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Abstract. The use of design storms can be very useful in
many hydrological and hydraulic practices. In this study,
the concept of a copula-based secondary return period in
combination with the concept of mass curves is used to
generate point-scale design storms. The analysis is based
on storms selected from the 105 year rainfall time series
with a 10 min resolution, measured at Uccle, Belgium.
In first instance, bivariate copulas and secondary return
periods are explained, together with a focus on which couple
of storm variables is of highest interest for the analysis
and a discussion of how the results might be affected
by the goodness-of-fit of the copula. Subsequently, the
fitted copula is used to sample storms with a predefined
secondary return period for which characteristic variables
such as storm duration and total storm depth can be derived.
In order to construct design storms with a realistic storm
structure, mass curves of 1st, 2nd, 3rd and 4th quartile
storms are developed. An analysis shows that the assumption
of independence between the secondary return period and
the internal storm structure could be made. Based on
the mass curves, a technique is developed to randomly
generate an intrastorm structure. The coupling of both
techniques eventually results in a methodology for stochastic
design storm generation. Finally, its practical usefulness
for design studies is illustrated based on the generation of
a set of statistically identical design storm and rainfall-runoff
modelling.
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1 Introduction

Engineers involved in the design of hydraulic structures in
river systems are often confronted with a lack of available
data regarding the phenomenon under study, e.g. peak
discharges at a specific point in a catchment. As rainfall
data are often readily available, they often serve as an
indispensible source of information for the further analysis.
A variety of point rainfall data products can be used in such
design studies: the historical time series, a synthetically
generated time series, intensity-duration-frequency (IDF)
relations and design storms.

A method for generating design storms should be
flexible enough to entail the variability of several rainfall
characteristics. To that end, design storms are mostly
characterized by a specific return period, a rainfall volume or
intensity, and a duration, which are related to the extremity
of the storm, and a temporal rainfall pattern or an internal
storm structure (Chow et al., 1988).

The internal storm structure (Bernardara et al., 2007;
Thompson et al., 2002; Koutsoyiannis, 1994, 1993) is
often the most important characteristic and several methods
exist for its characterization (see e.g.,Prodanovic and
Simonovic, 2004; Veneziano, 1999; Chow et al., 1988;
Pilgrim and Cordery, 1975, and references therein): the
use of an arbitrary (symmetrical) pattern in combination
with an average intensity derived from the IDF curves,
the construction of a pattern out of the complete IDF
curves, using simulations of stochastic models, or by using
standardized profiles (summation curves) derived from an
empirical probabilistic analysis of the rainfall. The method
of Huff (1967), which falls in the latter category, will be
used in this study. Mass curves, often referred to as Huff
curves, are representations of the normalized time versus the
normalized cumulative storm depth since the beginning of a

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2430 S. Vandenberghe et al.: Stochastic design storm generator

storm. At regular moments in the storm, e.g. when partioning
a storm in 20 identical time intervals at every 5% of the total
storm duration, the empirical distribution of the normalized
cumulative storm depth is evaluated. To obtain the Huff
curves, often the 10%, 50% and 90% percentiles of that
distribution are then visualized. Furthermore, a classification
of storms into quartile groups can be made, according to
which quarter of the storms received the largest amount of
rainfall.

Besides the internal storm structure, also the duration and
mean storm intensity or storm depth should be calculated
for a specific design storm. In practice, this is often done
by fixing a specific design return period. Subsequently,
a certain storm duration is fixed, which could be based
on the concentration time of the catchment under study,
and the corresponding mean storm intensity or storm
depth for that design return period is then retrieved from
previously established IDF relations. In this study, the
recently proposed framework for a multivariate copula-based
frequency analysis (Salvadori et al., 2007; Salvadori and
De Michele, 2004) is used to establish a direct link between
a physical storm duration, its depth or mean intensity, and
the corresponding return period. The work ofEllouze
et al.(2009), Gargouri-Ellouze and Chebchoub(2008), Kao
and Govindaraju(2008) andGrimaldi and Serinaldi(2006)
already considered the use of copulas in the modelling of
design storms.

All analyses in this work are based on a 105 year
rainfall time series with a 10 min resolution, measured at
Uccle (Brussels), Belgium. These rainfall measurements
have already been the subject of several studies, generally
focusing on either the construction of IDF relations
(Willems, 2000) or, more recently, on climate change and
the detection of trends in rainfall observations (Ntegeka and
Willems, 2008; De Jongh et al., 2006). In the context
of design storms, the development of composite storms
for Flanders based on the Uccle rainfall has been of
great importance for Flemish water managers and engineers
involved in urban drainage or river design (Vaes and
Berlamont, 2000).

This work proposes a stochastic design rainfall generator
by combining the traditional concept of Huff curves for the
analysis of the internal storm structure with the concept of
a copula-based secondary return period of a storm. In the
following, firstly a copula-based secondary return period is
assigned to each Uccle storm and some remarks on the choice
of the couple of storm variables and the importance of a good
fit are made (Sect.2). Secondly, the internal storm structure
of the observed storms and its independence of the return
period is analyzed and an algorithm for a random internal
storm structure generation is proposed (Sect.3). Section4
then illustrates how the design storm generator could be used
for water management purposes. Finally, conclusions and
recommendations for future research are given in Sect.5.

