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Abstract. Model predictions of biogeochemical fluxes at
the landscape scale are highly uncertain, both with respect
to stochastic (parameter) and structural uncertainty. In this
study 5 different models (LASCAM, LASCAM-S, a self-
developed tool, SWAT and HBV-N-D) designed to simulate
hydrological fluxes as well as mobilisation and transport of
one or several nitrogen species were applied to the mesoscale
River Fyris catchment in mid-eastern Sweden.

Hydrological calibration against 5 years of recorded daily
discharge at two stations gave highly variable results with
Nash-Sutcliffe Efficiency (NSE) ranging between 0.48 and
0.83. Using the calibrated hydrological parameter sets, the
parameter uncertainty linked to the nitrogen parameters was
explored in order to cover the range of possible predictions of
exported loads for 3 nitrogen species: nitrate (NO3), ammo-
nium (NH4) and total nitrogen (Tot-N). For each model and
each nitrogen species, predictions were ranked in two dif-
ferent ways according to the performance indicated by two
different goodness-of-fit measures: the coefficient of deter-
minationR2 and the root mean square error RMSE. A total
of 2160 deterministic Single Model Ensembles (SME) was
generated using an increasing number of members (from the
2 best to the 10 best single predictions). Finally the best SME
for each model, nitrogen species and discharge station were
selected and merged into 330 different Multi-Model Ensem-
bles (MME). The evolution of changes inR2 and RMSE was
used as a performance descriptor of the ensemble procedure.

Correspondence to:J.-F. Exbrayat
(jean-francois.exbrayat@umwelt.uni-giessen.de)

In each studied case, numerous ensemble merging
schemes were identified which outperformed any of their
members. Improvement rates were generally higher when
worse members were introduced. The highest improvements
were achieved for the nitrogen SMEs compiled with multiple
linear regression models withR2 selected members, which
resulted in the RMSE decreasing by up to 90%.

1 Introduction

1.1 Catchment modelling

In recent decades, anthropogenic influence on environmental
systems has been demonstrated. Naturally balanced biogeo-
chemical cycles such as the nitrogen cycles have been deeply
altered (Galloway et al., 2004; Vitousek et al., 1997) since
the middle of the 18th century. For about 50 years now,
the increasing speed of computers allowed scientists from
different fields to simulate such systems (e.g. atmosphere,
hydrosphere) behaviour through different sets of mathemat-
ical equations. In hydrological sciences the catchment is
considered as the basic unit and numerous different mod-
els were created from the 1960s onwards. For example,
Boughton (2005) reviewed 13 different rainfall-runoff mod-
els developed in Australia alone in the second half of the
20th century. Numerical models are nowadays used as man-
agement tools from local to global scale and are able to give
an approximation of the effects of different changes on a nat-
ural system (e.g. land use change, global warming).

In order to simulate both hydrology and N mobilisation
and transport at the meso-scale (for catchments between
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100 and 100 000 km2), multiple conceptualisations, involv-
ing different degrees of complexity, were developed (e.g. see
Boughton, 2005). However, as emphasised by Breuer et
al. (2008), there is no single accepted theory of catchment
N cycling and models simulating the effects of nitrogen on
hydrological and biogeochemical ecosystem functioning are
still facing a high degree of uncertainty. Differences be-
tween models can be related to the questions they are used
to address, involving different descriptions of the nitrogen
balance. Some are process-based (i.e. conceptual parame-
ters determine N turnovers rates such as in LASCAM, INCA,
and HBV-N), while others are more physically-based and use
parameters that are directly related to measurable quantities
as for example the SWAT model. However, for the sake of
simplification all models neglect some part of the well de-
scribed N cycle that generally consists of ammonification,
nitrification, anaerobic ammonium oxidation, denitrification,
and nitrogen fixation. They sometimes totally ignore one
or more N-species and corresponding turnover processes in-
volved into this cycle, based on the assumption that models
should be considered as black boxes.

Of course, due to the chaotic nature of the natural systems
many simulated processes cannot be exactly described by a
set of equations and this lack of knowledge involves the in-
troduction of a certain, hardly quantifiable structural model
uncertainty. Other sources of predictive uncertainty are forc-
ing data uncertainty and parameter uncertainty, regrouped
under the general term of stochastic uncertainty. It is usu-
ally difficult to assess the contribution to the total uncertainty
from each of these elements. However, ensemble approaches
have been proposed to investigate part of this contribution
(Breuer and Huisman, 2009; Smith et al., 2004).

1.2 Ensemble modelling approach

Several global methods to assess parameter uncertainty have
been described, e.g. the Monte-Carlo sampling based Gener-
alized Likelihood Uncertainty Estimation (GLUE) approach
(Beven and Binley, 1992). As parameter interactions are
usually a sensitive source of uncertainty, a high number of
realisations is required to cover a representative number of
feasible parameter combinations and corresponding model
simulations. Different combinations of parameter sets for a
given model, based on a random sampling of parameter val-
ues in realistic ranges (e.g. Monte-Carlo procedures or Latin-
Hypercube stratified sampling; McKay et al., 1979), are a
common way to compile single-model ensembles (SME),
i.e. combinations of distinct predictions obtained by pertur-
bation of parameters, input data or initial conditions. SME
built from random sampling are direct descriptions of the
possible range of outcomes and illustrate part of the stochas-
tic model uncertainty.

Multi-model ensembles (MME) are based on the combina-
tion of several deterministic model outputs. They are a state-
of-the-art option for considering, or exploring, the structural

model uncertainty component of the total predictive uncer-
tainty and have been widely used in climatic and atmospheric
sciences where MMEs usually outperform individual models
and SMEs. However, MMEs have received little attention in
hydrology even though initial MME studies of hydrological
simulation were already published in the mid 1990s (Sham-
seldin et al., 1997).

Still, ensembles of models have been utilised in two dif-
ferent ways in hydrological sciences. First, some stud-
ies considered whole sets of predictions in a probabilistic
way. The evaluation of these ensembles has been carried on
based on skill scores which characterise the correctness of
the prediction of some selected particular events, usually ex-
ceeded thresholds, in terms of correct match and false alarm
rates. Good examples of such approaches were described
by Renner et al. (2009) or Georgakakos et al. (2004), the
latter having been realised in the frame of the Distributed
Model Intercomparison Project (DMIP; Smith et al., 2004) in
which calibrated and un-calibrated models were used. Prob-
abilistic ensemble systems are typically preferred for fore-
casts with short lead-time and provide a direct picture of the
predictive uncertainty. Recently, frameworks based on the
Bayesian probabilistic theory have been developed such as
the Bayesian Model Averaging technique (BMA; Raftery et
al., 2005) or the hybrid Integrated Bayesian Uncertainty Es-
timator method (IBUNE; Ajami et al., 2007).

