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Abstract. The use of design storms can be very useful in1 Introduction

many hydrological and hydraulic practices. In this study,

the concept of a Copu|a_based secondary return period i,Engineers involved in the design of hydraulic structures in
combination with the concept of mass curves is used tdiver systems are often confronted with a lack of available
generate point-scale design storms. The analysis is basedpta regarding the phenomenon under study, e.g. peak
on storms selected from the 105 year rainfall time seriesdischarges at a specific point in a catchment. As rainfall
with a 10min resolution, measured at Uccle, Belgium.data are often readily available, they often serve as an
In first instance, bivariate Copu|as and Secondary retum’ndispensible source of information for the further analysis.
periods are explained, together with a focus on which couple? variety of point rainfall data products can be used in such
of storm variables is of highest interest for the analysisdesign studies: the historical time series, a synthetically
and a discussion of how the results might be affecteddenerated time series, intensity-duration-frequency (IDF)
by the goodness-of-fit of the copula. Subsequently, the'elations and design storms.

fitted copula is used to sample storms with a predefined A method for generating design storms should be
secondary return period for which characteristic variablesflexible enough to entail the variability of several rainfall
such as storm duration and total storm depth can be derivegharacteristics. To that end, design storms are mostly
In order to construct design storms with a realistic stormcharacterized by a specific return period, a rainfall volume or
structure, mass curves of 1st, 2nd, 3rd and 4th quartildntensity, and a duration, which are related to the extremity
storms are developed. An analysis shows that the assumptic?f the storm, and a temporal rainfall pattern or an internal
of independence between the secondary return period angtorm structureGhow et al, 1988.

the internal storm structure could be made. Based on The internal storm structureBernardara et gl.2007

the mass curves, a technique is developed to randomlyfhompson et al. 2002 Koutsoyiannis 1994 1993 is
generate an intrastorm structure. The coupling of bothoften the most important characteristic and several methods
techniques eventually results in a methodology for stochasti€Xist for its characterization (see e.g?rodanovic and
design storm generation. Finally, its practical usefulnessSimonovic 2004 Veneziano 1999 Chow et al, 1988

for design studies is illustrated based on the generation oPilgrim and Cordery 1975 and references therein): the

a set of statistically identical design storm and rainfall-runoff use of an arbitrary (symmetrical) pattern in combination
modelling. with an average intensity derived from the IDF curves,
the construction of a pattern out of the complete IDF
curves, using simulations of stochastic models, or by using
standardized profiles (summation curves) derived from an
empirical probabilistic analysis of the rainfall. The method
of Huff (1967, which falls in the latter category, will be
used in this study. Mass curves, often referred to as Huff

