2010) and some well-
established results from probability theory and information
theory.

Section 2 introduces the divergence score or logarithmic
score as a measure of forecast quality (Weijs et al., 2010),
which will be used as a starting point for the interpretations
in Sects. 3 and 4, which form the main points of this paper.
Section 2 also briefly reviews and interprets a decomposi-
tion of the divergence score (Weijs et al., 2010), which con-
sists of additive terms on the information-uncertainty scale.
In Sect. 3 we analyse the seemingly paradoxical implica-
tion that deterministic forecasts increase the remaining un-
certainty to infinity and we offer two interpretations to re-
solve this paradox. In Sect. 4, the question is addressed
whether or not the utility a model provides for users (the
utility-risk scale) should be considered in the calibration
process and an example of such a calibration problem is
shown. The conclusions are summarized in the last sec-
tion, where we argue that issuing forecasts can best be con-
sidered a communication problem and that the information
they provide (the information-uncertainty scale) is the most
sensible measure for their evaluation. This information can
only be maximized if uncertainty is correctly represented by
a probabilistic forecast.
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2 Information-theoretical evaluation of forecasts

Information theory provides a number of measures relating
uncertainty and information, within the framework of proba-
bility theory. Since forecasting can be seen as providing in-
formation to reduce uncertainty about future events, informa-
tion theory appears to be an appropriate framework to evalu-
ate forecasts. As was shown byWeijs et al.(2010), Kullback-
Leibler divergence, or relative entropy, can be used as a ver-
ification score and has a number of desirable properties. The
divergence score and an insight-providing decomposition of
it are now described. For a more elaborate description and
some other related discussions, seeWeijs et al.(2010)

Probabilistic forecasts give probabilities for different pos-
sible outcomes of an event. For example, a binary event has
two possible outcomes, e.g. exceedence or non-exceedence
of a certain critical water level in a river. A probabilistic
forecast for one such a binary event at timet can be repre-
sented by a probability mass function (PMF), which in this
case is a two element vector, denoted byf t . The bold no-
tation indicates a vector. For example, when a probabilis-
tic flow forecast indicates that there is 20% chance that the
critical flow will be exceeded, the forecast can be written
asf t=(1−ft ,ft )

T
=(0.8,0.2)T , where the scalarf denotes

the probability of exceedence. After the event is observed,
the observation can also be written as a PMF, this time ex-
pressing the probabilities after the event has been observed.
In case we assume perfect observations, and we observed
exceedence of the critical level, the observation can be ex-
pressed asot=(1−ot ,ot )

T
=(0,1)T . In this paper, we assume

perfect observations to allow for the decompositions we use,
but in general, perfect observations are not a necessary as-
sumption for the score to be meaningful. The definitions can
be applied also for multiple category events, using vectors of
more than two elements.

2.1 The divergence score and its decomposition

Information theory started with the paper ofShannon(1948),
where he derived a unique measure of uncertainty, namely
entropy, from basic desiderata for such a measure. It is im-
portant to note that any other measure for uncertainty neces-
sarily violates at least one of Shannon’s proposed desiderata.
The uncertainty of the climate (knowledge of long term fre-
quencies but absence of other information) using this defini-
tion is

H(ō) = −

n∑
i=1

{[ō]i log[ō]i} . (1)

wheren is the number of possible outcomes (2 in the binary
case),̄o=

∑N
t=1ot/N the climatological (long term average)

probability of occurrence of the event, and[ō]i denotes the
ith element of vector̄o. The logarithm has base 2, yielding
the measureH in the unit bits. A related measure is relative
entropy, also known as Kullback-Leibler divergence. This is

a measure of the extra amount of uncertainty if one distribu-
tion is assumed, while the true distribution is different. This
is the divergence from the true to the other distribution. Note
that the Kullback-Leibler divergence is not symmetric and is
therefore not a distance measure. The divergence depends on
which of the two distributions is considered the true one.

We define the divergence score as the divergencefrom the
observation PMFto the forecast PMF:

DSt = DKL (ot ||f t ) =

n∑
i=1

[ot ]i log

(
[ot ]i

[f t ]i

)
. (2)

For a series ofN forecasts and corresponding observations,
the divergence score is

DS=
1

N

N∑
t=1

DKL (ot ||f t ). (3)

In Weijs et al.(2010), a decomposition of the divergence
score was presented that was inspired by a decomposition of
the Brier score (Brier, 1950) into uncertainty, reliability and
resolution (see Table1) due toMurphy (1973). This yields
the following decomposition:

DS = REL−RES+UNC (4)

DS =
1

N

K∑
k=1

nkDKL (ōk||f k)− (5)

1

N

K∑
k=1

nkDKL (ōk||ō)+H(ō)

whereN is the total number of forecasts andK the number
of unique forecasts issued,nk the number of forecasts within
one category of unique forecasts,ōk the observed frequency,
given forecasts of probabilityf k.

The uncertainty term measures the inherent uncertainty
in the climate. The uncertainty reaches a maximum for
equiprobable outcomes and is zero if the outcome is always
the same. The resolution term measures how much of the
climatic uncertainty can be resolved by the forecasts. This
is expressed in the average divergence of the conditional
distributions of the observations from the marginal distribu-
tion of the observations. The reliability measures the aver-
age squared distance between the forecast distributions and
the corresponding conditional distributions of observations.
A perfect reliability of zero (a more accurate term would be
unreliability) is attained when for all forecast probabilities,
the observed conditional frequency matches that probability.
In this case the forecast is said to be perfectly calibrated.

2.2 Interpretations of divergence score and its
decomposition

The information-theoretical decomposition of the divergence
score allows some additional interpretation. One of the in-
terpretations of measures in information-theory starts from
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Table 1. Comparison between the expressions and behaviour of the decompositions of the Brier score and the divergence score for the case
of binary events.