Some other studies combined single predictions using
different statistical post-processing methods, or data-fusion
schemes, in order to produce single “best” deterministic fore-
casts. For instance Shamseldin et al. (1997) utilised 3 com-
bination methods to merge the output of 5 models. The
philosophy behind this approach was that each model cap-
tures certain important aspects of the information available
about the system and that the strengths of some may com-
pensate weaknesses of other models, resulting in an overall
better prediction. They concluded that combining outputs of
rainfall-runoff models could provide better results than the
best single run even with a simple averaging method. Lately,
in the frame of assessing the impact of Land Use Change
on Hydrology by Ensemble Modelling (LUCHEM; Breuer
and Huisman, 2009) almost 30 different merging schemes
were tested with 10 different model results over the same
catchment as reported by Viney et al. (2009). McIntyre et
al. (2005) also used model ensembles to predict discharge in
ungauged or poorly gauged basin as part of the Predictions
in Ungauged Basins (PUB; Sivapalan, 2003) initiative by the
International Association of Hydrological Sciences. In the
light of PUB, ensemble predictions are assumed to signifi-
cantly increase the credibility of predictions.

We were not aware of any ensemble predictions, more
particularly model combinations, in hydro-biogeochemistry
to date and see this methodological approach as a first step
into that direction. In this study we compiled different deter-
ministic SMEs and MMEs by merging the outcomes of five
models applied to simulate the water and nitrogen balance
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of a meso-scaled catchment in Sweden. Some of the fusion
methods previously used in the LUCHEM project (Viney et
al., 2009) were applied to the prediction of exported loads of
the different N species which were considered. The reader
must keep in mind that results of the different single mod-
els were not created with the aim to produce a benchmark
report on the efficiency of the model structures alone. We
focused our evaluation on the effect of merging results rather
than on the results themselves. Differences between the mod-
els led us to make some choices (i.e. studied period, number
of model realisations) that one could consider arguable (see
Sect. 2). However, the main aim of this study remained to
apply some data-fusion methods to different sets of nutrient
predictions before comparing ensembles with single models.
Results should give a primary evaluation of the applicability
of the ensemble-modelling concepts to the highly uncertain
N predictions with the aim to improve the global reliability
of them.

The models involved were LASCAM (Sivapalan et al.,
1996a,c; Viney et al., 2000) and its modified LASCAM-S
version (this paper), SWAT (Arnold et al., 1998) in its 2005
version, HBV-N-D (Lindgren et al., 2007) and a new model
based on the concepts proposed in INCA (Wade et al., 2002;
Whitehead et al., 1998) coupled to the soil moisture equa-
tions of the HBV model (Lindstr̈om et al., 1997). This latter
tool is referred as CHIMP (Combined HBV and INCA Mod-
ified in Python) throughout the text.

This article is organised as follows. Section 2 presents the
catchment and the available data for model application. The
models are also described as well as the methodology we
adopted to create new predictions we adopted. In Sect. 3 we
present the results for the single models, SMEs and MMEs N
predictions. They are discussed in Sect. 4 and possible fur-
ther research directions are presented in Sect. 5 along a short
summary of the main conclusions that could be drawn from
this study.

2 Materials and methods

2.1 The Fyris River catchment

The Fyris catchment is located in central Sweden, 90 km
north of Stockholm. The Fyris River has a catchment area
of 2000 km2 and flows into Lake Ekoln, a northern part of
Lake Mälaren (Sweden’s third largest lake) which drains into
the Baltic Sea. It is a lowland catchment whose elevation
ranges between 15 and 115 m. Streams drain from the north,
east and west to the outlet at Flottsund (Fig. 1). Land use
is dominated by forest (mainly coniferous) which occupies
about 59% of the catchment while croplands cover 33% of
the area. Other minor land-use types are wetlands (4%), ur-
ban areas (2%) and lakes (2%). Forests are mainly associated
with till and croplands with clay soils (Lindgren et al., 2007).

Fig. 1. The River Fyris catchment (Vattholma and Sävja sub-
catchments are highlighted in light-brown and light-green respec-
tively). The names of the discharge and monitoring stations are
written next to their location in blue and red, respectively.

Daily records of precipitation (8 gauges) and tempera-
ture (3 stations) collected by the Swedish Meteorological
and Hydrological Institute (SMHI) were used for the 5 years
study period (2000 to 2004). During this time mean annual
precipitation was about 640 mm. The warmest and wettest
months on average was July (>80 mm precipitation, +17◦C
mean daily temperature) while the driest month was April
(<40 mm precipitation) and the coldest months were De-
cember and January (−1◦C). Over the study period, two
daily discharge series were available for two non-nested sub-
catchments: Vattholma and Sävja, with contributing areas
of 281 km2 and 699 km2, respectively (Fig. 1). There was
no gauging station available at the catchment outlet to Lake
Mälaren. High flows usually occurred from late autumn to
early spring. Inter-annual variability of discharge was high
and thaw-refreezing events led to high temporal variability
of winter discharge in some years. Mean annual runoff was
219 mm at Vattholma and 189 mm at Sävja. In-stream nitro-
gen input data from sewage treatment plants was also avail-
able on a daily time step for the largest plant in Uppsala,
and with a biweekly or monthly resolution for four smaller
ones (Fig. 1). The observed point source discharges were
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interpolated to a daily time step as described in Lindgren et
al. (2007).

For the same period, stream chemistry data from 2 long-
term measurement stations of the Swedish University of
Agriculture was available for model applications. Monthly
measurements of NO3 + NO2, NH4 and Tot-N concentrations
resulted in a total of 60 measurements for each station and
each nitrogen species. The water quality sampling stations
Vattholma and Kuggebro were located close to the gaug-
ing stations Vattholma and Sävja, respectively (Fig. 1). The
Fig. 2 illustrates the monthly average concentrations of the
different N-species. More treatment plants were located up-
stream from S̈avja which was surely a key factor to explain
the usually higher concentrations measured at this location
(Fig. 2). Concentrations were typically higher during win-
ter months as well. More precisely at the Vattholma station,
Tot-N concentrations ranged between 0.9 and 1.4 mg/L with
a contribution of 26% of NO3 + NO2 and 5% of NH4 on av-
erage. At S̈avja, the Tot-N concentrations showed a higher
variability as they ranged between 1.0 and 2.9 mg/L with
a contribution of 54% of NO3 + NO2 and 4% of NH4. As
shown in Fig. 2, NO3 + NO2 concentrations were the main
factor explaining the Tot-N concentrations variability as a
picture of their large contribution to this global measurement.