Correspondence td5. Vandenberghe  cyrves, are representations of the normalized time versus the
BY (sander.vandenberghe@ugent.be) normalized cumulative storm depth since the beginning of a
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storm. At regular moments in the storm, e.g. when partioning2 Assignment of return periods to Uccle storms
a storm in 20 identical time intervals at every 5% of the total
storm duration, the empirical distribution of the normalized 2.1 Storm selection
cumulative storm depth is evaluated. To obtain the Huff
curves, often the 10%, 50% and 90% percentiles of thatA first step is the delineation of individual and statistically
distribution are then visualized. Furthermore, a classificationndependent storms in the 105 year time series of 10 min
of storms into quartile groups can be made, according toainfall. ~ Therefore, a minimal dry period, or critical
which quarter of the storms received the largest amount ofiry duration, should be defined. All dry periods which
rainfall. are shorter than this criterion are considered to belong to
Besides the internal storm structure, also the duration andhe same stormBonta and Rap1988. Here, a 24-h
mean storm intensity or storm depth should be calculatediry period criterion is chosen, based on the method of
for a specific design storm. In practice, this is often doneRestrepo-Posada and Eagle@882), which assumes that
by fixing a specific design return period. Subsequently,the arrival times of statistically independent storms follow a
a certain storm duration is fixed, which could be basedPoisson distribution. However, from a design perspective,
on the concentration time of the catchment under studyone could consider to use another independence criterion
and the corresponding mean storm intensity or stormdictated by the application in which the storms are to be
depth for that design return period is then retrieved fromused, e.g. storms should be separated by a dry period at least
previously established IDF relations. In this study, theas long as the concentration time of the catchment under
recently proposed framework for a multivariate copula-basedstudy. For reasons of consistency, the same storm selection
frequency analysisSalvadori et al. 2007 Salvadori and procedure as applied byandenberghe et a{2010ab) is
De Michele 2004 is used to establish a direct link between used.
a physical storm duration, its depth or mean intensity, and For each storm, several variables are calculated, such as
the corresponding return period. The work Bflouze  the total storm dept® (mm), the storm duratiod (h) and
et al.(2009, Gargouri-Ellouze and Chebcho(®008, Kao the mean storm intensity (mm/h). In order to be able to
and Govindarajy2008 and Grimaldi and Serinald{2006 analyze Huff curves (see Se8}, for each storm, the rainfall
already considered the use of copulas in the modelling ofdepth in every 10 min interval is made cumulative and the
design storms. time lapse within the storm is expressed as a fraction of
All analyses in this work are based on a 105 yearthe total duration of the storm. Then cumulative rainfall
rainfall time series with a 10 min resolution, measured atdepths in each 5% interval of the storm duration, which
Uccle (Brussels), Belgium. These rainfall measurementsdo not correspond with the normalized 10-min intervals,
have already been the subject of several studies, generallgre assigned using a linear interpolation of the cumulative
focusing on either the construction of IDF relations 10-min rainfall amounts. Subsequently, each storm is
(Willems, 2000 or, more recently, on climate change and assigned to a specific quartile group, depending on which
the detection of trends in rainfall observatiohi€geka and  quarter of the storm has the highest rainfall depth, where
Willems, 2008 De Jongh et a).2009. In the context storms with equal rainfall amounts in different quarters
of design storms, the development of composite stormsare not further considered. Because of the assumption
for Flanders based on the Uccle rainfall has been ofof stationarity, the further analysis is based on a seasonal
great importance for Flemish water managers and engineerdivision of storms: winter is defined as December, January
involved in urban drainage or river desigiVags and and February. March, April and May make up the spring
Berlamont 2000). season. June, July and August are then considered as the
This work proposes a stochastic design rainfall generatosummer months, while September, October and November
by combining the traditional concept of Huff curves for the are assigned to autumn. Eventually, this results in 1777
analysis of the internal storm structure with the concept ofwinter, 1652 spring, 1647 summer and 1697 autumn storms
a copula-based secondary return period of a storm. In th¢Tablel).
following, firstly a copula-based secondary return period is
assigned to each Uccle storm and some remarks on the choi@2 Copulas and secondary return periods
of the couple of storm variables and the importance of a good
fit are made (Sec®). Secondly, the internal storm structure In order to assign a return period to each storm in the data
of the observed storms and its independence of the returset, bivariate copulas and secondary return periods are used
period is analyzed and an algorithm for a random internal(Salvadori et al. 2007 Salvadori and De Michele2004
storm structure generation is proposed (S8gt.Sectiond Salvadorj2004). This means that a storm is described by two
then illustrates how the design storm generator could be usedariables, which can be dependent, and that a copula is used
for water management purposes. Finally, conclusions ando construct their bivariate cumulative distribution function,
recommendations for future research are given in Sect. which in its turn is used to calculate specific probabilities
of occurrence of each storm. Sectidr2.1shortly explains
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Table 1. Number of storms, considering different seasons an
quartile-groups.

Season Quartile group

1st 2nd 3rd 4th All
Year 2662 1397 1237 1477 6773
Winter 664 335 324 454 1777
Spring 659 356 307 330 1652
Summer 679 327 299 342 1647
Autumn 660 379 307 351 1697

2431

qlt should be clear that different combinations wfand v
can result in the sam&r as long as they have the same
probability .

Eventually, the secondary return period was proposed
as being very useful for design purposé&aliadori and
De Michele 2004 Salvadorj 2004 Salvadori et al.2007).
Unfortunately, this type of return period did not yet
find its way to engineering applications, except for some
considerations in the work dfandenberghe et &20108.

In engineering applications, one usually chooses a design
storm with a certain (primary) return period for which the
design should hold. Consider now the storms in@fcase.

By fixing a certain design return perid@g, a certain level

the concepts of a copula and the secondary return period.” of the copula is fixed. In Figl this is indicated with
Section2.2.2provides some reflections on which couple of the thick contour line (for=0.4). A storm that lies on this
storm variables is best used in the present context, whereg@/'ve has a return periofijz and is called a critical storm
Sect.2.2.3illustrates the impact of the quality of the copula (Salvadori et al.2007). In Fig.1 §* is such a critical storm

fit on the interpretation of the secondary return period.

2.2.1 Concepts

and is defined by the critical threshold$ andv*. A more
extreme storm with a higher return period, and thus on a
higher contour line, is called a super-critical storm, &f.
and S;. On the other hand, the storn§§ and S, have

A bivariate copulaC models the dependence structure lower return periods and are called sub-critical storms. The

between two random variableg and Y, which can in the
present context be thought of as the total storm ddpth
the mean storm intensity or the storm duratiorv. It is

a function that couples the marginal cumulative distribution
functions (CDFs)Fy (x) and Fy (y) in order to construct the Tsec= - Kot =
bivariate CDFFx y(X,Y), as expressed by the theorem of

Sklar(1959:

P(X =x,Y =y)=Fx,y(x,y)=C(Fx(x), Fy(y))

=Cyy(u,v)

1)

A bivariate copula is thus a bivariate cumulative distribution

function with uniform marginalsU and V on the
unit interval. One can also determin& and V
non-parametrically as the normalized rankSefiest and

secondary return period is now defined as the average time
between the occurrence of two super-critical storms and is
expressed as follows:

wT wT

Kc(r%)
The function K¢ is the distribution function of the
random variableZ=C(U,V), i.e. Kc(z)=P{Z<z}. For
Archimedean copulas this function can easily be calculated:
@(1)

KeW=r=21r)

(4)

with 0<r<1 (5)
whereg’(¢+1) is the right derivative of the additive generator
¢ (Nelsen 2009.