2 Assignment of return periods to Uccle storms

2.1 Storm selection

A first step is the delineation of individual and statistically
independent storms in the 105 year time series of 10 min
rainfall. Therefore, a minimal dry period, or critical
dry duration, should be defined. All dry periods which
are shorter than this criterion are considered to belong to
the same storm (Bonta and Rao, 1988). Here, a 24-h
dry period criterion is chosen, based on the method of
Restrepo-Posada and Eagleson(1982), which assumes that
the arrival times of statistically independent storms follow a
Poisson distribution. However, from a design perspective,
one could consider to use another independence criterion
dictated by the application in which the storms are to be
used, e.g. storms should be separated by a dry period at least
as long as the concentration time of the catchment under
study. For reasons of consistency, the same storm selection
procedure as applied byVandenberghe et al.(2010a,b) is
used.

For each storm, several variables are calculated, such as
the total storm depthD (mm), the storm durationW (h) and
the mean storm intensityI (mm/h). In order to be able to
analyze Huff curves (see Sect.3), for each storm, the rainfall
depth in every 10 min interval is made cumulative and the
time lapse within the storm is expressed as a fraction of
the total duration of the storm. Then cumulative rainfall
depths in each 5% interval of the storm duration, which
do not correspond with the normalized 10-min intervals,
are assigned using a linear interpolation of the cumulative
10-min rainfall amounts. Subsequently, each storm is
assigned to a specific quartile group, depending on which
quarter of the storm has the highest rainfall depth, where
storms with equal rainfall amounts in different quarters
are not further considered. Because of the assumption
of stationarity, the further analysis is based on a seasonal
division of storms: winter is defined as December, January
and February. March, April and May make up the spring
season. June, July and August are then considered as the
summer months, while September, October and November
are assigned to autumn. Eventually, this results in 1777
winter, 1652 spring, 1647 summer and 1697 autumn storms
(Table1).

2.2 Copulas and secondary return periods

In order to assign a return period to each storm in the data
set, bivariate copulas and secondary return periods are used
(Salvadori et al., 2007; Salvadori and De Michele, 2004;
Salvadori, 2004). This means that a storm is described by two
variables, which can be dependent, and that a copula is used
to construct their bivariate cumulative distribution function,
which in its turn is used to calculate specific probabilities
of occurrence of each storm. Section2.2.1shortly explains
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Table 1. Number of storms, considering different seasons and
quartile-groups.

Season Quartile group

1st 2nd 3rd 4th All

Year 2662 1397 1237 1477 6773
Winter 664 335 324 454 1777
Spring 659 356 307 330 1652
Summer 679 327 299 342 1647
Autumn 660 379 307 351 1697

the concepts of a copula and the secondary return period.
Section2.2.2provides some reflections on which couple of
storm variables is best used in the present context, whereas
Sect.2.2.3illustrates the impact of the quality of the copula
fit on the interpretation of the secondary return period.

2.2.1 Concepts

A bivariate copulaC models the dependence structure
between two random variablesX andY , which can in the
present context be thought of as the total storm depthD,
the mean storm intensityI or the storm durationW . It is
a function that couples the marginal cumulative distribution
functions (CDFs)FX(x) andFY (y) in order to construct the
bivariate CDFFX,Y (X,Y ), as expressed by the theorem of
Sklar(1959):

P(X ≤ x,Y ≤ y) = FX,Y (x,y) = C(FX(x),FY (y)) (1)

= CUV (u,v)

A bivariate copula is thus a bivariate cumulative distribution
function with uniform marginals U and V on the
unit interval. One can also determineU and V

non-parametrically as the normalized ranks (Genest and
Favre, 2007). With the use of the inverse marginal CDFs
the correspondingx andy for specific valuesu andv can be
calculated:x=F−1

X (u) andy=F−1
Y (v).

In order to come to the definition of the secondary return
period, let us consider a storm for which eitherX or Y (or
both) exceed a respective thresholdx andy. This is called
the OR-case: {X>x or Y>y} (Salvadori et al., 2007). In a
marginal-free context this event is given as{U>u orV >v}.
The probability of occurrence of a storm in theOR-case can
then be calculated as follows:

P(FX(x) >u,FY (y) > v) = 1−C(u,v) (2)

With the knowledge of the mean storm interarrival timeωT ,
the so-called primary return period in theOR-caseTOR can
then be calculated:

TOR=
ωT

1−CUV (u,v)
=

ωT

1− t
(3)

It should be clear that different combinations ofu and v

can result in the sameTOR, as long as they have the same
probabilityt .

Eventually, the secondary return period was proposed
as being very useful for design purposes (Salvadori and
De Michele, 2004; Salvadori, 2004; Salvadori et al., 2007).
Unfortunately, this type of return period did not yet
find its way to engineering applications, except for some
considerations in the work ofVandenberghe et al.(2010b).