UNC REL RES

Brier Score ōT (1− ō) 1
N

K∑
k=1

nk (f k − ōk)
2 1

N

K∑
k=1

nk (ōk − ō)2

Divergence Score H(ō) 1
N

K∑
k=1

nkDKL (ōk ||f k)
1
N

K∑
k=1

nkDKL (ōk ||ō)
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Fig. 1. The remaining uncertainty for different distributions in the forecasting process can be measured by the average Kullback-Leibler
divergence from the observations. These uncertainties have some additive relations (DS = UNC−RES+REL).Fig. 1. The remaining uncertainty for different distributions in
the forecasting process can be measured by the average Kullback-
Leibler divergence from the observations. These uncertainties have
some additive relations (DS= UNC−RES+REL).

a definition of surprise, a term coined byTribus(1961). Sur-
prise is something we feel when something unexpected hap-
pens. The lower the probability we assume something to
have, the more surprised we are when observing it. Rain
in a desert is surprising, rain in the Netherlands is less sur-
prising and rain on the moon is a miracle yielding almost un-
bounded surprise. When the surprise of observing outcome
x is defined asSx=log(1/P (x)), surprise can be measured
in bits like information and uncertainty (Tribus, 1961). Ob-
serving something that was a certain fact yields no surprise,
heads on a fair coin yield one bit of surprise and observing
a 1/1000 year flood in some year yields a surprise of approx-
imately 10 bits. The entropy-measure for uncertainty can

now be interpreted as the expected surprise about the truth:
H(X) = EX{Sx}, whereEX denotes the expectation operator
with respect to the distribution of random variableX.

In general, uncertainty can now be interpreted as expected
surprise about the true outcome. The fact that different ex-
pectations can be calculated according to different subjective
probability distributions, reflects that uncertainty can be both
something objective and subjective. The uncertainty a per-
son thinks to have is the entropy of his subjective probability
distribution. Kullback-Leibler divergence can be seen as the
additional uncertainty one person estimates the other person
to have compared to his own:

DKL (P (X)||Q(X)) = EP(X){SQ(x) −SP(x)} (6)

Because forecast verification is done in hindsight, the obser-
vation that is made can be used as a reference point to esti-
mate the uncertainty in the forecast. The additional uncer-
tainty (expected surprise about the truth), estimated from the
viewpoint of the observation is the best available estimate of
the remaining uncertainty about the truth of the person hav-
ing the forecast. Assuming perfect observations, the diver-
gence score measures remaining uncertainty about the truth
and reduces to the logarithmic score (−log[f ]j ), wherej is
the index of the outcome that was observed. We can thus dis-
tinguish between this “true” uncertainty, which can only be
established in hindsight and the estimated or perceived un-
certainty, which is the entropy of the forecast distributionf

and may be larger or smaller than the true uncertainty. The
minimum expected true uncertainty is achieved when the per-
ceived and the true uncertainty are equal, i.e. the forecast dis-
tribution is reliable. In Fig.1 it is shown how the components
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of the divergence score relate to the remaining uncertainty at
different levels of informedness. Interpreting the figure, res-
olution can be seen as the correct information, which can be
subtracted from the climatological uncertainty (i.e. the miss-
ing information). The reliability term is added to the remain-
ing uncertainty and represents the wrong information due to
biased probability estimates.

The wrong information can be reduced by calibration. It
should be noted that the decomposition is only meaningful
when enough data is available to properly calculate all condi-
tionals (Weijs et al., 2010). Like calibration of hydrological
models to find optimal parameter values, calibration of the
forecast distribution needs to re-run the model several times
with different settings until the agreement over some histori-
cal period is optimal. In the latter case the model is the entire
forecasting system consisting of several models, data assim-
ilation and statistical post-processing of the forecast distri-
bution. Because the meteorological part of the forecasting
system is not always accessible for hydrologists and devel-
oped continuously, reforecasts of historical meteorology with
the most advanced current models are necessary to develop
optimally calibrated hydrological forecasts (see alsoThielen
et al., 2008; Wood and Lettenmaier, 2008).

2.3 Relation between the divergence and Brier scores

The Brier score was introduced byBrier (1950) as a veri-
fication score for probabilistic forecasts. It is still the most
widely used score for evaluating probabilistic forecasts of bi-
nary events.

Given the definitions in the beginning of this section, the
Brier score can be defined as:

BSt = 2(ft −ot )
2
= (f t −ot )

2
: = (f t −ot )

T (f t −ot ). (7)

It must be noted that the Brier score is nowadays almost al-
ways defined as half this value (Ahrens and Walser, 2008).
To make notation easier, we use the original definition of
Brier (see Eq.7). For a series of forecasts, the Brier score is
defined as the average of Eq. (7) over all forecast instances.
It can be interpreted as the mean squared error (MSE) in
probabilities.

Murphy (1973) showed that the Brier score for a series
of forecasts can be decomposed into uncertainty, resolution
and reliability, shown in Table1. As was found byWeijs
et al. (2010), the components of the Brier score are second
order approximations of the components of the divergence
score (see Table1). The uncertainty has the same location
of maximum and zero points. When scaled with its maxi-
mum value, the similarity becomes visible (see left figure in
Table1). The resolution (right figure in Table1), can reach
a maximum equal to the uncertainty term. When scaled with
the uncertainty, again a similarity between the shapes of the
resolution components is visible. The reliability term, how-
ever, exhibits significant differences in the extremes.

While the reliability term of the Brier score is bounded,
the analogous term in the divergence score can reach infinity.
This happens when an outcome occurs that was given zero
probability in the forecast, which are usually extreme events.
These events pose a challenge for forecasting: first of all be-
cause we have little experience and data for them, making
modeling difficult, and secondly because these are events we
are not used to cope with and therefore can have severe con-
sequences. The divergence score is very sensitive to the cor-
rect estimation of the small probabilities for the most unex-
pected events, because they contain most information for im-
proving the model. When using a forecasting system based
on ensembles, reliable probability estimates must be made
also outside the range of the most extreme members, for ex-
ample by using tools from extreme value statistics. A reli-
able probability estimate for an event that is not completely
impossible is larger than zero. Unbounded scores will not
occur in practice, unless an overconfident forecaster categor-
ically rules out something that is possible.

3 Deterministic forecasts cannot be evaluated

Can a forecaster be completely sure about something that in
the end does not happen and still get credit for his forecast?
This does not appear natural, but it often turns out to hap-
pen in practice. For example, a deterministic flow forecast
of 200 m3 s−1 is considered quite good, when 210 m3 s−1 is
observed. Apparently, it is already expected that some error
will occur and a forecast that is 10 m3 s−1 off is considered
to be not that bad. Hydrological models are per definition
simplifications of reality. Often, they describe relations be-
tween macrostates, like averaged rainfall, mass of water in
the groundwater reservoir, and flow through a river cross-
section. Similar to problems in statistical thermodynamics,
having limited information about what really goes on inside
a hydrological system on a microscopical level, our forecasts
on a macroscopical level can never be perfect (Weijs, 2009;
Grandy Jr., 2008). What can be said about the real world on
the basis of a model is therefore inherently erroneous to some
extent, or should be stated in terms of probabilities.