Similar to the equation used for calculating the primary

Favre 2007. With the use of the inverse marginal CDFs return period (Eg3), the denominator in Eq4} expresses a

the corresponding andy for specific values andv can be
calculatedx=Fy *(u) andy=F; *(v).

probability, asK ¢ (¢*) can be interpreted as the probability
that a super-critical storm will occur at any realisation of a

In order to come to the definition of the secondary returnstorm Salvadori et al.2007). This probability mass is given

period, let us consider a storm for which eithéror Y (or
both) exceed a respective thresheléind y. This is called
the ORcase: {X>x or Y>y} (Salvadori et a.2007. In a
marginal-free context this event is given {d&>u or V>v}.
The probability of occurrence of a storm in tdRcase can
then be calculated as follows:
P(Fx(x)>u,Fy(y)>v)=1—C(u,v) (2)
With the knowledge of the mean storm interarrival timg,
the so-called primary return period in tk#RcaseTpr can
then be calculated:

_ T _ wr
T 1-Cyy(u,v) 1—t

®3)

Tor

www.hydrol-earth-syst-sci.net/14/2429/2010/

in dark grey in Figla.

In the calculation of the primary return period in the
ORcase, one uses the probability th&t or/fand Y will
exceed a respective threshotdand y. This probability
can be expressed as-Lyy (u,v) (see EQ.3). However,
this probability is not the same as the probability of the
occurrence of a super-critical storm that is used for the
calculation of the secondary return period, i.e: Kl (t).
Figurelb gives the area in dark grey on which the probability
mass, i.e. +C(u*,v*), is calculated. The primary return
period Tor will then be the average time between the
occurrence of two successive storms in this region, which is
defined by the critical threshold$ andv*. It is obvious that
the probability mass corresponding to the dark grey area in
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storms one should incorporate the probability of occurrence
of a summer storm. This probability can easily be calculated
by dividing the number of summer storms by the total
number of storms (see Table i.e. 16476773=0.24). For
winter, spring and autumn storms this is 0.26, 0.24 and 0.25,
respectively. Intuitively, one should expect a probability
of 0.25 for each season in a climate without dry and wet
regimes. When a different copula is fitted for each season,
the probability of occurrence of an extreme event given
by the denominators in Eqs3)(and @) should thus be
multiplied by the probability of occurrence of a storm in the
considered season. The mean interarrival time is that of the
storms in the considered season. The general equation for
calculating a seasonal return perifigis then:

WT. 3

Ts (6)

Pseasonal storr Psurvival

O 0-2 0-4 U O-6u*0-8 1 wherewr s is the mean interarrival time of the storms in the
specific seasorPseasonal stornthe probability of occurrence

1 of a storm in that season aiffdyviva the survival probability

as given by the denominators of Eq3) &nd @).

On the contrary, when the probability of occurrence
of a storm in a specific season would not be taken into
account, the length of the data set should be considered to
be 1054=26.25 years, which of course would influence the
further interpretation of the results (i.e., the most extreme
summer storm within the 105 year series would be assigned
a return period of 26.25 year instead of 105 year).

(@)

0.8

v*
0.6
>

0.4

2.2.2 Choice of the couple to fit a copula

To calculate the primary and secondary return periods of
each storm, a copula should be fitted to the dependence
structure between two rainfall characteristics on a seasonal
0 basis. Three different couples of storm variables can be
0 0.2 04 0.6 ,0.8 1 used: (I,W), (W,D) and (I,D). a way to visualize this
U u dependence structure is by making a normalized rank scatter
plot, which is in fact the support of the empirical copula
(Genest and Favr@007). Figure2 shows these plots for the
Fig. 1. lllustration of sub-, super- and critical storifgy. Difference  three couples of summer storm variables. As the secondary
in probability used for secondary ar_1d primary return periods (darkpat;rn period focuses on storms in the upper-right quadrant
gray arega) vs. (b)). (After Salvadori et al.2007). of the copula, it only makes sense to consider two random
variables that are positively associated. Therefore, it would
be an irrational choice to consider the coupleW) for the
Fig. 1a is smaller than the probability mass of the dark greyfurther analysis.
area in Flglb, for the same critical thresholds. In praCtice, In what follows, the Coup|eW, D) will be considered for
it is advised to use this probablllw of Super-critical events, several reasons. First|y, fQW’ D) more storms are located
as these are in fact dangerous for the design, and hence thﬁ the upper-right quadrant Compared to the other Coup|eS,
secondary return period is a more realistic concept. Not&yhich will contribute to the reliability of the further analysis.
that the functiork ¢ has recently been applied in the work of secondly, it still allows for the calculation éfand resembles
Kao and Govindaraj{2010 as it is a compelling univariate  the approach of traditional frequency analyses where the
summary of multivariate information. distribution of rainfall amounts for different aggregation
An additional comment should be made with regard to thelevels is considered/(illems, 2000. Thirdly, no problems
seasonal analysis as carried out in this paper. To calculateiith asymmetrical empirical copulas occur for this couple
the return period (primary and secondary) of e.g. summet(Vandenberghe et aR0103.