Estimates of daily exported loads were computed for these
gauging stations by multiplying discharge with nitrogen con-
centrations measured at the sampling stations, assuming that
they were representative of the mean daily concentration.
This once-per-month sample was used as a single daily ob-
servation of nutrient loads. Separate sampling of the NO2
concentration indicated that it provided a negligible contri-
bution to the NO3 + NO2 concentration. It was therefore as-
sumed that the NO3 concentration is approximately equiva-
lent to the measurements of NO3 + NO2 concentration. The
combination of high concentrations and high flows during
winter led to estimate large fluxes up to 700 kg and 6 tonnes
of exported N per day at Vattholma and Sävja respectively.
The water discharging from the Sävja sub-catchment had
higher N concentrations as shown in Fig. 2, we therefore
estimated higher specific N fluxes (about 13.3 g/ha d−1 on
average) for this station than for Vattholma (6.8 g/ha d−1).

2.2 Models

The five models used in the ensemble set up (LASCAM,
LASCAM-S, CHIMP, SWAT and HBV-N-D) could simulate
both runoff and the mobilisation and transport of different
nitrogen species (see Table 1) at the landscape scale and at a
daily time step. The models showed great variations in their
smallest spatial units as well as the required input data, thus
providing a good structural variability among the cohort (see
Table 1).

For the semi-distributed models (i.e. all except HBV-N-
D) we subdivided the Fyris River catchment into 70 sub-
catchments. This spatial disaggregation assigned 9 and

Fig. 2. Average monthly concentrations of Tot-N measured at the
Vattholma and S̈avja water quality stations. (Remaining N is the
difference between Tot-N and the sum of the inorganic species.)

28 upstream sub-catchments for the Vattholma and Sävja sta-
tions respectively, corresponding to mean sub-catchment ar-
eas of 31 and 25 km2. For these models we also estimated
the daily potential evapotranspiration using the Hargreaves
method (Hargreaves and Samani, 1985). Daily results were
then aggregated to the required temporal resolution (see Ta-
ble 1). The HBV-N-D evapotranspiration input was based on
monthly mean evapotranspiration estimates (Lindgren et al.,
2007).

Below an overview of the various models is given, for a
more detailed description of the water and nitrogen simu-
lations the reader is referred to the original publication of
the models. A short, general overview of nitrogen processes
considered in these models was also provided by Breuer et
al. (2008).

2.2.1 LASCAM and LASCAM-S

The semi-distributed LASCAM model was first developed
for applications in arid or semi-arid regions in order to sim-
ulate water and salt balance at larger scales (Sivapalan et
al., 1996a–c). Later new routines were integrated to sim-
ulate sediments (Viney and Sivapalan, 1999) and nutrients
(e.g. Total-N, NO3 and NH4; Viney et al., 2000) mobilisa-
tion and transport. Each sub-catchment corresponds to an
idealised hill slope in which 3 water and 2 nitrogen stores
are interconnected. As the LASCAM model was designed to
simulate dry and warm environments, the original version did
not integrate any snow routine. We therefore developed the
extended LASCAM-S version by implementing the degree-
day approach used in the original HBV model to allow sim-
ulation of snow accumulation and melt at the sub-catchment
scale. This routine is based on air temperature and a water-
holding capacity of the snowpack. Depending on a threshold
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Table 1. Main model characteristics. Outputs are either N loads or yields.

Model Smallest Climate forcings Vertical resolution Outputs N forcings
spatial unit

LASCAM Sub-catchment Daily P and annual 1 soil, 1 stream NO3, NH4, Tot-N Rainfall concentration,
PET bank and fertilizer application

1 groundwater
storage box

LASCAM-S Sub-catchment Daily P and T, 1 soil, 1 stream NO3, NH4, Tot-N Rainfall concentration,
annual PET bank and fertilizer application

1 groundwater
storage box

CHIMP Land-Use Daily P, T and PET 1 soil and NO3, NH4 Wet and dry deposition,
1 groundwater flow fertilizer application,
generation box STP effluents

SWAT HRU Daily P, maximal 3 to 4 soil layers, NO3, NO2, NH4, Rainfall concentration,
and minimal 2 groundwater Organic-N fertilizer application,
daily T storages STP effluents

HBV-N-D Grid cell Daily P and T, 2 linear flow Tot-N Rainfall concentration,
monthly PET generation boxes leaching coefficients,

STP effluents

HRU: Hydrological Response Unit, Unique combination of a land-use with a soil type, P: Precipitation, T: Temperature, PET: Potential Evapotranspiration,

STP: Sewage Treatment Plant

temperature (usually 0◦C) the snow pack melts and the water
equivalent is added to the water input to the soil (Lindström
et al., 1997).

The same parameter set is applied to each sub-catchment
in combination with interpolated precipitation and tempera-
ture data (only for LASCAM-S). The daily potential evap-
otranspiration is calculated for each sub-catchment by mul-
tiplying the mean annual potential evapotranspiration by a
scaling factor derived from a sinusoidal function of time.
Evaporation demand is fulfilled by the 3 water stores de-
pending on their respective levels. Nitrogen cycling at the
sub-catchment scale is simulated by the following processes
for both models: residue decay, plant harvest, mineralisa-
tion, volatilisation, plant uptake, nitrification, denitrification
and fixation.

Water and nutrients are routed downstream. While dis-
solved nitrogen is not affected by any further in-stream bi-
ological or chemical reactions, water can evaporate and re-
infiltrate and particulate nitrogen is affected by the erosion
and sediments dynamics.

2.2.2 CHIMP

The semi-distributed INCA model requires daily effective
rainfall (i.e. after canopy interception) and daily soil moisture
deficit input data (Whitehead et al., 1998) which are usually
difficult to assess. These variables were derived by feeding
the flow generation and nitrogen routines of INCA with the

output of the snow and soil moisture routines of HBV (Lind-
ström et al., 1997). The INCA nitrogen module only outputs
predictions of inorganic nitrogen species (i.e. NO3 and NH4)
balance. All the equations were adapted from literature ref-
erences (Lindstr̈om et al., 1997; Wade et al., 2002) and the
two models were regrouped under the name CHIMP.

Each sub-catchment is disaggregated into up to 5 different
land-use classes which all have their own parameter sets for
water and nutrients balance.