How then, should deterministic forecasts be evaluated?
Literally taken, a deterministic (point value) forecast states:
“the outcome isx”. Implicitly, such a forecast asks to be
evaluated from a black and white view: the forecast is either
wrong or right. The divergence score also reflects this. If
the forecast is right, the perfect score of 0 will be attained.
If the forecast is wrong, however, a penalty of infinity will
be given. If one such a forecast is given, the forecaster can
look for another career, because even a future series of per-
fect forecasts can not average out the infinite penalty. The
decomposition shows that the reliability component is re-
sponsible (Table1, middle figure). Although the determinis-
tic forecasts usually contain information about the observed
outcomes, given that the resolution (correct information) is
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positive and removes some of the uncertainty, this is com-
pletely annihilated by the reliability term (the wrong infor-
mation). The discrepancy between the information (reduc-
tion of uncertainty) that the forecasts contain and the infor-
mation conveyed by the messages that constitute the fore-
casts is so large that the expected surprise about the truth of
a person taking the forecast at face value goes to infinity. The
fact that deterministic forecasts are still used in society (and
unfortunately sometimes even preferred), while they explode
uncertainty to infinity, seems to present a paradox. We pro-
pose two possible interpretations, one using the information-
uncertainty scale and the other using the utility-risk scale,
that offer a solution to this paradox.

3.1 Deterministic forecasts are implicitly probabilistic
(information interpretation)

Fortunately, in practice, almost no person takes deterministic
forecasts at face value. The fact that a user does not take the
forecast literally can be seen as recalibration of the forecast
(“unconscious statistical post-processing”) by that user. The
user bases his internal probability estimates on the forecast,
but adjusts the probabilities given by the forecaster based
on his own judgment, instead of literally copying the fore-
caster’s statements. For a deterministic forecast, this means
reallocating some probability to outcomes that the forecast
did not speak about. This reallocation improves the reliabil-
ity of the internal probability estimates of the user on which
he bases his actions. We can thus see this as the user eliminat-
ing the wrong information from the forecast.1 The user can
do the recalibration based on previous experience with the
forecasts, common sense and can also add information from
his own observations. The user of the forecast can think “if
the forecaster says the water level will be 10 cm under the
embankment, he implicitly also forecasts a little that over-
topping will occur”. Note that the example of Grand Forks
in (Krzysztofowicz, 2001) shows that not all users do this.
Mathematically this recalibration is equivalent to also attach-
ing some probability to overtopping. However, it is not the
task of a user to guess what the forecaster wanted to say. The
forecaster has the task of summarizing different sources of
information and expert knowledge into a forecast that vari-
ous users can base their decisions on. Consistency requires
that the forecaster communicates his judgments to the user
(Murphy, 1993). If he deems it possible that 210 m3 s−1 will
flow through the river instead of his best estimate 200 m3 s−1,
then the forecaster should also communicate a probability for
this outcome to the user.

The forecaster may also present the deterministic fore-
cast as being an expected value or mean. This suggests

1Note that eliminating wrong information is different from
adding information. If a user takes the forecasts as true, but partial
information and is rational (following Bayesian probability logic),
no future information can update the zero probability. This is an-
other argument against assigning zero probability to anything.

an underlying probabilistic forecast. However, when tak-
ing the information-theoretical viewpoint, communicating an
expected value means nothing without additional statements
regarding the probability distribution. The principle of maxi-
mum entropy (PME) (Jaynes, 1957) states that when making
inferences based on incomplete information, the best esti-
mate for the probabilities is the distribution that is consis-
tent with all information, but maximizes uncertainty. In this
way, the uncertainty is reduced exactly by the amount the in-
formation permits, but not more. The resulting distribution
thus gives an exact representation of the information actually
conveyed by the forecast. Maximizing entropy with known
mean and variance, gives a Gaussian distribution, maximiz-
ing uncertainty about the velocities of gas molecules with
known total kinetic energy gives the Boltzmann distribution
(Jaynes, 2003; Cover and Thomas, 2006). When PME is
applied to expected value forecasts, however, the maximum
entropy forecast distribution that is consistent with the infor-
mation given by the forecaster is uniform between minus and
plus infinity. It is the complete opposite end of the spectrum
compared to the previous literal interpretation of the deter-
ministic forecast: from claiming total certainty to claiming
total uncertainty.

In the case of streamflow forecasts, the user can still
get a less nonsensical forecast distribution by combining
the information in the forecast with the common sense
notion that streamflows in rivers are nonnegative. This
extra constraint turns the PME forecast distribution for
a known expected value into an exponential distribution
(Cover and Thomas, 2006).

This brings back the question who ought to specify these
constraints, which constitute information. The fact that the
user can reduce the maximum entropy by adding this com-
mon sense constraint actually means that the forecaster failed
to add this information. Note that the forecaster should be
best equipped to give probability estimates and these should
be summarized in such a way that no information is lost, but
also all uncertainty is represented (cf. consistency).

As was argued in the introduction, predictions only make
sense when they are testable, i.e. can be evaluated. One way
to evaluate deterministic forecasts with information mea-
sures is to convert them to probabilistic forecasts by look-
ing at the joint distribution of forecasts and observations.
The conditional distributions of observations for each fore-
cast value can then be seen as probabilistic forecast distri-
butions. It is important to note however, that the probabilis-
tic part of such a forecast is derived from data that includes
the observations. Such a forecast is thus evaluated against
the same data that is used as the basis of its own uncertainty
model, which is clearly undesirable.

Also without explicit conversion to a probabilistic fore-
cast, the uncertainty model becomes explicit when a series
of deterministic forecasts is evaluated. A penalty (objec-
tive) function for a deterministic forecast can be interpreted
as an uncertainty (information) measure for a corresponding
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probabilistic forecast. For example, a deterministic forecast
evaluated with root mean squared error implicitly defines a
Gaussian forecast probability density function. An important
consequence of this insight is that the way to evaluate a de-
terministic model actually defines (i.e. forms) the probabilis-
tic part of a total model, consisting of a separate determin-
istic and probabilistic part. The objective function (which
is a likelihood measure) should therefore be stated a priori,
as it forms part of the model that is put to the test against
observations.