0.2

(b)
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Fig. 2. Normalized rank scatter plots of three different couples of storm variables (per column). Each row shows the same plots, with
different storms highlighted within each row. In the first row, the extreme storms with respeentW are selected (i.e., storms found in

the upper-right corner of th@, W) plane), and are indicated in black in each of the plots of the first row. For the second and the third row,
extreme storms with respect to, respectivély, D) and(/, D) are selected, and marked in black.

The A12 copula family lelsen 2006 is considered here are treated separately to comply with the assumption of
for modelling the dependence betwd&mandD. The ability = non-stationarity, which is needed because of the underlying
of this copula family to model the dependence betweencopula theory. The 95% confidence intervals (Tab)eof
rainfall characteristics has been studied @ndenberghe the estimated parameters for winter, spring and summer
et al.(20103. The A12 copula family is given by do not overlap, indicating considerable differences between

Loy —L the parameters. The interval for the autumn storms lies
Cuv(u,v) = <1+ [(u’l—l)e—i—(v*l—l)e] ) (7)  somewhat in between the interval of the winter and spring

storms.
whered is a copula parameter taking values in the range The performance of the test statistitsand7, is studied
[1,00[. The corresponding values of Kendall's taubelong by Genest et al(2009 (therein denoted by,EK) and Tn(K)).
to [%, 1]. The S, statistic is considered to be very powerful, especially

Table 2 gives detailed information on the seasonal fits in the case of Archimedean copulas, such as the A12 copula
of the Al12 copula family, based on the inversion of family. It should be noted that the reported p-values of
Kendall's tautg. For more details on the fitting process the S, statistics indicate that the null hypothesis, which
and the goodness-of-fit evaluation, the reader is referredtates that the fitted A12 copula is an adequate model for
to Vandenberghe et a(20103. As stated before, seasons the data, should be rejected for the winter and autumn

www.hydrol-earth-syst-sci.net/14/2429/2010/ Hydrol. Earth Syst. Sci., 14, 24222010



2434 S. Vandenberghe et al.: Stochastic design storm generator
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Fig. 3. Importance of a good fit for the interpretation of the secondary return period, considering the winter storms.

Table 2. Kendall's taurk and the estimated A12 copula parameter Kc functhn is important in the calculation of the seconde_lr_y
6 with 95% confidence bounds (lower bound LB and upper bound"€tUm Pef'o_‘i a good cgrre;poqdence between the empirical
UB) and corresponding, and 7, goodness-of-fit measures with and theoreticaK¢ function is critical, and several methods

their p-values for the storms per season. exist for this evaluationMfandenberghe et aR010a Genest
and Favre2007). For all Archimedean copula families, the
Winter Spring Summer Autumn calculation of theK ¢ function is fairly simple.
For the calculation of the mean storm interarrival time,

;K g'gggg 2'2822 g'gigg 2'3322 one needs to consider that the original data set of 105 years is
LB 1:7955 1:6309 1:4767 1:7036 split up intq fopr periods of egg:h 26.25 years because of the
UB 19289 17597 16202  1.8536 seasonal division. For a specific seasopjs thus calculated
RMSE 0.0055 0.0043 00044  0.0064 as 26.25years divided by the total number of storms in that
S, 0.1453 0.0842 0.0907 0.2719 season. The primary and secondary return period can then
p(S,) 0.0019 0.0640 0.0648  0.0000 be calculated:wr (in years) divided by the product of the
T, 0.7834 0.7885 0.8989  1.0088 probability of occurrence of storm in a specific season and
p(T,) 0.0461 0.0543 0.0192  0.0019 the respective probabilities as given in Fify. which are

easily calculated with the fitted copulas (see also Sx213.
It should be noted that the overall distribution function

storms when considering a significance level of 1% (i.e.,0f (W, D) is considered here. It would also be interesting
the p-values are smaller than 0.01). For the spring and® consider e.g. annual maxima, which can be defined
summer storms, this hypothesis cannot be rejected. Becaud@ Séveral ways in a multidimensional settingap and

of the large data sample the performed tests are relativel{>0Vindaraju 2007, in combination with extreme value
severe. Therefore, the p-values for the spring and summerPPUlas. In combination with marginal extreme value
storms are in fact very promising as they would becomedlstrlbugons of these annual quma, a mulfuvarlate extreme
even larger when only subsamples of the data were to palue dllstr|but|on wou!d be obtameS@lvadon et al.2007).
considered. The fits of the winter and autumn storms arelS0, With an appropriate construction of the extreme value
more doubtful, and their complications will be considered in COPUla, the asymmetry of the data could be taken into
Sect2.2.3 Nevertheless, it should be made clear that there j@ccount Durante and Salvadori2009.  This will be

no need to restrict to the A12 copula family. Any practitioner COnsidered in future research.