The HBV snow routine is also based on the empirical
degree-day approach. Evapotranspiration is calculated as
a function of the input potential evapotranspiration and the
HBV soil store. Below a chosen threshold of soil moisture
the actual daily evaporation is computed as a linear function
of the daily potential evapotranspiration. Above this thresh-
old the total evaporation demand is fulfilled (Lindström et
al., 1997). The soil routine of HBV provides the hydrologi-
cal effective rainfall (e.g. water available for runoff) which is
routed to the 2 INCA flow generation boxes. The soil mois-
ture deficit required by INCA is computed as the difference
between this soil storage content and the maximum value.

In both flow generation boxes different nitrogen turnover
processes are simulated: plant uptake, nitrification, denitri-
fication, fixation, mineralisation and immobilisation. The
organic N store is considered as infinite so that the miner-
alisation rate does not depend on its magnitude. Each pro-
cess is characterised by a kinetic equation which is based on
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turnover rates (user input) as well as a temperature and a soil
moisture deficit index. Water, NO3 and NH4 concentrations
discharge into the sub-catchment stream. As land-use classes
are not spatially identified within a sub-catchment, their out-
puts are weighted by their respective areas to contribute to
stream flow. There is no re-infiltration but nitrification and
denitrification can still occur. Sewage treatment plant efflu-
ents are directly added to the stream NO3 and NH4 contents.

2.2.3 SWAT

The SWAT model (Arnold et al., 1998) is a semi-distributed,
physically-based model (Gassman et al., 2007). It is able to
simulate the long term water and nutrients balance (e.g. NO3,
NO2, NH4 and Organic-N, see Table 1). We used the SWAT
model in its 2005 version.

Each SWAT sub-basin is divided into Hydrological Re-
sponse Units (HRU). Each HRU corresponds to a single com-
bination of a land-use class and a soil-type that can be pa-
rameterised individually. HRUs are not spatially identified
within their sub-catchment. SWAT simulates snowpack and
snowmelt processes at the HRU scale based on the empiri-
cal degree-day approach with a daily update of the melting
rate between user defined maximum and minimum values.
At the HRU scale, SWAT incorporates a simplified dynamic
crop growth module. The corresponding canopy intercepts a
part of the precipitation which is a function of its Leaf Area
Index. Evaporation demand is first fulfilled by the canopy
and eventual higher demand is partly fulfilled by the soils.
In-stream discharge of each HRU is composed of several el-
ements: surface runoff, lateral flow and baseflow. There-
fore, the idealised hill slope is composed of interconnected
multi-layer soil storages and a double groundwater system.
Different nitrogen processes are simulated within each HRU
soil layer: plant uptake, residue decay, mineralisation, nitri-
fication, volatilisation, denitrification, fixation and leaching.
Turnover rates depend on temperature and moisture, or soil
water content. As HRUs are lumped at the sub-catchment
scale, their contribution to in-stream water and nutrient con-
tent are summed up before being routed to the stream.

In-stream water and corresponding nutrient content rout-
ing is based on a variable storage method (Williams, 1969).
Re-infiltration and biochemical nitrogen reactions are al-
lowed: algal respiration and uptake, hydrolysis and oxida-
tion. Turnover rates are temperature-dependent.

The SWAT setup was realised with the support of the Arc-
SWAT 2.1.4 for ArcGIS 9.2 extension (Olivera et al., 2006).
Within 70 sub-catchments for the whole Fyris River water-
shed, a total of 622 HRUs were delineated by combining
5 land-use classes with 7 soil types. This corresponds to a to-
tal of 108 and 232 HRU for Vattholma and Sävja sub-basins,
representing mean areas of 2.60 and 2.48 km2, respectively.
ArcSWAT automatically assigns the climatic records of the
nearest station to each sub-catchment.

2.2.4 HBV-N-D

HBV-N-D is a fully distributed version of the original HBV
model routines combined with the conservative solute trans-
port model concepts of the TACD model (Wissmeier and Uh-
lenbrook, 2007). The model used a grid representation of
the catchment (here 250× 250 m2 grid cells) and is imple-
mented in the PCRaster modelling environment (Karssen-
berg et al., 2001). HBV-N-D requires daily precipitation and
temperature data input and weighs resulting flow and stor-
age amounts per fractions of land-use class in each grid cell.
Snow is simulated using an empirical degree-day approach at
the land-use scale. Within a grid cell, HBV soil moisture and
flow generation boxes can be parameterised individually for
each land-use class (Lindström et al., 1997). The actual evap-
oration is calculated in accordance with the HBV equations
following the same process described in Sect. 2.2.2. Water
entering a response function is assigned a Tot-N leakage con-
centration. HBV-N-D is based on a single flow direction al-
gorithm (O’Callaghan and Mark, 1984) for lateral cell to cell
connection, so that water or Tot-N output from any runoff
generation box is diverted into the corresponding box of the
neighbouring downstream cell. When a grid cell is identi-
fied as a stream cell, a simple distribution function is applied
to route the water and corresponding Tot-N content down-
stream. Nitrogen retention is modelled as a net effect of vari-
ous biogeochemical processes such as uptake, sedimentation
and denitrification. It is a function of the Tot-N concentra-
tion, the average temperature of the 10 last days and a free
parameter and retention occurs in each response function box
as well as in lakes or in-stream.

The HBV-N-D model application in this study is based on
the identical model setup utilised in an earlier model com-
parison for nitrogen source apportionment (Lindgren et al.,
2007). The running time of the model was a limiting fac-
tor for our study which explains the choice of a relatively
short 5 years evaluation period and discrepancies in the hy-
drological calibration and ensemble generation procedures
(Sect. 2.3).

2.3 Ensembles construction and assessment

A global overview of the methodological approach used in
this study is presented in the Fig. 3. This flow chart sum-
marises the different steps which followed to create the dif-
ferent types of ensembles. A more detailed chronological
description of the adopted methodology is presented in the
next paragraphs.

2.3.1 Hydrological calibration

Water transports particulate and dissolved chemical species
through a catchment. A certain part of the stochastic un-
certainty of the nutrient fluxes is then logically linked to
the variations of the hydrologic parameters. In a calibration
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Calibration of 
hydrological models 

for 01.01.2000 to 
31.12.2004

Monte-Carlo / Latin 
Hypercube procedures 
varying N parameters

Ranking of each 
model realisation 

according to R² and 
RMSE values

Selection of the ten 
best model runs for 

each criterion

Evaluation of the 
effect of ensemble 

modelling on 
prediction quality and 

uncertainty

Compilation of SMEs for 
each model, station and N 

species by using an 
increasing number of 

members (from 2 to 10) Selection of one best 
SME per model, station 

and N species

Compilation of the MMEs 
for each station and N 

species using the 
selected SMEs as 

members

Fig. 3. Methodology used in this study to compile SMEs and MMEs.

context, numerous studies were based on a two-step ap-
proach. First, modellers determined the optimal parameter
sets for hydrology only. Then, they calibrated the nutrient
component only while keeping this optimal water balance de-
scription (e.g. Andersson et al., 2005; Viney and Sivapalan,
2001; Wade et al., 2002).