In engineering applications, one usually chooses a design
storm with a certain (primary) return period for which the
design should hold. Consider now the storms in theOR-case.
By fixing a certain design return periodT ∗

OR, a certain level
t∗ of the copula is fixed. In Fig.1 this is indicated with
the thick contour line (fort=0.4). A storm that lies on this
curve has a return periodT ∗

OR and is called a critical storm
(Salvadori et al., 2007). In Fig. 1 S∗ is such a critical storm
and is defined by the critical thresholdsu∗ andv∗. A more
extreme storm with a higher return period, and thus on a
higher contour line, is called a super-critical storm, e.g.S+

1
and S+

2 . On the other hand, the stormsS−

1 and S−

2 have
lower return periods and are called sub-critical storms. The
secondary return period is now defined as the average time
between the occurrence of two super-critical storms and is
expressed as follows:

TSEC=
ωT

1−KC(t∗)
=

ωT

KC(t∗)
(4)

The function KC is the distribution function of the
random variableZ=C(U,V ), i.e. KC(z)=P{Z≤z}. For
Archimedean copulas this function can easily be calculated:

KC(t) = t −
ϕ(t)

ϕ
′
(t+)

with 0< t ≤ 1 (5)

whereϕ′(t+) is the right derivative of the additive generator
ϕ (Nelsen, 2006).

Similar to the equation used for calculating the primary
return period (Eq.3), the denominator in Eq. (4) expresses a
probability, asKC(t∗) can be interpreted as the probability
that a super-critical storm will occur at any realisation of a
storm (Salvadori et al., 2007). This probability mass is given
in dark grey in Fig.1a.

In the calculation of the primary return period in the
OR-case, one uses the probability thatX or/and Y will
exceed a respective thresholdx and y. This probability
can be expressed as 1−CUV (u,v) (see Eq.3). However,
this probability is not the same as the probability of the
occurrence of a super-critical storm that is used for the
calculation of the secondary return period, i.e. 1−KC(t).
Figure1b gives the area in dark grey on which the probability
mass, i.e. 1−C(u∗,v∗), is calculated. The primary return
period TOR will then be the average time between the
occurrence of two successive storms in this region, which is
defined by the critical thresholdsu∗ andv∗. It is obvious that
the probability mass corresponding to the dark grey area in
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Fig. 1. Illustration of sub-, super- and critical storms(a). Difference
in probability used for secondary and primary return periods (dark
gray area(a) vs. (b)). (After Salvadori et al., 2007).

Fig. 1a is smaller than the probability mass of the dark grey
area in Fig.1b, for the same critical thresholds. In practice,
it is advised to use this probability of super-critical events,
as these are in fact dangerous for the design, and hence the
secondary return period is a more realistic concept. Note
that the functionKC has recently been applied in the work of
Kao and Govindaraju(2010) as it is a compelling univariate
summary of multivariate information.

An additional comment should be made with regard to the
seasonal analysis as carried out in this paper. To calculate
the return period (primary and secondary) of e.g. summer

storms one should incorporate the probability of occurrence
of a summer storm. This probability can easily be calculated
by dividing the number of summer storms by the total
number of storms (see Table1, i.e. 1647/6773=0.24). For
winter, spring and autumn storms this is 0.26, 0.24 and 0.25,
respectively. Intuitively, one should expect a probability
of 0.25 for each season in a climate without dry and wet
regimes. When a different copula is fitted for each season,
the probability of occurrence of an extreme event given
by the denominators in Eqs. (3) and (4) should thus be
multiplied by the probability of occurrence of a storm in the
considered season. The mean interarrival time is that of the
storms in the considered season. The general equation for
calculating a seasonal return periodTs is then:

Ts=
ωT ,s

Pseasonal storm×Psurvival
(6)

whereωT ,s is the mean interarrival time of the storms in the
specific season,Pseasonal stormthe probability of occurrence
of a storm in that season andPsurvival the survival probability
as given by the denominators of Eqs. (3) and (4).

On the contrary, when the probability of occurrence
of a storm in a specific season would not be taken into
account, the length of the data set should be considered to
be 105/4=26.25 years, which of course would influence the
further interpretation of the results (i.e., the most extreme
summer storm within the 105 year series would be assigned
a return period of 26.25 year instead of 105 year).

2.2.2 Choice of the couple to fit a copula

To calculate the primary and secondary return periods of
each storm, a copula should be fitted to the dependence
structure between two rainfall characteristics on a seasonal
basis. Three different couples of storm variables can be
used: (I,W), (W,D) and (I,D). a way to visualize this
dependence structure is by making a normalized rank scatter
plot, which is in fact the support of the empirical copula
(Genest and Favre, 2007). Figure2 shows these plots for the
three couples of summer storm variables. As the secondary
return period focuses on storms in the upper-right quadrant
of the copula, it only makes sense to consider two random
variables that are positively associated. Therefore, it would
be an irrational choice to consider the couple(I,W) for the
further analysis.