should choose an adequate copula family for the data at

hand. This adequacy should be evaluated by both visual and

statistical goodness-of-fit evaluation methods. Because the
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2.2.3 Importance of a good fit return period, whereas the empiricBdgc almost perfectly
matches it. This points out that one should always be
In this section, two different ways of calculating the very cautious when interpreting theoretically calculated
secondary return period are matched with the intuitivesecondary return periods: very small shortcomings in the
interpretation of the secondary return period. On the onefitted copula (which may e.g. not accurately enough model
hand,Tsgc can be calculated theoretically with E4)(For  the tail dependence) can already induce large deviations from
the A12 copula family, which is an Archimedean copula what would intuitively be expected. In the case of summer

family, K¢ can be calculated as follows: storms, for which the fitted A12 copula was not rejected, a
t@+1—1) much better correspondence between the intuitively derived,
Kc ()= — (8)  the empirical and the theoretical return period exists (not

] shown here). More research on this topic is certainly
Thus for each storm, the corresponding levetan be  yecommended, however it is beyond the scope of setting the

calculated, after whiclfsgc can be obtained easily. On  methodology for generating design storms as presented in
the other handTsgc can also be calculated empirically. this paper.

Therefore, the empirical coputd, is considered, which can

be defined as followsFenest and Favr@007): 2.3 Marginal distribution functions
1, RY RP :
Cn(uyv)=—2|( LS S (9) To be able to perform the transformation from and
niz n+l= n+17 V to W and D, the marginal cumulative distribution

W b ) functions of W and D need to be known. For the further
whereR," andR,” are the ranks oV andD, nis the number  gnalysis in this paper, a kernel smoothed version of the

of data points anti(A) is the indicator function of the set. ~ empirical cumulative distribution functions will be used for
It for all » storms the corresponding empirical copula valuesthis purpose (provided by the Matlab distribution fitting
¢i=Cp (ui,v;), with i=1,....n, are now treated as random tnolpox). As no extrapolations oV and D out of the
values of the V‘fi”ablejn; _these values can be ranked anO_' available data range will be made throughout this paper,
the corresponding empirical CDF can be calculated. Thisihese non-parametrical CDFs provide sufficient information.

empirical CDF is in fact the empirical functiokic, : When extrapolations would be needed, marginal distribution
RCn functions that are able to accurately model the tail behaviour
Ke, (i)=— 1 (10) of W and D should be used instead.
n n +

Cp: ..
whereR; " is the rank of the gmpmca_l co_p_ula valug _ 3 Analysis of Huff curves
The secondary return period can intuitively be derived as

the mean interarrival time of super-critical storms. For agach storm in the time series is classified as a first, second,
specific season, the empirical copula is constructed. Thgnirq or fourth quartile storm, based on the occurrence of
storm with the largest empirical copula value (the highestna largest rainfall amount in, respectively the firstJ@5],
pointin a 3-D-representation of the empirical copula) is thusgecongd [@5,0.50], third [0.50,0.75] or fourth [Q75,1]
the most extreme storm in the considered season out Ofadaﬁharter of the total storm duration (see also S&ct). If
set of 105years. Subsequently, its intuitively derived returngcp classification cannot be made (e.g. a storm shorter than
period is thus 105years. For the second highest point ifoyr 10-min intervals) or the maximum is observed in two
the.emplrlcal copula, the |_ntumvely dgrlved secondary returng, more quartiles, then the storm is removed from further
period of the corresponding storm is 52:5105/2) years,  gnalyses. The construction of Huff curves is then based on
and so on. _ o ~ the distribution of normalized cumulative rainfall amounts in
Figure 3 shows an evaluation considering the winter 5o, time intervals of the normalized storm duration. Here,
storms. Not_e that according to the goodness-of-fit testhe 1006 50% and 90% percentile curves are analyzed,
based onS$, in Sect.2.2.2 the fitted A12 copula was ¢onsidering storms of different quartile groups and with
rejected for the winter storms. The upper-left panel ShOWSspecific secondary return periods.
the empirical copulaC,. The upper-right panel shows a  Figyre 4 shows different Huff curves which are
good visual correspondence between the theoretical functiop,nstructed considering all storms in a specific season and

K¢ and the empirical functiorKc,. The lower-left and g artile group, regardless of their return period. The number
lower-right panel illustrate the correspondence between thgs ctorms considered is given in Tale

intuitively derived secondary return period in abscissa and,

respectively, the theoretical and empirical secondary returrg.1  Independence of return periods

period in ordinate, plotted in a double logarithmic scale.