While estimating the error model from the data may un-
der some conditions be acceptable in calibration, for (in-
dependent) evaluation of forecasts it is unacceptable, be-
cause it uses the data against which it is evaluated. A cor-
rect approach would be to explicitly formulate a paramet-
ric error model, and find its parameters in the calibration.
The combination of the hydrological model and the er-
ror model can subsequently be used to make probabilis-
tic predictions, which can be evaluated with the divergence
score in an independent evaluation period. The error mod-
els are not restricted to Gaussian distributions, but can
take more flexible forms. Such an approach is taken in
Schoups and Vrugt(2010).

As a last consideration, we want to stress that even if an
error model is properly formulated and added to the deter-
ministic “physical” part, the resulting model still represents
a false dichotomy between true behaviour of the system and
the error, as was argued byKoutsoyiannis(2010). A more
consistent approach would be to explicitly make the proba-
bilistic part of the model an integrated part of the physical
reality it is supposed to simplify. Such approaches can lie in
studying the time-evolution of chaotic systems (Koutsoyian-
nis, 2010) or in applying the principle of maximum entropy
in combination with macroscopic constraints, as for example
suggested byWeijs (2009) andKoutsoyiannis(2005).

Concluding, from the information-theoretical viewpoint,
several reasons come to light why deterministic forecasts
should in fact be considered to be implicitly probabilistic.
The problem with these forecasts is that they leave too much
of the probabilistic interpretation to the user. It might be con-
sidered ironic that the users who are claimed to not be able
to handle probabilistic forecasts and are for that reason pro-
vided with deterministic forecasts are the ones who have to
rely most on their ability to subconsciously make probability
estimates based on the limited information in the determinis-
tic forecast.

3.2 Deterministic forecasts can still have value for
decisions (utility interpretation)

A second, independent interpretation of deterministic fore-
casts that justifies their existence is their usefulness, even
to users who do not make subconscious probability esti-
mates. Even though a reservoir operator might be infinitely
surprised if he has taken a deterministic inflow forecast of

200 m3 s−1 at face-value and he finds out the inflow was
210 m3 s−1, his loss is not infinite. The operator might spill
some water, but all is not lost.

The difference between surprise and loss is due to the fact
that most decision problems are not equal to placing stakes in
a series of horse races. Such a horse race is the classical ex-
ample where information can be directly related to utility, see
Kelly (1956) andCover and Thomas(2006) for more expla-
nation. Kelly showed that when betting on a series of horse
races, where the accumulated winnings can be reinvested in
the next bet, the stakes the gambler should put on each horse
should be proportional to the estimated winning probabili-
ties. In a single instance of such a horse race, all money not
bet on the winning horse is lost, so the only probability that
is important for the results is the one attached to the winning
horse. If zero probability (and thus no bets) were put on the
winning horse, then the gambler loses all his capital and has
no chance of future winnings. In contrast, for decision prob-
lems like reservoir operation, an operator blindly believing
in an inflow into his reservoir of 200 m3 s−1 and optimally
preparing only for that flow, will automatically also be quite
well prepared for 210 m3 s−1. Conversely, the preparation on
a predicted event, which influences the utility of an outcome,
may depend on the entire forecast distribution and not just on
the probability of the event that materializes. This makes the
loss function non-local (locality is discussed in Sect.4.1).

Another difference with the horse race is that the total
amount of value at stake in hydrological decision making
usually does not depend on the previous gains, while the re-
sults for the horse race assume that the gambler invests all
his previously accumulated capital in the bets. The gambler
therefore wants to maximize the product of rates of return
over the whole series of bets, while for a reservoir opera-
tor, each period offers a new opportunity to gain something
from the water, even in case he spilled all his water in the
previous month. This is comparable with a gambler whose
spouse allows him/her to bet a fixed amount of money each
week (Kelly, 1956) and then spends it all in the bar on the
same evening without possibility of reinvesting in the next
bet. Assuming a utility that increases linearly with the con-
sumption of beer bought with the winnings, the best decision
is to bet all money on the one horse with the best expected
return. Again, one loss is not fatal for the whole series of
bets. The gambler just hopes for better luck next week. The
evaluation of the value of deterministic forecasts is therefore
not as black and white as evaluation of the information they
contain.

The evaluation of deterministic forecasts in this interpre-
tation is thus connected to a decision problem. Decisions
can be taken as if the forecasts are really certain, and still be
of value. The loss functions for evaluating forecasts can be
seen as functions that map the discrepancy between forecast
value and observed value to a loss of the decision based on
the wrong forecast, compared to a perfect forecast. In the
utility interpretation, evaluating deterministic forecasts with
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Fig. 2. The RPS and CRPS scores measure the sum of squared differences in CDFs. Therefore they depend on probabilities assigned to
events that where not observed. The divergence score only depends on the value of the PDF (the slope of the CDF) at the value of the
observation. In the example, forecast A has a better (=lower) CRPS than forecast B, even though it assigned a lower probability to what was
observed (resulting in a higher (=worse) DS).

Fig. 2. The RPS and CRPS scores measure the sum of squared dif-
ferences in CDFs. Therefore they depend on probabilities assigned
to events that where not observed. The divergence score only de-
pends on the value of the PDF (the slope of the CDF) at the value
of the observation. In the example, forecast A has a better (=lower)
CRPS than forecast B, even though it assigned a lower probability
to what was observed (resulting in a higher (=worse) DS).

mean squared error implicitly defines a decision process in
which the disutility is a quadratic function of the distance
between forecast and observation. In that case, a series of
forecasts that has the smallest MSE has most utility or value
for the user.

4 Information versus utility as calibration objective

Value-based forecast evaluation (the utility-risk scale) is in-
evitably connected to a particular user with a decision prob-
lem and therefore cannot be done without explicit consider-
ation of the user base of forecasts. Moreover, an obvious
question that arises is whether it is desirable to base the eval-
uation on the value to a particular user or group of users. In
that case, the evaluation becomes an evaluation of the deci-
sions of those users rather than of the forecasts themselves or
of the hydrological model that produced them. This differ-
ence is particularly important if the results of the evaluation
are used in a learning or calibration process. In that case,
two effects can occur by using value instead of information
as a calibration objective:

– The model learns from information that is not there
(treated in Sect.4.1).

– The model fails to learn from all information thatis
there (treated in Sect.4.2).