In what follows, the couple(W,D) will be considered for
several reasons. Firstly, for(W,D) more storms are located
in the upper-right quadrant compared to the other couples,
which will contribute to the reliability of the further analysis.
Secondly, it still allows for the calculation ofI and resembles
the approach of traditional frequency analyses where the
distribution of rainfall amounts for different aggregation
levels is considered (Willems, 2000). Thirdly, no problems
with asymmetrical empirical copulas occur for this couple
(Vandenberghe et al., 2010a).
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Fig. 2. Normalized rank scatter plots of three different couples of storm variables (per column). Each row shows the same plots, with
different storms highlighted within each row. In the first row, the extreme storms with respect toI andW are selected (i.e., storms found in
the upper-right corner of the(I,W) plane), and are indicated in black in each of the plots of the first row. For the second and the third row,
extreme storms with respect to, respectively(W,D) and(I,D) are selected, and marked in black.

The A12 copula family (Nelsen, 2006) is considered here
for modelling the dependence betweenW andD. The ability
of this copula family to model the dependence between
rainfall characteristics has been studied byVandenberghe
et al.(2010a). The A12 copula family is given by

CUV (u,v)=

(
1+

[
(u−1

−1)θ +(v−1
−1)θ

]1/θ
)−1

(7)

where θ is a copula parameter taking values in the range
[1,∞[. The corresponding values of Kendall’s tauτK belong
to [

1
3,1].

Table 2 gives detailed information on the seasonal fits
of the A12 copula family, based on the inversion of
Kendall’s tauτK . For more details on the fitting process
and the goodness-of-fit evaluation, the reader is referred
to Vandenberghe et al.(2010a). As stated before, seasons

are treated separately to comply with the assumption of
non-stationarity, which is needed because of the underlying
copula theory. The 95% confidence intervals (Table2) of
the estimated parameters for winter, spring and summer
do not overlap, indicating considerable differences between
the parameters. The interval for the autumn storms lies
somewhat in between the interval of the winter and spring
storms.

The performance of the test statisticsSn andTn is studied
by Genest et al.(2009) (therein denoted byS(K)

n andT
(K)
n ).

TheSn statistic is considered to be very powerful, especially
in the case of Archimedean copulas, such as the A12 copula
family. It should be noted that the reported p-values of
the Sn statistics indicate that the null hypothesis, which
states that the fitted A12 copula is an adequate model for
the data, should be rejected for the winter and autumn
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Fig. 3. Importance of a good fit for the interpretation of the secondary return period, considering the winter storms.

Table 2. Kendall’s tauτK and the estimated A12 copula parameter
θ with 95% confidence bounds (lower bound LB and upper bound
UB) and correspondingSn andTn goodness-of-fit measures with
their p-values for the storms per season.

Winter Spring Summer Autumn

τK 0.6420 0.6068 0.5695 0.6252
θ 1.8622 1.6953 1.5485 1.7786
LB 1.7955 1.6309 1.4767 1.7036
UB 1.9289 1.7597 1.6202 1.8536
RMSE 0.0055 0.0043 0.0044 0.0064
Sn 0.1453 0.0842 0.0907 0.2719
p (Sn) 0.0019 0.0640 0.0648 0.0000
Tn 0.7834 0.7885 0.8989 1.0088
p (Tn) 0.0461 0.0543 0.0192 0.0019

storms when considering a significance level of 1% (i.e.,
the p-values are smaller than 0.01). For the spring and
summer storms, this hypothesis cannot be rejected. Because
of the large data sample the performed tests are relatively
severe. Therefore, the p-values for the spring and summer
storms are in fact very promising as they would become
even larger when only subsamples of the data were to be
considered. The fits of the winter and autumn storms are
more doubtful, and their complications will be considered in
Sect.2.2.3. Nevertheless, it should be made clear that there is
no need to restrict to the A12 copula family. Any practitioner
should choose an adequate copula family for the data at
hand. This adequacy should be evaluated by both visual and
statistical goodness-of-fit evaluation methods. Because the

KC function is important in the calculation of the secondary
return period, a good correspondence between the empirical
and theoreticalKC function is critical, and several methods
exist for this evaluation (Vandenberghe et al., 2010a; Genest
and Favre, 2007). For all Archimedean copula families, the
calculation of theKC function is fairly simple.

For the calculation of the mean storm interarrival timeωT ,
one needs to consider that the original data set of 105 years is
split up into four periods of each 26.25 years because of the
seasonal division. For a specific season,ωT is thus calculated
as 26.25 years divided by the total number of storms in that
season. The primary and secondary return period can then
be calculated:ωT (in years) divided by the product of the
probability of occurrence of storm in a specific season and
the respective probabilities as given in Fig.1, which are
easily calculated with the fitted copulas (see also Sect.2.2.3).