The full line corresponds with the 1:1 line. It is clear that In order to study the influence of the extremity of a storm on
the theoreticallsgc underestimates the intuitively derived its internal storm structure, Huff curves can be constructed

www.hydrol-earth-syst-sci.net/14/2429/2010/ Hydrol. Earth Syst. Sci., 14, 24222010



2436

% of total storm depth

Fig. 4. Huff curves for different quartile storms and different seasons. The 10%, 50% and 90% percentile curves are given by, respectively

summer spring winter year

autumn
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Table 3. Statistical comparison of Huff curves for different threshold¥egc (0.04, 0.08, 0.12, 0.16, 0.20 and 0.24 year) and different
seasons. The p-values for the different non-parametrical Anderson-Darling 6-sample tests are given. Significant differences of Huff curves

total storm duration

at a significance level of 1% are indicated in bold.

considering only storms having a return period larger than adays). For these thresholds, respectively 299, 259, 185, 147,
specific threshold. To obtain reliable Huff curves a sufficient 117 and 97 storms are considered. As the percentile curves
number of storms is needed. Therefore, these thresholds aare very similar, this might indicate the independence of the

total storm duration

total storm duration

1st quartile 2nd quartile 3rd quartile 4th quartile
Percentage of storm duration

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
Year 0.00 000 0.00 0.00 0.00048 0.68 0.00 048 0.34 0.00 0.00
Winter  0.00 0.02 0.74 0.07 0.83 097 083 015 0.87 089 0.30 0.03
Spring 0.00 000 093 068 055 093 098 003 093 097 011 0.22
Summer 0.00 0.00 0.07 0.10 063 090 091 085 097 092 034 0.27
Autumn 0.00 0.00 024 0.28 0.63 091 094 001 092 0.68 0.34 0.08

the secondary return period should not be too large, as moshternal storm structure and the extremity of a storm.
secondary return periods are small (see Bjg. Figure 5

shows Huff curves for third quartile storms in summer, with di
thresholds on the secondary return period of 0.04, 0.08, 0.1

0.16, 0.20 and 0.24 year. Note that these thresholds are

extreme, however, 68% of all 3rd quartile summer storms
have a secondary return period smaller than 0.24 year (8

Hydrol. Earth Syst. Sci., 14, 2429442 2010

As Huff curves are constructed based on empirical
stribution functions of the normalized cumulative storm
2t:lepth at a specific percentage of the total storm duration,
50% and 90% percentiles are
alculated, a statistical test could be used to assess
hether these distributions differ significantly when different

n(?}om which the 10%,
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using other thresholds of the return period (resulting in
different sample sizes) and other percentages of the total
storm duration at which the empirical distributions are
compared (i.e., 25%, 50% and 75%). Nevertheless, the
independence between the return period of a storm and its
internal storm structure is assumed for the further analysis in
this study in which storms will be treated seasonally.

100

—T>004y
90 15008y
80| —T>0.12y
20 —T>0.16y
—T>02y

60/ T>024y
50 |
40/
30
20
10/

3.2 Random generation of the internal storm structure

In order to obtain a random design storm generator, an
algorithm for the random generation of a cumulative internal
storm structure is developed. In first instance, the cumulative
storm depths at the 25%, 50% and 75% of the total
storm duration are randomly generated, i.e. the normalized
cumulative storm depths in each quarter of the storm.
o m———"" This generation is constrained in three ways. Firstly, the
00 10 20 30 40 50 60 70 80 90 100 cumulative storm depths are uniformly selected between the
% of total storm duration 10% and 90% percentile Huff curves. These bounds are
subjective and can of course be altered by the user. The
Fig. 5. Comparison of Huff curves, considering 3rd quartile uniform selection assures that the whole range of possible
summer storms for different thresholds on the secondary returrinternal storm structures will be covered. Secondly, the
periodT . cumulative storm depths may not decrease in time. Thirdly,
to assure that the design storm will respect the desired