Subsequently, in this study we calibrated the hydrologi-
cal components of the models against the two available dis-
charge records (i.e. Vattholma and Sävja) in order to ob-
tain the best water balance simulation for the whole catch-
ment over the study period from 1 January 2000–31 Decem-
ber 2004. Only 60 observations of N load were available for
each catchment. We therefore did not use a validation period
as it would have substantially shortened the study period lim-
iting the number of observations available for both calibra-
tion and model quality assessment. Given the methodologi-
cal objective of this very first study on hydro-biogeochemical
model fusion, we believe that it was acceptable to disregard
this validation.

For all models except the computationally expensive
HBV-N-D model, the Parameter Solution method (ParaSol;
van Griensven et al., 2002) which is based on the Shuffled
Complex Evolution algorithm (SCE-UA; Duan et al., n.d.)
was used for parameter optimisation. The ParaSol method
requires the daily sum of the squared errors (SSE, Eq. 1).

SSE=

N∑
i=1

(Oi − Si)
2 (1)

In the Eq. (1),Oi andSi are observed and simulated runoff
at time stepi. Their squared difference is summed for each

of the N considered time steps. ParaSol automatically ag-
gregates SSE values for each considered flux in a global ob-
jective criterion which is reduced by the SCE-UA algorithm.
The Parameter Estimator (PEST; Doherty, 2004) was chosen
to calibrate the computationally expensive HBV-N-D model
as it usually requires fewer model realisations. The objective
function was a weighted SSE with weights set as the inverse
of the standard deviation of the corresponding observations.

In order to compare the goodness-of-fit resulting from
the calibration efforts at each station, the results were ex-
pressed as the Nash-Sutcliffe efficiency for daily flows (NSE;
Nash and Sutcliffe, 1970) which is a common standardisation
of the SSE normalised by the variance of the observations
(Eq. 2).

NSE = 1 −

N∑
i=1

(Oi − Si)
2

N∑
i=1

(
Oi − O

)2
(2)

In Eq. (2),Oi andSi corresponds to notations in Eq. (1) while
O is the mean observed runoff over theN considered time
steps. No differences in model performance rankings are to
be expected after this transformation. NSE values range be-
tween−∞ and 1, the latter being achieved for a perfect fit
between observations and predictions. NSE values tend to be
not very sensitive to the volume error but are biased in favour
of peak flows (Krause et al., 2005; Legates and McCabe Jr.,
1999) which are dominant in this catchment in response to
the spring snow melt. In such conditions, good NSE val-
ues could be achieved with somewhat biased predictions. To
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cope with this, we also evaluated our models by using the to-
tal bias to assess the performance of the models to estimate
the total runoff.

2.3.2 Nitrogen ensembles construction

Different application cases of the same models might have
different modelling targets depending on the aim of the study.
In the case of nutrient predictions one may focus the study
on concentrations if one is more interested in direct water
quality estimation (e.g. Arheimer and Lidén, 2000) or on
loads/yields if one is more interested in source apportion-
ment or assessing the global contribution of fertiliser appli-
cation to water bodies nutrient balances (e.g. Grizzetti et al.,
2003; Viney and Sivapalan, 2001). Still, evaluating load pre-
dictions tend to be more forgiving than concentration as they
are usually correlated with runoff. However, as the scope of
our application was to evaluate the effect of different data-
fusion methods rather than on the prediction outcomes them-
selves and as this analysis is computationally rather expen-
sive, we limited out modelling target to yields in this study.
Accordingly, we did not use any optimisation algorithm for
N predictions in order to focus the study on the stochastic
uncertainty linked to the N algorithms. A large number of
model runs was realised by keeping the previously calibrated
water balance parameters constant, randomly altering the pa-
rameters governing only the N mobilisation and transport. A
Monte-Carlo procedure was used for LASCAM, LASCAM-
S, CHIMP and SWAT, providing 40 000; 40 000; 60 000 and
20 000 realisations corresponding to 16; 16; 28 and 7 al-
tered parameters respectively. A Latin-Hypercube stratified
sampling procedure (McKay et al., 1979) was chosen for
the computationally expensive HBV-N-D model, leading to
overall 280 model runs for only 4 altered parameters. We are
conscious that one would argue that the number of model re-
alisations was not sufficient to explore the whole uncertainty.
However, our aim was to create large sets of model reali-
sations before testing the effect of our different data-fusion
methods. Moreover optimal parameter sets may actually not
exist according to the equifinality theory (Beven and Freer,
2001) or may differ for the different considered N species
and stations as well. We still allocated more runs to the more
parameterised models, taking into account that more param-
eter interactions would occur.

The large number of realisations for each model allowed
us to compile several SMEs for each model, N species and
measurement station independently. Each realisation was
evaluated with two goodness-of-fit indicators: the coeffi-
cient of determinationR2 and the Root Mean Squared Error
(RMSE; Eq. 3).

RMSE =

√√√√√ N∑
i=1

(Oi − Si)2

N
(3)

In Eq. (3) notations correspond to those used in Eqs. (1)
and (2). The coefficient of determination and the RMSE
were computed by comparing the estimated exported loads
with the predictions of the corresponding time step. The
difference between the two criteria is thatR2 requires only
the dynamics, or relative differences, to be simulated cor-
rectly, while RMSE evaluates differences between observed
and simulated values (Legates and McCabe Jr., 1999). While
R2 is not a suitable criterion alone, because the best achiev-
able value of 1.0 does not imply a perfect fit. However, it
provides in the case of N concentrations the useful infor-
mation of whether at least the dynamics are correct. The
lower the RMSE, the better the results, and by evaluating
the error this last criterion is partly influenced by the bias
of prediction. For each case (i.e. each N species, station
and model), SMEs were compiled by using the five merging
schemes in Table 2 applied to the 2 to 10 best model runs
regarding each criterion respectively (i.e.R2 and RMSE).
The first three methods (ME, WM and MD) are the most
simple and even the weights involved in the WM scheme
do not depend on the model combination (i.e. one model
will always have the same weight corresponding to either
the corresponding value ofR2 or the inverse of the RMSE).
On the other hand, the weight assigned to each model in a
linear regression varies when combined with different mod-
els. These regression techniques have been used in several
modelling contexts: meteorological forecasts (Krishnamurti
et al., 2000), sea surface temperature (Fraedrich and Smith,
1989) or rainfall-runoff (Ajami et al., 2006; Shamseldin et
al., 1997; Viney et al., 2009). Because normal linear regres-
sion (UR) might include a non-zero intercept leading to pre-
dict flow even if none of the members predicts flow (Viney et
al., 2009), regressions with a constrained zero-intercept (CR)
were adopted.