It should be noted that the overall distribution function
of (W,D) is considered here. It would also be interesting
to consider e.g. annual maxima, which can be defined
in several ways in a multidimensional setting (Kao and
Govindaraju, 2007), in combination with extreme value
copulas. In combination with marginal extreme value
distributions of these annual maxima, a multivariate extreme
value distribution would be obtained (Salvadori et al., 2007).
Also, with an appropriate construction of the extreme value
copula, the asymmetry of the data could be taken into
account (Durante and Salvadori, 2009). This will be
considered in future research.
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2.2.3 Importance of a good fit

In this section, two different ways of calculating the
secondary return period are matched with the intuitive
interpretation of the secondary return period. On the one
hand,TSEC can be calculated theoretically with Eq. (4). For
the A12 copula family, which is an Archimedean copula
family, KC can be calculated as follows:

KC(t) =
t (θ +1− t)

θ
(8)

Thus for each storm, the corresponding levelt can be
calculated, after whichTSEC can be obtained easily. On
the other hand,TSEC can also be calculated empirically.
Therefore, the empirical copulaCn is considered, which can
be defined as follows (Genest and Favre, 2007):

Cn(u,v)=
1

n

n∑
k=1

I(
RW

k

n+1
≤ u,

RD
k

n+1
≤ v) (9)

whereRW
k andRD

k are the ranks ofW andD, n is the number
of data points andI(A) is the indicator function of the setA.
If for all n storms the corresponding empirical copula values
ci=Cn(ui,vi), with i=1,...,n, are now treated as random
values of the variableCn, these values can be ranked and
the corresponding empirical CDF can be calculated. This
empirical CDF is in fact the empirical functionKCn :

KCn(i) =
R

Cn

i

n+1
(10)

whereR
Cn

i is the rank of the empirical copula valueci .
The secondary return period can intuitively be derived as

the mean interarrival time of super-critical storms. For a
specific season, the empirical copula is constructed. The
storm with the largest empirical copula value (the highest
point in a 3-D-representation of the empirical copula) is thus
the most extreme storm in the considered season out of a data
set of 105 years. Subsequently, its intuitively derived return
period is thus 105 years. For the second highest point in
the empirical copula, the intuitively derived secondary return
period of the corresponding storm is 52.5 (=105/2) years,
and so on.

Figure 3 shows an evaluation considering the winter
storms. Note that according to the goodness-of-fit test
based onSn in Sect. 2.2.2, the fitted A12 copula was
rejected for the winter storms. The upper-left panel shows
the empirical copulaCn. The upper-right panel shows a
good visual correspondence between the theoretical function
KC and the empirical functionKCn . The lower-left and
lower-right panel illustrate the correspondence between the
intuitively derived secondary return period in abscissa and,
respectively, the theoretical and empirical secondary return
period in ordinate, plotted in a double logarithmic scale.
The full line corresponds with the 1:1 line. It is clear that
the theoreticalTSEC underestimates the intuitively derived

return period, whereas the empiricalTSEC almost perfectly
matches it. This points out that one should always be
very cautious when interpreting theoretically calculated
secondary return periods: very small shortcomings in the
fitted copula (which may e.g. not accurately enough model
the tail dependence) can already induce large deviations from
what would intuitively be expected. In the case of summer
storms, for which the fitted A12 copula was not rejected, a
much better correspondence between the intuitively derived,
the empirical and the theoretical return period exists (not
shown here). More research on this topic is certainly
recommended, however it is beyond the scope of setting the
methodology for generating design storms as presented in
this paper.

2.3 Marginal distribution functions

To be able to perform the transformation fromU and
V to W and D, the marginal cumulative distribution
functions ofW and D need to be known. For the further
analysis in this paper, a kernel smoothed version of the
empirical cumulative distribution functions will be used for
this purpose (provided by the Matlab distribution fitting
toolbox). As no extrapolations ofW and D out of the
available data range will be made throughout this paper,
these non-parametrical CDFs provide sufficient information.
When extrapolations would be needed, marginal distribution
functions that are able to accurately model the tail behaviour
of W andD should be used instead.

3 Analysis of Huff curves

Each storm in the time series is classified as a first, second,
third or fourth quartile storm, based on the occurrence of
the largest rainfall amount in, respectively the first [0,0.25],
second [0.25,0.50], third [0.50,0.75] or fourth [0.75,1]
quarter of the total storm duration (see also Sect.2.1). If
such classification cannot be made (e.g. a storm shorter than
four 10-min intervals) or the maximum is observed in two
or more quartiles, then the storm is removed from further
analyses. The construction of Huff curves is then based on
the distribution of normalized cumulative rainfall amounts in
5% time intervals of the normalized storm duration. Here,
the 10%, 50% and 90% percentile curves are analyzed,
considering storms of different quartile groups and with
specific secondary return periods.

Figure 4 shows different Huff curves which are
constructed considering all storms in a specific season and
quartile group, regardless of their return period. The number
of storms considered is given in Table1.

3.1 Independence of return periods

In order to study the influence of the extremity of a storm on
its internal storm structure, Huff curves can be constructed
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Fig. 4. Huff curves for different quartile storms and different seasons. The 10%, 50% and 90% percentile curves are given by, respectively
the dashed, full and dotted lines.

Table 3. Statistical comparison of Huff curves for different thresholds ofTSEC (0.04, 0.08, 0.12, 0.16, 0.20 and 0.24 year) and different
seasons. The p-values for the different non-parametrical Anderson-Darling 6-sample tests are given. Significant differences of Huff curves
at a significance level of 1% are indicated in bold.