thresholds of the secondary return period are considereciuartile, the maximum increase in cumulative storm depth
To assess whether the total Huff curves are identical, thisshould occur in that chosen quartile. Once the cumulative
statistical test can be performed at several percentages of tHi0rm depths are chosen for each quartile, the rainfall in each
total storm duration. For example, for testing the significanceduartile is further refined to each 5% time interval, based on
of the differences between the six Huff curves consideredn® Same Huff curves. Therefore, a random generator again
in Fig. 5 obtained with six different thresholds dfsgg uniformly selects cumulative rainfall depths that fall within
three different non-parametrical Anderson-Darling (AD) the 10% to 90% percentile curves, assuring that the total
six-sample tests are considered to compare the empiricdi’®Set cumulative rainfall depth during the chosen quartile,
distribution functions of the normalized cumulative storm @S determined before, is obtained. Again, the algorithm is
depth at 25%, 50% and 75% of the total storm duration.forced to respect the non-decreasing nature of the cumulative
Figure6 shows that per quartile group (columns) and at threef@infall depth in time. In other words, if tge normalized
specific moments in the storm (rows) six different cumulative CUmulative storm depth in the preceding 5% t(:me interval
distribution functions of the normalized cumulative storm IS higher than the lower bound given by the 10% percentile
depth (considering six thresholds for the return period) canCurve In the considered 5% time interval, then this preceding
always be compared and seem to be quite similar. The aphormalized cumulative storm depth forms the lower bound.
test is also able to account for ties, which is preferable as Figure7 shows the outcome of the random generation of

e.g. the most extreme storms are six times considered fopuch a cumulative internal storm structure, together with the
the analysis of all six Huff curves. When the three resulting 10% and 90% percentile curves which serve as boundaries in

% of total storm depth

p-values are larger than the significance level of 1%, the nulth® random generation.
hypothesis of equal Huff curves is not rejected. These tests
can then be performed for all configurations of seasons ang Practical use of the random design storm generator
quartile storms and the results are given in TakleThe
internal storm structure, expressed by Huff curves, of 2nd.4.1  Simulation of one design storm
3rd and 4th quartile storms on the one hand are not influenced
by the extremity of the storms in winter, spring, summer The developed algorithm for the generation of an internal
and autumn. On the other hand, 1st quartile storms seem tstorm structure and the concept of the copula-based
be influenced. When the storms are considered, regardlessecondary return period can now be used to generate design
of their season, significant differences are present for allstorms. Firstly, a secondary return period should be defined.
guartile storms. With this return period the corresponding copula levean

It should be noted that the comparison as proposed herbe defined. Then, a random cougle v) can be selected
is somewhat subjective and could have a different outcomeéhaving the predefined probability of occurrence, i.e. on the
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Fig. 6. Comparison of the empirical distribution functions (CDFs) of the percentage of total storm volume (hormalized cumulative storm
volume) at 25%, 50% and 75% of the total storm duration, considering summer storms for different thresholds on the secondary return
periodT.

t-contour line of the copula. With the use of the inverse of based on a point rainfall series. Very often, only one extreme
the marginal cumulative distribution functiong, v) is then  storm event is used because of computational reasons. This
transformed to values for, respectively the storm duration storm event is most likely a historical storm that caused
and the total storm deptP. Then a random dimensionless problems within the river system. Through a simulation with
internal storm structure is generated based on the Huffa hydrological model, a discharge event corresponding to
curves, which is superimposed @nhandD. this historical storm can be obtained. However, there is no

For example, a 2nd quartile storm in winter with a sec- information on the uncertainty of this simulated discharge.
ondary return period of 0.4 year corresponds to a copula leve¥Vhen several statistically identical extreme storm events
of 0.7618 and a random couple,v)=(0.84390.8047. could be used, a set of hydrological discharges would be
Then, non-parametrical distribution functions are fitted to generated, yielding a distribution of the simulated discharges
W and D considering all winter storms (see Seét3), at a specific point of interest in the catchment under study.
regardless of their return period. By using the inverse CDFs)n this way, one could design a hydraulic structure in such
the couple(u,v) results in W=87.4h and D=18.6 mm. way that it has only 1% of failure for storms with similar
Imposing a randomly generated dimensionless internal storngXtreme statistics as the specific historical storm event that
structure on these values results in the design storm given igaused problems in the past.

Fig. 8. The usefulness of the random generation of a set of
statistically identical storm events is demonstrated here at the
4.2 Random generation of a set of design storms: a level of the hydrological model. The probability distributed
practical example moisture (PDM) modelNloore, 2007 is considered, as it

is a rainfall-runoff model which is widely used in Flemish
This section explains one possible way in which the water management practiceBefket et al. 201Q Cabus
stochastic design storm generator could be used in practice2008. The model is used with the calibrated parameters
In hydraulic design studies, one often uses a hydrologicafor the catchment of the Demer river (area: 96.64km
model to generate a discharge input for a hydraulic modeBelgium). First of all, a specific storm is selected from
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Fig. 9. The rainfall time series used in the rainfall-runoff modelling:
the grey storms determine the antecedent soil moisture conditions
and the black storm is the historical storm which is replaced by
10000 randomly generated design storms.