4.1 Locality and philosophy of science

Locality is a property of scores for probabilistic forecasts
(Mason, 2008; Benedetti, 2010). A score is said to be lo-
cal if the score only depends on the probability assigned to
(a small region around) the event that occurred, and does not
depend on how the probability is spread out over the values
that did not occur. In contrast to this, non-local scoresdo
depend on how that probability is spread out.

Usually non-local scores are required to be sensitive to dis-
tance, which means that probability attached to values far
from the observed value is punished more heavily than fore-
cast probability that was assigned to values close to the ob-
servation. This concept of distance only plays a role in fore-
casts of continuous and ordinal discrete predictands. For both
these types of predictands, an extension of the Brier score ex-
ists: the Ranked Probability Score (RPS) and the continuous
RPS (CRPS) (seeLaio and Tamea, 2007for description and
references). Both these scores are non-local, while the diver-
gence score is local.

Figure2 shows a comparison between (non-local) CRPS
and the (local) divergence score. Note that forecast B ob-
tains a worse CRPS than forecast A, even though B gives a
higher probability to what is actually observed. It can also
be imagined how changes in the distribution of the lower
tail of forecast B would affect the CRPS, although based on
the observation no statements can be made about the merit
of that redistribution of probability. Note that any prefer-
ence between two forecasts that assign equal probilities to
the observed value must be based on prior information (e.g.
the fact that a bimodal distribution is counter-intuitive). It is
important, however, that this prior information should be in-
cluded in the forecast, rather than adding it implicitly during
the evaluation process.

For most decision problems, expected utility is a non-local
score: a reservoir operator that attached most probability to
values far from the true inflow is worse off than one that used
a forecast with most probability close to the true value, even
if the probability (density) attached to the true value was the
same. Therefore, non-local scores are sometimes considered
to have more intuitive appeal than local scores. It might seem
logical to train a forecasting model to maximize the user-
specific utility it yields for the training data, which may be a
non-local function.

There is, however, a serious philosophical problem with
non-local scores if used in a learning (i.e. calibration) pro-
cess. In principle, the knowledge a model embodies comes
from observations or prior information (which in the end also
comes from observation, see Fig.3). By calibrating a model,
the information in the observations is merged with the prior
information, through a feedback of the objective function
value to the search process (the arrows from “EVAL” to the
model in Fig. 3). It is therefore a violation of scientific logic
if the score that is intended to evaluate the quality of forecasts
depends on what is stated about things that are not observed.
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Fig. 3. There are three routes through which information can enter the model in a learning process: the output observations (1), the input
observations (2) and prior information (3). When evaluating a model based on value, the decision model that is implicitly defined by the
loss function acts as a filter on the information in the observations. The figure shows the case where both the decision and the state of the
world are binary, resulting in a feedback of costs to the model of only 2 bits of information per input-output observation pair (the string of
characters at the bottom of the figure). The graphs in the middle show how both the predicted and the measured flows are converted to binary
sequences due to the way the cost-loss model is formulated.

Fig. 3. There are three routes through which information can en-
ter the model in a learning process: the output observations (1), the
input observations (2) and prior information (3). When evaluating
a model based on value, the decision model that is implicitly de-
fined by the loss function acts as a filter on the information in the
observations. The figure shows the case where both the decision
and the state of the world are binary, resulting in a feedback of costs
to the model of only 2 bits of information per input-output observa-
tion pair (the string of characters at the bottom of the figure). The
graphs in the middle show how both the predicted and the measured
flows are converted to binary sequences due to the way the cost-loss
model is formulated.

Changes in the objective function would cause the model to
learn something from an evaluation of what is stated about
a non-observed event. In an extreme case, two series that
forecast the same probabilities for all the events that were
observed, can obtain different scores based only on differ-
ences in the probabilities assigned to events that were never
observed (Benedetti, 2010). A similar argument in the con-
text of experimental design was made byBernardo(1979). If
these non-local scores are used as objectives in calibration or
inference (see for exampleGneiting et al., 2005), things are
thus inferred from non-observed outcomes, i.e. information
that is not present in the observations.

4.2 Utility as a data filter

The use of utility in calibration can, apart from using non-
existing information, also lead to learning only from part of
the information thatis in the observations. In that sense, the
decision problem that specifies the utility acts like a filter on
the information. The information-theoretical data processing
inequality tells us that this filter can only decrease informa-
tion (seeCover and Thomas, 2006). This filter can affect
two of the three information flows to the model, depicted in
Fig. 3: the flow from the output (1) and from the input (2)
observations.

The first flow of information (from the observations of
streamflow) is filtered by the “state of world” block in Fig.3.
By evaluating based on utility, the information in the stream-
flow observations only reaches the model through its effect
on how the state of the world affects the utility of decisions
based on the forecast. Figure3 depicts a hypothetical binary
evacuation decision that is coupled to a conceptual rainfall-
runoff model for flood forecasting. In this simplified decision
problem, the utility is only influenced by a binary decision
(evacuate or not) and a binary outcome (the place floods or
not). There are thus no gradations in severity of the floods
that affect the damage. The calibration towards maximum
utility for this decision problem will train the hydrological
model to optimally distinguish flood-evacuation events. This
implies that in the training, all that the hydrological model
sees from the continuous observed discharges is a binary sig-
nal: flood or no flood. This constitutes at most one bit of
information per observation (in the unlikely case that 50%
of the observations is above the flood threshold, i.e. the cli-
matic uncertainty is 1 bit), while the original signal (the ob-
served flows i.e. real numbers) contained far more informa-
tion (see Fig.3).

The second flow of information to the model, the input ob-
servations, is affected by the information filter in the “deci-
sion” block. For example, if a binary decision problem (e.g.
to be or not to be in the flood zone tomorrow) is considered,
the information from input observations travels through the
model and subsequently through the decision model. While
the model still gives a real number as output, the “decision”
block maps that model output to a binary signal (to be or not
to be). The binary signal is all that enters the evaluation and
can be learned from the input observations. When a model
is evaluated based on a cost-loss model of a two action- two
state of the world decision problem, the maximum amount
of information that can be learned from each input-output
observation pair is thus 2 bits. In Fig.3, this information is
contained in the string “00CCDDLC00”, which represents
the sequence of utilities over all time steps.