This resulted in a total of 90 SMEs per model, station
and nitrogen species, and 2160 SMEs overall (CHIMP be-
ing not able to simulate Tot-N, and HBV-N-D not being able
to simulate NO3 and NH4). The coefficients obtained by un-
constrained multiple linear regression (UR) and constrained
multiple linear regression (CR) with one grabbed sample per
month were applied to the whole time series (i.e. the daily
predictions over 5 years). Due to the occasional occurrence
of negative coefficients, some negative predictions may oc-
cur and the corresponding SMEs were discarded.

For each model, N species and station, the best SME con-
sidering RMSE was selected for inclusion in the MMEs. A
total of 4 SMEs was available in each case (CHIMP being not
able to simulate Tot-N and HBV-N-D only predicting Tot-
N and no other N solutes). Again following the 5 merging
schemes outlined in Table 2 applied to each of the 11 pos-
sible combinations of 2 to 4 selected SMEs (i.e. 6 combina-
tions of 2 models, 4 combinations of 3 models and 1 combi-
nation of 4 models), we obtained 55 different MME predic-
tions for each N species. Regression coefficients also had to
be re-calculated for each combination. Finally, we evaluated
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Table 2. Overview of the adopted merging schemes for ensemble generation.

Merging scheme Description Abbreviation

Mean Daily mean of the predictions ME
Weighted mean Daily weighted mean of the predictionsa. WM
Median Daily median value of the prediction MD
Un-constrained multiple linear regression Observations are used as dependent variables while predictions are used as UR

independent ones.

Constrained multiple linear regression Same as above with an interception constrained through CR
the origin

a Weights are set at the objective function value forR2, but its inverse for RMSE.

the evolution of both criteria for every generated MME and
SME by also quantifying the improvement rate for RMSE.

3 Results

3.1 Hydrology

A summary of calibration results for the water balance com-
ponents of the models is presented in Table 3. A high
variability across models is observed between the different
NSE and bias values. The models perform alternatively bet-
ter at Vattholma (LASCAM-S, SWAT) or at S̈avja (LAS-
CAM, CHIMP, HBV-N-D). Considering the bias, which was
not used for the automatic calibration procedure, results are
worse for S̈avja than for Vattholma, except for CHIMP. Over-
predicting models at Vattholma under-predict at Sävja and
vice-versa. While SWAT shows the best NSEs for each sta-
tion it also presents the highest absolute biases in each case.

3.2 Nitrogen

3.2.1 Single runs overview

A summary of the best simulations for each model and each
criterion (R2 and RMSE) is given in Table 4 together with
the results of the SMEs. As expected models that were pre-
senting the bestR2 value for each N species do not necessar-
ily have the best RMSE performance. SWAT performed the
best for NO3 simulations for both criteria. For NH4, the best
R2 and RMSE were provided by CHIMP at Vattholma and
LASCAM-S at S̈avja. For Tot-N, the bestR2 values were
obtained with SWAT and the best RMSE with LASCAM-
S, SWAT presenting the worst RMSE values in those cases.
While LASCAM-S presented better results than the original
LASCAM for the hydrological predictions (Table 3), it did
not always give significantly better results for nitrogen pre-
dictions, being even outperformed for Tot-N at Vattholma.

Table 3. Goodness-of-fit indicators of calibrated models runs for
daily runoff prediction between 1 January 2000 and 31 Decem-
ber 2004 (best achieved values are highlighted in bold).

Vattholma S̈avja

Model NSE Bias (%) NSE Bias (%)

LASCAM 0.48 + 10 0.53 −11
LASCAM-S 0.65 +6 0.64 −12
CHIMP 0.67 −5 0.69 +5
SWAT 0.83 −13 0.76 +18
HBV-N-D 0.65 −5 0.76 +13

3.2.2 Single-model ensembles

SMEs decreased the RMSE in all cases (Table 4 and Fig. 4).
The selected SMEs presented in the Table 4 were the ones
representing the best compromise betweenR2 and RMSE
explaining why in four cases we obtained a lowerR2 for
the selected SMEs than for the best single member (i.e. Tot-
N at Vattholma and for LASCAM-S, NO3 for LASCAM-S,
CHIMP and SWAT at S̈avja).

Improvement of RMSE could be quantified in terms of er-
ror reduction which can also be visualised in the Fig. 4. Cor-
responding decreases in RMSE ranged between 9 and 92%
for NO3 at S̈avja with LASCAM and NH4 at Vattholma for
SWAT respectively. The RMSE was reduced by more than
30% in 16 cases out of 24.

On the other hand the evolution ofR2 mainly showed
weak improvements but still the best MMEs present a bet-
ter agreement between estimated and predicted loads as il-
lustrated in the scatter plots of the Fig. 5. More than 80% of
UR ensembles had to be discarded due to the occurrence of
some negative regression coefficients providing negative pre-
dictions when applied to the whole simulated time series. We
used CR ensembles to circumvent this problem. The MD en-
semble never increased both criteria and only rare and weak
improvements were achieved by using the ME and WM en-
semble models. The best SME results were always obtained
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Fig. 4. Evolution of the best RMSE value between single models, SMEs and MMEs (full black circle).

by UR ensembles compiled withR2 selected members. As
was the case for single predictions LASCAM-S SMEs did
not always obtain better criterion values than the original
LASCAM model.

3.2.3 Multi-model ensembles

About 27% of the ME MMEs decreased RMSE values in
comparison to their best member (i.e. selected SME), and
38% of the weighted average MMEs compared to the best
SMEs. Similarly to SMEs, the feasibility of each MME pre-
diction was checked prior to further model evaluation. Once
again, a high number (49%) of regression schemes was dis-
carded. However all the available UR and CR ensembles
presented an improvement of both criteria compared to the
predictions of the best SME. The best results were obtained
by including the maximum number of ensemble members
(4 for nitrogen if not dismissed due to negative unrealistic
negative predictions) in UR ensembles. The best MMEs are
illustrated for each N-species and station in the scatter plots
of the Fig. 4 beside the best SME predictions. It showed
the better agreement between observations and predictions
achieved with the MME. It is interesting to notice that the
improvement in RMSE of MMEs was stronger if members
that were combined in a MME originally presented weaker
SME results forR2 values (e.g. an improvement in RMSE
of 27% for NH4 at Vattholma) as compared to members of
MMEs that already performed well (e.g. an improvement in
RMSE of 6% for Tot-N at Vattholma).