1st quartile 2nd quartile 3rd quartile 4th quartile
Percentage of storm duration

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Year 0.00 0.00 0.00 0.00 0.00 0.48 0.68 0.00 0.48 0.34 0.00 0.00
Winter 0.00 0.02 0.74 0.07 0.83 0.97 0.83 0.15 0.87 0.89 0.30 0.03
Spring 0.00 0.00 0.93 0.68 0.55 0.93 0.98 0.03 0.93 0.97 0.11 0.22
Summer 0.00 0.00 0.07 0.10 0.63 0.90 0.91 0.85 0.97 0.92 0.34 0.27
Autumn 0.00 0.00 0.24 0.28 0.63 0.91 0.94 0.01 0.92 0.68 0.34 0.08

considering only storms having a return period larger than a
specific threshold. To obtain reliable Huff curves a sufficient
number of storms is needed. Therefore, these thresholds on
the secondary return period should not be too large, as most
secondary return periods are small (see Fig.3). Figure 5
shows Huff curves for third quartile storms in summer, with
thresholds on the secondary return period of 0.04, 0.08, 0.12,
0.16, 0.20 and 0.24 year. Note that these thresholds are not
extreme, however, 68% of all 3rd quartile summer storms
have a secondary return period smaller than 0.24 year (88

days). For these thresholds, respectively 299, 259, 185, 147,
117 and 97 storms are considered. As the percentile curves
are very similar, this might indicate the independence of the
internal storm structure and the extremity of a storm.

As Huff curves are constructed based on empirical
distribution functions of the normalized cumulative storm
depth at a specific percentage of the total storm duration,
from which the 10%, 50% and 90% percentiles are
calculated, a statistical test could be used to assess
whether these distributions differ significantly when different
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Fig. 5. Comparison of Huff curves, considering 3rd quartile
summer storms for different thresholds on the secondary return
periodT .

thresholds of the secondary return period are considered.
To assess whether the total Huff curves are identical, this
statistical test can be performed at several percentages of the
total storm duration. For example, for testing the significance
of the differences between the six Huff curves considered
in Fig. 5 obtained with six different thresholds ofTSEC,
three different non-parametrical Anderson-Darling (AD)
six-sample tests are considered to compare the empirical
distribution functions of the normalized cumulative storm
depth at 25%, 50% and 75% of the total storm duration.
Figure6 shows that per quartile group (columns) and at three
specific moments in the storm (rows) six different cumulative
distribution functions of the normalized cumulative storm
depth (considering six thresholds for the return period) can
always be compared and seem to be quite similar. The AD
test is also able to account for ties, which is preferable as
e.g. the most extreme storms are six times considered for
the analysis of all six Huff curves. When the three resulting
p-values are larger than the significance level of 1%, the null
hypothesis of equal Huff curves is not rejected. These tests
can then be performed for all configurations of seasons and
quartile storms and the results are given in Table3. The
internal storm structure, expressed by Huff curves, of 2nd,
3rd and 4th quartile storms on the one hand are not influenced
by the extremity of the storms in winter, spring, summer
and autumn. On the other hand, 1st quartile storms seem to
be influenced. When the storms are considered, regardless
of their season, significant differences are present for all
quartile storms.

It should be noted that the comparison as proposed here
is somewhat subjective and could have a different outcome

using other thresholds of the return period (resulting in
different sample sizes) and other percentages of the total
storm duration at which the empirical distributions are
compared (i.e., 25%, 50% and 75%). Nevertheless, the
independence between the return period of a storm and its
internal storm structure is assumed for the further analysis in
this study in which storms will be treated seasonally.

3.2 Random generation of the internal storm structure

In order to obtain a random design storm generator, an
algorithm for the random generation of a cumulative internal
storm structure is developed. In first instance, the cumulative
storm depths at the 25%, 50% and 75% of the total
storm duration are randomly generated, i.e. the normalized
cumulative storm depths in each quarter of the storm.
This generation is constrained in three ways. Firstly, the
cumulative storm depths are uniformly selected between the
10% and 90% percentile Huff curves. These bounds are
subjective and can of course be altered by the user. The
uniform selection assures that the whole range of possible
internal storm structures will be covered. Secondly, the
cumulative storm depths may not decrease in time. Thirdly,
to assure that the design storm will respect the desired
quartile, the maximum increase in cumulative storm depth
should occur in that chosen quartile. Once the cumulative
storm depths are chosen for each quartile, the rainfall in each
quartile is further refined to each 5% time interval, based on
the same Huff curves. Therefore, a random generator again
uniformly selects cumulative rainfall depths that fall within
the 10% to 90% percentile curves, assuring that the total
preset cumulative rainfall depth during the chosen quartile,
as determined before, is obtained. Again, the algorithm is
forced to respect the non-decreasing nature of the cumulative
rainfall depth in time. In other words, if the normalized
cumulative storm depth in the preceding 5% time interval
is higher than the lower bound given by the 10% percentile
curve in the considered 5% time interval, then this preceding
normalized cumulative storm depth forms the lower bound.

Figure7 shows the outcome of the random generation of
such a cumulative internal storm structure, together with the
10% and 90% percentile curves which serve as boundaries in
the random generation.