The hydrological model will therefore have far less in-
formation to learn from. Given the fact that there is a bal-
ance between the available information for calibration and
the complexity that a model is allowed to have (seeSchoups
et al., 2008), hydrological models that are trained on user-
specific utility functions (e.g. this binary one) are likely to
become overly complex relative to the data. They will surely
achieve better utility results on the calibration data (because
there is less information to fit), but are likely to perform
worse on an independent validation dataset. The model that
has been trained with maximum information as an objective
is likely to yield better results for the validation set, even
in terms of a specific utility. Because it has the unfiltered
information from the observations to learn from, it is less
prone to overfitting: the complexity of a conceptual hydro-
logical model is better warranted by the full information.
The objective of optimally predicting binary flood events for
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evacuation decisions could benefit from more parsimonious
data-driven models (e.g. linear regression models or neural
networks). These models can make a mapping directly from
predictors (e.g. precipitation, snowpack, soil moisture, past
discharge) to decisions, but this complicates the use of prior
information.

The third information flow in Fig.3 consists of this prior
information on the workings of the hydrological system,
which can be valuable for improving forecasts. The infor-
mation can enter in the form of prior parameter estimates or
constraints that are captured in the model structure. Exam-
ples are constraints on mass balance and energy limits for
evaporation. These constraints describe the patterns in data
or “physical laws” that ultimately come from observations.
Both adding too much (unwarranted assumptions) and too
little (e.g. too wide prior parameter distributions) informa-
tion through this route deteriorates the forecasts, especially
when little data is available.

The framework presented in this section shows some sim-
ilarity with the ideas presented in (Gupta et al., 2009, 1998,
2008). In those papers it is also argued that information can
be lost in the evaluation. However, the important difference
of this framework compared to those ideas is that we argue
that information is lost by using measures other than infor-
mation (in other words, measures that do not reflect likeli-
hood), whileGupta et al.(2008) argue that information is lost
because of the low dimensionality of the evaluation measure.
In our information-theoretical viewpoint, we can in princi-
ple learn all we need from the observations through a single
measure (a real number can contain infinitely many bits of
information). What is learned depends only on the data and
the prior information. The challenge is to give a reliable rep-
resentation of prior information which will result in the right
likelihood function. In principle, this is equivalent to endors-
ing the likelihood principle, which states that all information
that the data contains about a model is in the likelihood func-
tion, as argued byRobert(2007) p. 14,Jaynes(2003) p. 250
andBerger and Wolpert(1988).

The divergence score (which can be seen as log-
likelihood) corresponds to a logarithmic scoring rule (see
Jose et al., 2008), which is the only scoring rule that is both
local and proper (proofs can be found in Bernardo, 1979 and
Benedetti, 2010), where propriety is the requirement that the
scoring rule can only be optimized when the forecaster does
not lie. Scoring rules that are not proper can be hedged,
meaning that the expected score is maximized by forecasting
probabilities that are not consistent with the best estimates of
the forecaster (seeGneiting and Raftery(2007) for an elab-
orate discussion on proper scoring rules). A utility function
that includes the importance of the outcomes can be hedged
by attaching more forecast probability to important events.
A model that is trained on such a measure is thus encouraged
to “lie”. All utility functions that are not affine functions of
information violate either locality or propriety, which makes
them doubtful objectives for calibration.

Table 2. The resulting average disutility per year, composed of
costs for action and losses for unpredicted events, is minimized by
explicitly calibrating on it, but performance in the validation period
is better for the probabilistic model trained to minimize remaining
uncertainty.

Calibration objective Result in calibration Results in validation

min average cost 1.6 2.47
min divergence score 3.8 2.29

4.3 Practical example

As an illustration of the information-filter effect described
in Sect.4.2, a hydrological model was calibrated both based
on information and on a utility function relating to the bi-
nary decision scenario similar to that depicted in Fig.3. A
simple lumped conceptual rainfall-runoff model was used
(Schoups et al., 2010) to simulate daily streamflow given
daily forcing records of rainfall and evaporation from the
French Broad River basin at Asheville, North Carolina. The
model was calibrated using 1 year of streamflow observa-
tions (1961), and validated using 9 years of streamflow ob-
servations (1970–1978).

The calibration on the information-uncertainty scale used
minimization of the divergence score (i.e. remaining uncer-
tainty) as an objective. In the continuous case this cor-
responds to maximizing the log-likelihood. This means
that the model needs to provide explicit probabilistic fore-
casts. The probabilistic part of the model used a flexible
stochastic description, allowing for heteroscedasticity, au-
tocorrelation and non-Gaussian distributions. The calibra-
tion relied on the general likelihood function presented in
Schoups and Vrugt(2010).

The calibration on the utility-risk scale employed a cost-
loss utility function relating to the binary decision problem
(Murphy, 1977). The flood threshold is defined at a value
of 10 mm d−1 (streamflow divided by catchment area). Here,
a cost C is associated with a precautionary action, which is
taken if exceedence of the flood threshold is forecast. When a
peak flow event occurs but was not predicted, a loss L occurs.
For illustration purposes, values for C and L were chosen to
be equal to 0.2 and 1.0, respectively.

The results in Table2 show that in the validation run for
this case, we indeed find that the explicit probabilistic model
trained to minimize remaining uncertainty outperformed the
model trained on maximum utility for the specific decision
problem at hand. As expected, the large deterioration from
calibration to validation seems to suggest overfitting to the
filtered information. Looking at the resulting model be-
haviour in Fig.4, we can tell that the model trained on utility
systematically overpredicts low flows. There is nothing in
the evaluation that discourages this behaviour and apparently
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these parameters gave an advantage in fitting the floods in the
calibration year. In contrast, the probabilistic model is en-
couraged to attach high likelihood to each observation, learn-
ing from all data in the calibration. In this case, this gave an
advantage in predicting the exceedance probability for the
flood threshold for the unseen validation data.

We must note, however, that results might be different un-
der less ideal conditions. For example, when the model struc-
ture is capable of representing high flows, but is inadequate
for low flow situations because e.g. evaporation is not cor-
rectly represented, then the utility-based calibration might do
better also in validation. We can explain this by seeing the
utility function as an implicit way to add prior information.
If we know a priori that the model structure misses relevant
processes for low flow, then it could be reasonable to ignore
the low-flow data in calibration. The analogous way to rep-
resent this in an explicit uncertainty model is to give an extra
spread to the probabilistic predictions at low flows, making
the model less sensitive to them. More elaborate case stud-
ies are needed to further investigate which practical factors
might lead to different results and how they can be accounted
for in the information-theoretical framework. Furthermore,
applying this view on results in past literature, especially
those relating to “informal” likelihood methods, might give
new insights about prior information that is implicitly added.