4 Discussion

At each discharge and nitrogen station, the quality of the pre-
dictions was extremely variable across models even though
homogeneous input datasets were used. This behaviour has
been reported by many others in hydrological modelling no-
tably (Breuer et al., 2009; Reed et al., 2004; Refsgaard and
Knudsen, 1996) but also for nutrient predictions at different
scales (Diekkr̈uger et al., 1995; Kronvang et al., 2009a). This
variability was also defined as the starting point for any en-
semble prediction (Georgakakos et al., 2004; Shamseldin et
al., 1997; Viney et al., 2009) with the idea to compensate
weaknesses of some models with strengths of the others to
improve the global prediction.

A preliminary step of this study constituted in an inter-
comparison between the different N models. Heterogeneous
results for water and nutrient balance description were ob-
tained. The models which provided the best hydrological
predictions did not always give the best N prediction results
even though loads are dominated by runoff and no global best
model was to be found in our particular case study justifying
in some way the need to use sets of different model con-
ceptualisations. Corresponding nitrogen concentration pre-
dictions (not shown here) were of poorer quality as a re-
sult of combined imperfect simulations of water and nutri-
ent balances. This also implies that the observed N con-
centration dynamics could not be fully represented by the
chosen. However, such limitations can be typically found
in solute transport modelling, when evaluating concentration
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Fig. 5. Estimated daily nitrogen loads (x-axes, in g/ha d−1) against
different prediction from the best SMEs (y-axes, in g/ha d−1):
CHIMP (green circles), HBV-N-D (magenta circles), LASCAM
(red triangles), LASCAM-S (orange squares), SWAT (blue dia-
monds). Crosses represent the prediction of the best MME for each
N species at each station. Corresponding criteria are summarised in
Table 4.

dynamics that were outside the calibration target of predict-
ing nitrogen loads. A more in-depth evaluation of the effect
of different calibration targets (e.g. concentration vs., loads)
is certainly necessary in future applications, when the focus
is on more accurate predictions,but is out of the scope of the
current study. A first effort to intercompare a variety of mod-
els that have been set up to predict nitrogen flows in differ-
ent agricultural systems has been published by Diekkrüger et
al. (1995). Like in our study the models were set up using
a common dataset, guaranteeing that eventual prediction dif-
ferences depended only on the models or applied concepts
themselves. Results showed a very high variability between
predictions for different N turnover processes. Here we did
not quantify process rates, considering our models as black
boxes and only analysing the net export of the considered
N species through the two outlets. This may be considered
as an empirical approach but some big differences in terms
of RMSE between the single models (Table 4 and Fig. 4)

intrinsically imply high differences in the total N balance de-
scription and thus in the involved processes. Recently Kro-
nvang et al. (2009a) provided the first comprehensive results
of a model intercomparison project on nutrient load predic-
tions at the mesoscale. This study included 8 nitrogen mod-
els (Kronvang et al., 2009b) and concluded that no single nu-
trient model could be recommended to simulate catchment
scale nutrient losses. Accordingly our results (Table 4 and
Fig. 4) show that the best single performers (i.e. model) vary
between catchments and N species.

Considering the hydrological calibration results (Table 3)
the implementation of a snow module into the LASCAM
model significantly improved the water balance description,
whereas very similar results for the different nitrogen species
were obtained. As illustrated on Fig. 4 the SWAT model
always presented the worst RMSE for N except for NO3
while it presented the best calibration results for hydrology
(Table 3). The same behaviour is observed with HBV-N-D
which gave an equivalent calibration result for hydrology at
Sävja while not presenting the best Tot-N prediction for this
station.

These results show that improved hydrological predictions
applied with the same N balance description in the case of
LASCAM and LASCAM-S do not necessarily provide bet-
ter nutrient export predictions. We conclude that in these
models the N components behave almost independently from
the water routines even though water is the driving force for
the movement of any dissolved nutrients in the catchment.
This theoretical statement coupled to the lack of represen-
tation of the dominating hydrological process in this region
(i.e. snow) in the original version led us to modify the model.
However, when considering the actual results, one could ar-
gue that these modifications may not have been necessary in
the frame of only getting better N predictions as LASCAM
already outperformed at least one model amongst CHIMP,
SWAT and HBV-N-D in each case. We see these results as
an indication that the original LASCAM model, which was
not developed for such hydro-climatic conditions, might have
given good nutrient predictions based on not wrong, but un-
known reasons.

Moreover, high discrepancies between criteria values of
each of our “best” nitrogen models (Fig. 4) indicated het-
erogeneous prediction qualities. The large number of runs
realised previously to the SMEs data-fusion procedure guar-
anteed us that the mismatches of the predictions with the ob-
servations could not only be attributed to the sole parameter
uncertainty. As suggested by Vrugt and Robinson (2007),
uncertainty of predictions also depends on the inadequate or
incomplete representation of processes which could be illus-
trated by the differences in nitrogen cycling conceptualisa-
tions (see Breuer et al., 2008). Moreover we demonstrated
that more complex tools based on a more detailed descrip-
tion of processes (e.g. SWAT in comparison of LASCAM
and LASCAM-S) were not necessarily better as already high-
lighted by Abrahart and See (2002) in the frame of another

www.hydrol-earth-syst-sci.net/14/2383/2010/ Hydrol. Earth Syst. Sci., 14, 2383–2397, 2010



2394 J.-F. Exbrayat et al.: Nitrogen fluxes: data fusion for a Swedish meso-scale catchment

Table 4. Nitrogen results summary between 1 January 2000 and 31 December 2004. RMSE is expressed in g/ha d−1.