4 Practical use of the random design storm generator

4.1 Simulation of one design storm

The developed algorithm for the generation of an internal
storm structure and the concept of the copula-based
secondary return period can now be used to generate design
storms. Firstly, a secondary return period should be defined.
With this return period the corresponding copula levelt can
be defined. Then, a random couple(u,v) can be selected
having the predefined probability of occurrence, i.e. on the
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Fig. 6. Comparison of the empirical distribution functions (CDFs) of the percentage of total storm volume (normalized cumulative storm
volume) at 25%, 50% and 75% of the total storm duration, considering summer storms for different thresholds on the secondary return
periodT .

t-contour line of the copula. With the use of the inverse of
the marginal cumulative distribution functions,(u,v) is then
transformed to values for, respectively the storm durationW

and the total storm depthD. Then a random dimensionless
internal storm structure is generated based on the Huff
curves, which is superimposed onW andD.

For example, a 2nd quartile storm in winter with a sec-
ondary return period of 0.4 year corresponds to a copula level
of 0.7618 and a random couple(u,v)=(0.8439,0.8047).
Then, non-parametrical distribution functions are fitted to
W and D considering all winter storms (see Sect.2.3),
regardless of their return period. By using the inverse CDFs,
the couple(u,v) results in W=87.4 h and D=18.6 mm.
Imposing a randomly generated dimensionless internal storm
structure on these values results in the design storm given in
Fig. 8.

4.2 Random generation of a set of design storms: a
practical example

This section explains one possible way in which the
stochastic design storm generator could be used in practice.

In hydraulic design studies, one often uses a hydrological
model to generate a discharge input for a hydraulic model

based on a point rainfall series. Very often, only one extreme
storm event is used because of computational reasons. This
storm event is most likely a historical storm that caused
problems within the river system. Through a simulation with
a hydrological model, a discharge event corresponding to
this historical storm can be obtained. However, there is no
information on the uncertainty of this simulated discharge.
When several statistically identical extreme storm events
could be used, a set of hydrological discharges would be
generated, yielding a distribution of the simulated discharges
at a specific point of interest in the catchment under study.
In this way, one could design a hydraulic structure in such
way that it has only 1% of failure for storms with similar
extreme statistics as the specific historical storm event that
caused problems in the past.

The usefulness of the random generation of a set of
statistically identical storm events is demonstrated here at the
level of the hydrological model. The probability distributed
moisture (PDM) model (Moore, 2007) is considered, as it
is a rainfall-runoff model which is widely used in Flemish
water management practices (Ferket et al., 2010; Cabus,
2008). The model is used with the calibrated parameters
for the catchment of the Demer river (area: 96.64 km2,
Belgium). First of all, a specific storm is selected from
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Fig. 7. A cumulative randomly generated storm structure of a third
quartile storm in summer. For each 5% time interval, a percentage
of the total storm depth is assigned in the range of the 10% and
90% percentiles. The grey lines form the 10% and 90% percentile
curves of the Huff curves. The points marked by x are the randomly
chosen cumulative storm depths at 25%, 50% and 75% of the storm
duration. The black line is the random generation using the 5%
interval data.
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Fig. 8. A 2nd quartile storm in winter with a secondary return period
of 0.4 year.

the historical data set. The storm starting on 6 July 1980,
more specifically a 2nd quartile summer storm, is chosen and
has a secondary return period of 26.96 year. Based on this
storm, several statistically identical storms can be generated
with the method as described above. We considered 10 000
randomly generated design storms. To be sure that the
antecedent soil moisture conditions of the catchment are the
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Fig. 9. The rainfall time series used in the rainfall-runoff modelling:
the grey storms determine the antecedent soil moisture conditions
and the black storm is the historical storm which is replaced by
10 000 randomly generated design storms.

same for each storm of the set, the same number of preceding
historical storms, i.e. the preceding 100 days, is used in the
rainfall-runoff simulations. Figure9 shows the series of
rainfall used.

Subsequently, this series forces the PDM model yielding
a discharge series from which the last discharge event
corresponding to the selected historical storm is selected
(indicated in black in Fig.9). For this discharge event,
the maximum peak dischargeQmax is then calculated:
8.12 m3/s. However, it would be interesting to know what the
distribution ofQmax looks like, in order to obtain information
on its uncertainty. Therefore, the PDM model is re-run
10 000 times with the rainfall series of Fig.9 as input
in which the historical storm considered is replaced by a
randomly generated 2nd quartile summer storm having the
same secondary return period. Again, the discharge event
corresponding to the design storm is selected andQmax is
calculated.

Figure10 shows the resulting distribution ofQmax, which
gives an indication of the uncertainty of the discharge and
could provide valuable information for a further hydraulic
study. The peak discharge generated by the historical storm
corresponds with a cumulative probability of 33%. This
means that in 66% of the cases, a statistically identical
design storm generates a larger peak discharge than what
is observed historically. Furthermore, the distribution of
Qmax has a non-Gaussian form. This results from the
fact that, depending upon the properties of the catchment,
the discharge does not behave linear with respect to the
rainfall (see a discussion inWillems, 2000). Because of this
non-linearity of the system, discharge will not have the same
frequency of occurrence as the rainfall event. It should thus
be noted that it would make no sense to perform a frequency
analysis of the discharge and define a return period of a
specific discharge event and then to generate storms with the
same return period to use this information in a design study.
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Fig. 10. The set of randomly generated design storms is able to
give an idea of the distribution of the maximum peak discharge
Qmax. The maximum peak discharge for the historical 2nd-quartile
summer storm on which the set is based clearly falls within the
range of the distribution.