0 20 40 60 80 100
% of total storm duration

same for each storm of the set, the same number of preceding

Fig. 7. A cumulative randomly generated storm structure of a third h|§t0r|0a| Storm_s* I.€. _the prec_edlng 100 days, is US_Ed in the
quartile storm in summer. For each 5% time interval, a percentagd@infall-runoff simulations. Figure shows the series of
of the total storm depth is assigned in the range of the 10% andainfall used.
90% percentiles. The grey lines form the 10% and 90% percentile Subsequently, this series forces the PDM model yielding
curves of the Huff curves. The points marked by x are the randomlyg discharge series from which the last discharge event
chosen cumulative storm depths at 25%, 50% and 75% of the storaorresponding to the selected historical storm is selected
QUratlon. The black line is the random generation using the 5%(indicated in black in Fig9). For this discharge event,
interval data. the maximum peak discharg@max is then calculated:

8.12 m¥/s. However, it would be interesting to know what the
4 distribution of Qmaxlooks like, in order to obtain information
on its uncertainty. Therefore, the PDM model is re-run
10000 times with the rainfall series of Fi@ as input
in which the historical storm considered is replaced by a
randomly generated 2nd quartile summer storm having the
same secondary return period. Again, the discharge event
corresponding to the design storm is selected @agx is
calculated.

Figure10 shows the resulting distribution @ max, Which

w

Storm depth D [mm]
N

1 gives an indication of the uncertainty of the discharge and
could provide valuable information for a further hydraulic

0 study. The peak discharge generated by the historical storm
0 20 40 60 80 corresponds with a cumulative probability of 33%. This

Storm duration W [h] means that in 66% of the cases, a statistically identical
design storm generates a larger peak discharge than what
Fig. 8. A 2nd quartile storm in winter with a secondary return period 1S observed historically. - Furthermore, the distribution of
of 0.4 year. Omax has a non-Gaussian form. This results from the
fact that, depending upon the properties of the catchment,
the discharge does not behave linear with respect to the
the historical data set. The storm starting on 6 July 1980 rainfall (see a discussion Willems, 2000. Because of this
more specifically a 2nd quartile summer storm, is chosen andhon-linearity of the system, discharge will not have the same
has a secondary return period of 26.96 year. Based on thifequency of occurrence as the rainfall event. It should thus
storm, several statistically identical storms can be generatetle noted that it would make no sense to perform a frequency
with the method as described above. We considered 10 008nalysis of the discharge and define a return period of a
randomly generated design storms. To be sure that thspecific discharge event and then to generate storms with the
antecedent soil moisture conditions of the catchment are theame return period to use this information in a design study.
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. . . extreme summer storm events corresponds with a uniform one
Fig. 10. The set of randomly generated design storms is able to(dotted line)

give an idea of the distribution of the maximum peak discharge
Omax The maximum peak discharge for the historical 2nd-quartile
summer storm on which the set is based clearly falls within the

range of the distribution. be routed through a hydraulic model. This allows then for

an evaluation of the distribution of hydraulic discharges or
water levels at a specific hydraulic structure. The latter could

One way of validating the generator which is practically :2?2 gs eiﬁ;%?;i:;\l/llggof‘mpésgﬁ?ned probability of failure

useful, is to evaluate whether the observed maximum
discharge falls within the range of maximum discharges,
generated by the set of design storms. Therefore the; conclusions
same analysis is conducted considering the forty most
extreme observed summer storms one by one, having &his paper demonstrated that by combining the copula-based
secondary return period ranging from 97.2 to 3.1 years.concept of a secondary return period together with a random
For each observed storm, the position of the observednternal storm structure generation based on Huff curves,
maximum discharge is evaluated with the range of maximuma fairly simple stochastic design storm generator can be
discharges. In other words, 40 times an evaluation as theonstructed. Its potential for obtaining information on the
one displayed in FigurdO is made. To be sure that the uncertainty of the maximum discharges in a rainfall-runoff
generator does not have a bias, all observed dischargasodelling context has been illustrated in a comprehensible
should clearly fall within the range of the generated set ofway.
maximum discharges, which is in fact the case for all 40 The proposed generator is conceptually different from
storm events. Also, the position of the observed maximummore traditional approaches. Firstly, it is storm based,
discharge within the range of the generated maximumie. storms are selected out of a time series based on
discharges should vary uniformly. In other words, the an independence criterion. Traditional approaches mostly
empirical probability of having a maximum discharge (in do not consider storms, but only consider “aggregation
the generated set) smaller than or equal to the observegvels”, which are less interesting from a physical point of
maximum discharge should uniformly vary between 0 andview. Secondly, a bivariate frequency analysis is conducted
1. Figurellshows that the variation of this probability is in in which the dependence between storm depth and storm
fact uniform. duration is explicitly incorporated. In traditional approaches,
The above only concerns the hydrological part of aa univariate frequency analysis is mostly used and an
design study. To come to an eventual design of hydraulicintensity-Duration-Frequency (IDF) curve is the main tool
structures, 10000 hydrological discharge time series shouldo link intensities, durations (in fact aggregation levels) and
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