Models Vattholma S̈avja

NO3 NH4 Tot-N NO3 NH4 Tot-N

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LASCAM

Best Runa 0.53 2.09 0.24 0.37 0.57 6.34 0.66 7.95 0.51 0.66 0.65 12.38
Selected SMEb 0.53 1.82 0.36 0.21 0.57 3.94 0.66 7.20 0.52 0.46 0.65 10.95

LASCAM-S

Best Runa 0.67 2.04 0.19 0.36 0.69 9.00 0.77 8.08 0.57 0.62 0.77 11.13
Selected SMEb 0.67 1.45 0.23 0.23 0.08 3.25 0.69 7.13 0.63 0.41 0.77 7.47

CHIMP

Best Runa 0.38 2.61 0.44 0.31 0.38 12.43 0.53 0.72
Selected SMEb 0.42 1.89 0.45 0.20 0.34 10.3 0.55 0.44

SWAT

Best Runa 0.68 1.75 0.32 2.89 0.84 18.49 0.84 6.70 0.16 7.84 0.82 25.45
Selected SMEb 0.69 1.39 0.33 0.22 0.86 2.42 0.83 5.27 0.18 0.60 0.85 6.90

HBV-N-D

Best Runa 0.38 8.12 0.62 19.63
Selected SMEb 0.69 3.64 0.80 7.88

Best MMEc 0.73 1.31 0.65 0.16 0.88 2.27 0.89 4.28 0.73 0.36 0.90 5.47

a Best single model runs regardingR2 and RMSE are not necessarily obtained with the same parameter set.
b Selected SMER2 and RMSE values are obtained with the same ensemble chosen to be merged in MMEs.
c Best MME is characterised by the both bestR2 and RMSE values.

data-fusion comparison project. Interestingly, Fig. 5 clearly
shows that most of the models tend to underestimate the high
loads which correspond to winter and spring months as a
result of combined high flows and high concentrations (see
Fig. 2). There might be a general failure in the activation of
N mobilisation following snow events within all the studied
models. Even though this is beyond the scope of this study,
the investigation of the reasons why models behave like this
has to be undertaken in the future in order to increase our
process-understanding.

A good match of observed and simulated N loads is not
necessarily required to achieve goodR2 values. Selecting
the best single runs regarding this criterion is therefore prob-
ably source of a large predictive uncertainty. Abrahart and
See (2002) demonstrated that the most efficient data fusion
scheme depended on the application case. Here and as al-
ready depicted by Viney et al. (2009) and for our hydro-
logical results, UR and CR regression ensembles created
in a calibration context gave the best results for our SMEs
and MMEs. However, this was only true when merging
the predictions showing the highest values for theR2 crite-
rion even while the RMSE values were very high. Different

well trended realisations were weighted in an optimal way
to adjust the predicted absolute values as illustrated by some
strong decrease of the RMSE values (e.g. around 90% for
NH4 and Tot-N with SWAT at Vattholma; Table 4). The risk
of unrealistic values when extrapolating the coefficients ob-
tained with monthly measurements remained very high. The
ME, WM and MD schemes still gave worse predictions (usu-
ally around the RMSE value of the best single run). Viney
et al. (2009) also demonstrated that that in the LUCHEM
project the multiple linear regression predictions quality was
significantly reduced between calibration and validation pe-
riods contrary to most of the utilised schemes (including the
simplest mean ones).

Some of the single models and SMEs already achieved
predictions that are almost as good as the very best MMEs
(e.g. LASCAM-S and CHIMP for NH4, SWAT for Tot-N,
Table 4 and Fig. 5). However, MME results always showed
the best overall model performances for both criteria. This
confirmed the benefits of exploring different model struc-
tures amongst which we may not know an a priori best one.
This was already suggested by Butts et al. (2004) for hydro-
logical predictions and gave a proof of the value of standard
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data-fusion methods in a hydro-biogeochemical context. The
different scatter plots of the Fig. 5 showed that the predic-
tions of the best MME were always surrounded by the pre-
dictions of the introduced SMEs. For instance the predic-
tions corresponding to the highest estimated N load export
always showed a great deviation from the line symbolising
the perfect fit for the different SMEs, especially for Tot-N at
Sävja. In this latter case, the best MME gave a good predic-
tion for the extreme value. It is a confirmation of the advan-
tage of combining the different model structures and getting
a part of the information about the system into each of these
conceptualisations. Nevertheless the improvements were not
very high compared to those of the SMEs which had already
shown tremendous improvements as a result of the fusion
of a large number of single model predictions. There was
therefore only limited space for further improvement of the
overall model performance. Moreover, as measurements and
the method to estimate the loads were already sources of un-
certainty, it would not be reasonable to trust a perfect fit as
well. This shows that a greater quality of prediction would be
achieved if the ensemble were already based on better mem-
bers. Prediction users would therefore benefit from more sci-
entifically correct model structures. This is an aspect that
should not be forgotten for the sake of getting better predic-
tions.

Constructing MMEs from the best single runs, or from cal-
ibrated runs, rather than the SME could have been another
way to take into account the global prediction uncertainty
linked to the full set of considered models, while introducing
worse predictors along a probably higher uncertainty. Im-
provement would have surely been more obvious in that case
as single models always showed worse performances than
any SMEs (cf. improvement rates in Sect. 3.2.2 and Fig. 4).
Other methods could also have been applied like Bayesian
model averaging and Kalman filtering techniques which pro-
vided more accurate results and allowed a more reliable treat-
ment of conceptual errors in some other hydrological and cli-
matic studies (Raftery et al., 2005; Vrugt et al., 2006; Vrugt
and Robinson, 2007).

5 Conclusions

A total of 2490 ensembles (SMEs and MMEs) were com-
piled. Data-fusion procedures have been demonstrated to
greatly improve the re-prediction of different N fluxes at the
mesoscale and especially to be able to produce good predic-
tions from very poor model realisations. In every studied
situation numerous combination schemes showed improve-
ments compared to the performance of their single mem-
bers. For all the studied fluxes, regression schemes were the
most efficient combinations but need, as well as the adopted
weighted average, comparison with observed data. This is
not applicable in ungauged conditions for instance. We see
ensemble predictions as a promising research direction in the

domain of hydro-biogeochemical sciences. Of course, more
data-fusion schemes could be tested but we should also anal-
yse ensembles directly in a probabilistic way to assess the
risk of occurrence of certain particular events (e.g. short-term
concentration thresholds, long-term yield change).

However, even if lots of rainfall-runoff models exist, only
few are able to simulate N mobilisation and transport. Diver-
sity in the considered N species is also a limiting factor and
we cannot make definitive statements on the effect of ensem-
ble modelling in that case. Moreover, a lot of different aver-
aging and probabilistic methods have been described to han-
dle large ensembles of model predictions. Their applicability
remains to be checked in the hydro-biogeochemical context.
Nevertheless, the understanding of hydro-biogeochemical
fluxes, and therefore the model structures, has to be improved
and ensemble procedures would also benefit from better
members. However, this would require matching datasets
with very high temporal resolution that are most often not
available and therefore concentrations would also be a better
choice to use as prediction targets.
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