5 Conclusions

The difficulties and debate about the evaluation of forecasts
can be significantly clarified using an information-theoretical
viewpoint. It shows why forecasts should be probabilis-
tic and why measuring their quality on the information-
uncertainty scale is important. When information is seen
as a measurable quantity, like energy, a sort of “informa-
tion intuition” develops, similar to the “energy intuition” that
is used to detect logical flaws in claims for perpetuum mo-
biles. For the interesting connection between energy and in-
formation, see e.g. (Toyabe et al., 2010). Science is required
to make testable predictions. Forecasts should therefore be
stated in terms that make it clear how to evaluate them. De-
terministic and interval forecasts fail this criterion, because
additional assumptions on utility and probability have to be
made during evaluation of the forecast. Probabilistic fore-
casts can be evaluated using information theory. The de-
composition of the divergence score that was presented in
Weijs et al.(2010) can provide additional insight in the inter-
action between uncertainty, correct information and wrong
information.

Starting from the observation that deterministic forecasts
are still commonly used and evaluated, but are worthless
from an information-theoretical viewpoint, we draw the con-
clusion that these forecasts are either implicitly probabilistic
or should be viewed in connection to a decision problem. In
both interpretations, the evaluation depends on external in-
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tile determines the decision.

formation that is not provided in the forecast. Deterministic
forecasts leave too much interpretation to the user, if seen as
implicit probabilistic forecasts, or make too many assump-
tions on the user if they are evaluated using another utility
measure.

On the one hand, forecasting can be seen as a com-
munication problem in which uncertainty about the out-
come of a random event is reduced by delivering an
informative message to a user. On the other hand, fore-
casting can be seen as an addition of value to a deci-
sion problem. Any measure that is not information only
becomes meaningful when it is interpreted in terms of util-
ities. When addressing forecast value, it is important to see
that in fact we are evaluating decisions based on forecasts
and not the correspondence between the observations and the
forecasts themselves.

This is especially important in calibration, where a model
has to learn from observations. When calibration objectives
are used that are not information-measures, the model ei-
ther learns from information that is not there or uses only
part of the information in the observations, or both. Be-
cause the amount of available information is related to opti-
mal model complexity, hydrological models trained for user
specific utilities are more prone to overfitting, which might
lead to worse results in an independent validation test.

5.1 Avenues for future research

Although this paper contained one example for illustration,
it mostly presented argumentation from a theoretical per-
spective. More case studies are needed to study the practi-
cal implications that follow from the conclusions. One of
the recommendations that follows from our perspective is
that the measure of model performance defines the uncer-
tainty model. It should therefore be specified a priori, or
explicitly calibrated during the model inference process, be-
cause it actually forms part of the model that is put to the
test against observations. One possible approach to test this
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experimentally is to estimate models from data under vary-
ing conditions, using both artificial data and real world data.
Various calibration objectives can then be compared to see
how practical results support the theory.

Another important and interesting point to study is the role
of model complexity. This paper has only looked at the per-
formance of models in predicting the observations. When
an overly complex model is trained to do this optimally, it
will attain very good results in calibration but do not so well
in validation. This is a result of the model having such a
high complexity that it starts to extract information from
incidental rather than from general patterns in the relation
between the variables that is to be modeled. Information-
theoretical measures are well suited to be combined with
model complexity measures. An interesting point to note in
this respect is that the Akaike information criterion (Akaike,
1974) consists of a term for model complexity plus a term
for model performance that is actually equal to the diver-
gence score. Beyond this information criterion there are even
deeper (but less practical) theories from algorithmic informa-
tion theory, independently discovered bySolomonoff(1964);
Chaitin(1966); Kolmogorov(1968). In principle, these the-
ories contain the building blocks for a more complete frame-
work for model inference, considering the amount of infor-
mation in the calibration data, the optimal complexity of a
model and maximum extraction of information from the data.
An important open question is how to consistently add prior
information about the model structure without being over-
confident about the validity of this information. Further-
more, theoretical work on the concept of sufficiency (Ehren-
dorfer and Murphy, 1988) within the presented information-
theoretical framework might prove interesting.

On the practical side, further research could test the ap-
plicability of the ideas presented here in the context of en-
semble flood forecasting. An interesting topic is for ex-
ample how to assign reliable probabilities in the tails of
the forecast distributions. This is neccesary to increase the
acceptance of the logarithmic scoring rule, given its high
sensitivity for overconfident wrong predictions. Code for
the divergence score decomposition is freely available on
divergence.wrm.tudelft.nl.
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Bröcker, J. and Smith, L.: Scoring probabilistic forecasts: The im-
portance of being proper, Weather Forecast., 22, 382–388, 2007.

Chaitin, G.: On the length of programs for computing finite binary
sequences, Journal of the ACM (JACM), 13, 547–569, 1966.

Cover, T. and Thomas, J.: Elements of information theory, Wiley-
Interscience, New York, 2006.

Ehrendorfer, M. and Murphy, A.: Comparative evaluation of
weather forecasting systems: Sufficiency, quality, and accuracy,
Mon. Weather Rev., 116, 1757–1770, 1988.

Gneiting, T. and Raftery, A.: Strictly proper scoring rules, predic-
tion, and estimation, J. Am. Stat. Assoc., 102, 359–378, 2007.

Gneiting, T., Raftery, A., Westveld, A., and Goldman, T.: Cal-
ibrated probabilistic forecasting using ensemble model output
statistics and minimum CRPS estimation, Mon. Weather Rev.,
133, 1098–1118, 2005.

Grandy Jr., W.: Entropy and the Time Evolution of Macroscopic
Systems, Oxford University Press, New York, 2008.

Gupta, H., Kling, H., Yilmaz, K., and Martinez, G.: Decomposition
of the mean squared error and NSE performance criteria: Impli-
cations for improving hydrological modelling, J. Hydrol., 377,
80–91, 2009.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved
calibration of hydrologic models: Multiple and noncommensu-
rable measures of information, Water Resour. Res., 34, 751–763,
1998.

Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with
observations: elements of a diagnostic approach to model evalu-
ation, Hydrol. Process., 22, 3802–3813, 2008.

Jaynes, E.: Probability theory: the logic of science, Cambridge Uni-
versity Press, Cambridge, UK, 2003.