One way of validating the generator which is practically
useful, is to evaluate whether the observed maximum
discharge falls within the range of maximum discharges,
generated by the set of design storms. Therefore the
same analysis is conducted considering the forty most
extreme observed summer storms one by one, having a
secondary return period ranging from 97.2 to 3.1 years.
For each observed storm, the position of the observed
maximum discharge is evaluated with the range of maximum
discharges. In other words, 40 times an evaluation as the
one displayed in Figure10 is made. To be sure that the
generator does not have a bias, all observed discharges
should clearly fall within the range of the generated set of
maximum discharges, which is in fact the case for all 40
storm events. Also, the position of the observed maximum
discharge within the range of the generated maximum
discharges should vary uniformly. In other words, the
empirical probability of having a maximum discharge (in
the generated set) smaller than or equal to the observed
maximum discharge should uniformly vary between 0 and
1. Figure11 shows that the variation of this probability is in
fact uniform.

The above only concerns the hydrological part of a
design study. To come to an eventual design of hydraulic
structures, 10 000 hydrological discharge time series should
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Fig. 11. The empirical cumulative distribution function (ECDF;
full line) of the cumulative probability ofQmax for the forty most
extreme summer storm events corresponds with a uniform one
(dotted line).

be routed through a hydraulic model. This allows then for
an evaluation of the distribution of hydraulic discharges or
water levels at a specific hydraulic structure. The latter could
then be designed having a predefined probability of failure
for a specific historical storm event.

5 Conclusions

This paper demonstrated that by combining the copula-based
concept of a secondary return period together with a random
internal storm structure generation based on Huff curves,
a fairly simple stochastic design storm generator can be
constructed. Its potential for obtaining information on the
uncertainty of the maximum discharges in a rainfall-runoff
modelling context has been illustrated in a comprehensible
way.

The proposed generator is conceptually different from
more traditional approaches. Firstly, it is storm based,
i.e. storms are selected out of a time series based on
an independence criterion. Traditional approaches mostly
do not consider storms, but only consider “aggregation
levels”, which are less interesting from a physical point of
view. Secondly, a bivariate frequency analysis is conducted
in which the dependence between storm depth and storm
duration is explicitly incorporated. In traditional approaches,
a univariate frequency analysis is mostly used and an
Intensity-Duration-Frequency (IDF) curve is the main tool
to link intensities, durations (in fact aggregation levels) and
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return periods. However, this association between intensity,
duration and return period is quite artificial as it does not
address a real storm. Furthermore, it is not possible to find
different combinations of intensity and duration that result in
the same return period with this univariate approach.

However, some issues should be considered when
applying the generator. First of all, although the internal
structure of a storm is incorporated explicitly, it can be a
rather average one. If a storm lasts very long (e.g. 60 h),
then the generator as proposed here still ends up with
a coarse internal storm structure, i.e. 3 h resolution (60 h
divided by 20 different time intervals). However, the choice
of the resolution of the Huff curves is user defined and
greatly depends upon the resolution of the time series at
hand. Additionally, the generator in its present form is
not able to incorporate dry spells within a storm, which
of course occur frequently in observed storms. By taking
into account the percentage of dry spells in the total storm
duration, this could be overcome. Of course, the existence
of very long storms and the occurrence of dry spells is
highly affected by the independence criterion, used for the
selection of storms. A shorter criterion (e.g. 1 h instead of
24 h) would result in shorter storms, with less dry spells.
The choice of this criterion should actually be inspired by
the nature of the application, e.g. the concentration time of
a watershed. Secondly, all generated storm structures are
chosen uniformly between the 10% and 90% Huff curves.
Ideally, one could take into account the real distribution of
the cumulative storm depths at specific time intervals. The
latter would be more useful when the storm generator should
be used within the context of a point rainfall model. The
choice of the bounds is also subjective, and is a decision
to be made by the user. Thirdly, the performance of the
generator relies largely on the skills of the practitioner
with regard to copula modelling. It should be clear that
there is no restriction to the use of the A12 copula family,
but that a family should be chosen that provides the best
goodness-of-fit (statistically and visually). The choice of
a wrong copula family and bad fit can easily lead to an
erroneous analysis of the uncertainty on extreme discharges.

Finally, it should be noted that this generator focuses on
a point scale although the spatial aspect of rainfall is very
often important as well. Several studies have already studied
to some extent a copula-based spatial rainfall simulation
and characterization (Bárdossy and Pegram, 2009; Serinaldi,
2009; AghaKouchak et al., 2010; Serinaldi, 2009; Villarini
et al., 2008). Besides the incorporation of spatial rainfall
characteristics, a design storm generator should ideally also
address the antecedent soil moisture conditions, as these
greatly influence the generated runoff in a catchment.
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