Jaynes, E. T.: Information Theory and Statistical Mechanics, Phys-
ical Review, 106, 620–630, 1957.

Jolliffe, I. T. and Stephenson, D. B.: Forecast verification: a prac-
titioner’s guide in atmospheric science, Wiley, Chichester, UK,
2003.

Jose, V., Nau, R., and Winkler, R.: Scoring rules, generalized
entropy, and utility maximization, Oper. Res., 56, 1146–1157,
2008.

Kelly, J.: A new interpretation of information rate, Information The-
ory, IEEE Transactions on, 2, 185–189, 1956.

Kolmogorov, A.: Three approaches to the quantitative definition of
information, Int. J. Comput. Math., 2, 157–168, 1968.

Koutsoyiannis, D.: Uncertainty, entropy, scaling and hydrological
statistics. 1. Marginal distributional properties of hydrological
processes and state scaling, Hydrolog. Sci. J., 50, 381–404, 2005.

Koutsoyiannis, D.: HESS Opinions “A random walk on water”,

www.hydrol-earth-syst-sci.net/14/2545/2010/ Hydrol. Earth Syst. Sci., 14, 2545–2558, 2010

divergence.wrm.tudelft.nl


2558 S. V. Weijs et al.: Information theory for evaluation of hydrological predictions

Hydrol. Earth Syst. Sci., 14, 585–601, doi:10.5194/hess-14-585-
2010, 2010.

Krzysztofowicz, R.: The case for probabilistic forecasting in hy-
drology, J. Hydrol., 249, 2–9, 2001.

Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts
of continuous hydrological variables, Hydrol. Earth Syst. Sci.,
11, 1267–1277, doi:10.5194/hess-11-1267-2007, 2007.

Mason, S.: Understanding forecast verification statistics, Meteorol.
Appl., 15, 31–40, 2008.

Montanari, A. and Brath, A.: A stochastic approach for assess-
ing the uncertainty of rainfall-runoff simulations, Water Resour.
Res., 40, W01106, doi:10.1029/2003WR002540, 2004.

Montanari, A., Shoemaker, C., and van de Giesen, N.: Introduction
to special section on Uncertainty Assessment in Surface and Sub-
surface Hydrology: an overview of issues and challenges, Water
Resour. Res., 45, W00B00, doi:10.1029/2009WR008471, 2009.

Murphy, A.: The value of climatological, categorical and proba-
bilistic forecasts in the cost-loss ratio situation, Mon. Weather
Rev., 105, 803–816, 1977.

Murphy, A. H.: A new vector partition of the probability score, J.
Appl. Meteorol., 12, 595–600, 1973.

Murphy, A. H.: What is a good forecast?: An essay on the nature of
goodness in weather forecasting, Weather Forecast., 8, 281–293,
1993.

Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, val-
idation, and confirmation of numerical models in the earth sci-
ences, Science, 263, 641–646, 1994.

Peterson, M. B.: An introduction to decision theory, Cambridge
University Press, Cambridge, UK, 2009.

Ramos, M., Mathevet, T., Thielen, J., and Pappenberger, F.: Com-
municating uncertainty in hydro-meteorological forecasts: mis-
sion impossible?, Meteorol. Appl., 17, 223–235, 2010.

Robert, C.: The Bayesian choice: from decision-theoretic foun-
dations to computational implementation, Springer Verlag, New
York, 2007.

Schoups, G. and Vrugt, J.: A formal likelihood function for param-
eter and predictive inference of hydrologic models with corre-
lated, heteroscedastic, and non-Gaussian errors, Water Resour.
Res, 46, W10531, doi:10.1029/2009WR008933, 2010.

Schoups, G., van de Giesen, N. C., and Savenije, H. H. G.: Model
complexity control for hydrologic prediction, Water Resour. Res,
44, W00B03, doi:10.1029/2008WR006836, 2008.

Schoups, G., Vrugt, J., Fenicia, F., and van de Giesen, N.: Cor-
ruption of accuracy and efficiency of Markov chain Monte
Carlo simulation by inaccurate numerical implementation of
conceptual hydrologic models, Water Resour. Res, 46, W10530,
doi:10.1029/2009WR008933, 2010.

Shannon, C. E.: A mathematical theory of communication, Bell
System Technical J., 27, 379–423, 1948.

Solomonoff, R.: A formal theory of inductive inference. Part I, In-
form. Control, 7, 1–22, 1964.

Thielen, J., Schaake, J., Hartman, R., and Buizza, R.: Aims, chal-
lenges and progress of the Hydrological Ensemble Prediction Ex-
periment (HEPEX) following the third HEPEX workshop held in
Stresa 27 to 29 June 2007, Atmos. Sci. Lett., 9, 29–35, 2008.

Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., Regim-
beau, F., and Habets, F.: A past discharge assimilation system for
ensemble streamflow forecasts over France – Part 2: Impact on
the ensemble streamflow forecasts, Hydrol. Earth Syst. Sci., 14,
1639–1653, doi:10.5194/hess-14-1639-2010, 2010.

Tribus, M.: Thermostatics and thermodynamics, D. Van Nostrand
Company, Inc, 1961.

Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., and Sano, M.: Ex-
perimental demonstration of information-to-energy conversion
and validation of the generalized Jarzynski equality, Nat. Phys.,
6, 988–992, doi:10.1038/nphys1821, 2010.

Von Neumann, J. and Morgenstern, O.: Theory of games and eco-
nomic behavior, Princeton University Press, third edn., 1953.

Weijs, S.: Interactive comment on “HESS Opinions ‘A random
walk on water’ ” by: Koutsoyiannis, D., Hydrol. Earth Syst. Sci.
Discuss., 6, C2733–C2745, 2009.

Weijs, S., Van Nooijen, R., and Van de Giesen, N.: Kullback–
Leibler divergence as a forecast skill score with classic
reliability-resolution-uncertainty decomposition, Mon. Weather
Rev., 138, 3387–3399, 2010.

Wilks, D. S.: Statistical methods in the atmospheric sciences, Aca-
demic Press, San Diego, CA, 2nd edn., 2006.

Wood, A. W. and Lettenmaier, D. P.: An ensemble approach for
attribution of hydrologic prediction uncertainty, Geophys. Res.
Lett, 35, 1-L14401, doi:10.1029/2008GL034648, 2008.

Hydrol. Earth Syst. Sci., 14, 2545–2558, 2010 www.hydrol-earth-syst-sci.net/14/2545/2010/


