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Abstract. The radar signal recorded by earth observation
(EO) satellites is sensitive to soil moisture and surface rough-
ness, which both influence the onset of runoff.

This paper focuses on inversion of these parameters using
a multi-angular approach based on RADARSAT-1 data with
incidence angles of 35◦ and 47◦ (in mode S3 and S7). This
inversion was performed with three backscatter models: Ge-
ometrical Optics Model (GOM), Oh Model (OM), and Mod-
ified Dubois Model (MDM), which were compared to obtain
the best configuration. Mean absolute errors of 1.23, 1.12,
and 2.08 cm for roughness expressed in rms height and for
dielectric constant, mean absolute errors of 2.46 – equal to
3.88 (m3 m−3) in volumetric soil moisture, – 4.95 – equal
to 8.72 (m3 m−3) in volumetric soil moisture – and 3.31 –
equal to 6.03 (m3 m−3) in volumetric soil moisture – were
obtained for the MDM, GOM, and OM simulation, respec-
tively. These results indicate that the MDM provided the
most accurate data with minimum errors. Therefore, the lat-
ter inversion algorithm was applied to images, and the final
results are presented in two different maps showing pixel and
homogeneous zones for surface roughness and soil moisture.

1 Introduction

A multi-technique approach using Synthetic Aperture
Radars (SAR) data is considered essential for many environ-
mental studies. For the scope of this paper, land surface pa-
rameters were monitored through estimation of soil surface
roughness and moisture status over a large area. Mapping
of soil surface roughness and moisture over a large scale at
regular intervals or at critical times (e.g., floods, droughts,
landslides) is useful for both agronomists and hydrologists.
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Such maps provide an overall view of land surface parame-
ters on a spatial scale, which allow for the detection of dry,
wet, smooth, or rough areas and the identification of areas
with potential hydrological or agronomic problems. How-
ever, soil moisture and soil surface roughness both influence
radar backscatter. Moreover, separation of moisture from
roughness on the radar signal over bare soils is critical.

SARs are active microwave sensors with the capability
of acquiring data under almost all meteorological conditions
without an external source of illumination. Therefore, infor-
mation can be collected on a regular basis over an area cov-
ered with clouds at either day or night. This advantage over
sensors operating in the visible and infrared portion of the
electromagnetic spectrum improves the capability for moni-
toring dynamic phenomena. The potential for SAR data has
been demonstrated for monitoring the Earth’s surface (Ulaby
et al., 1978, 1982, 1996; Dobson and Ulaby, 1986a,b; Eng-
man and Wang, 1987; Oh et al., 1992; Fung and Chen, 1992;
Fung, 1994; Dubois et al., 1995). In this regard, several re-
searchers interested in data collection with global coverage
at regular time intervals may prefer spaceborne platforms
(Wagner et al., 2007).

Separation of land cover information using a single chan-
nel of SAR data can be difficult. Furthermore, the parame-
terization of surface moisture can pose major problems for
characterizing soil surface roughness and vice versa (Bagh-
dadi et al., 2004; Verhoest et al., 2008)

Soil surface radar response can be significantly influenced
by the following parameter categories: (1) target parame-
ters, such as moisture, roughness, and vegetation cover (if
present) and (2) sensor parameters, such as frequency, polar-
ization, and incidence angle. The sensor parameters are typ-
ically known in remote sensing applications; however, the
relationship between the target and measured signals must
be investigated. Estimation of soil surface parameters is usu-
ally obtained using theoretical or empirical relationships to
convert the measured backscatter coefficient (σ 0) into soil
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surface roughness and moisture (Dobson and Ulaby, 1986a;
Pŕevot et al., 1993; Ulaby et al., 1996). Thus, there was one
equation with two unknowns for each target or three if the
model incorporates the correlation length. Consequentially,
the use of radar data acquired with a single configuration
does not generally allow for the estimation of these soil sur-
face variables. Therefore, multi-technique concepts (multi-
polarization, multi-angular, multi-sensor, multi-frequency,
and multi-temporal) are the primary solution.

Colpitts (1998) combined more than two images with dif-
ferent incidence angles to separate the effects of soil sur-
face roughness and soil moisture for several tillage types.
Pasquariello et al. (1997) and Baghdadi et al. (2002) also de-
termined that soil moisture estimation could be improved by
using IEM inversion with multi-angular SAR imagery con-
figuration. Based on a theoretical analysis, Fung et al. (1996)
reported that the multi-angular approach could be used to de-
termine roughness parameters for IEM model and is also pre-
ferred over direct ground measurements in certain cases.

Zribi and Dechambre (2002) defined the Z-index, which is
a ratio of RMS height and correlation length, from backscat-
tering coefficient differences generated by the IEM model
with two different incidence angles. This index was only pro-
portional to soil surface roughness. Based on this study, Rah-
man et al. (2008) demonstrated that the RMS height and cor-
relation length could be derived separately from the Z-index
using the IEM with a SAR image acquired under dry soil
conditions. The approach requires the use of multi-angular
SAR image acquisition (Verhoest et al., 2008).

Based on simulation results, Sahebi et al. (2001, 2002) in-
dicated that a multi-angular approach is better adapted for
the separation of moisture and roughness signals than multi-
polarization and multi-frequency approaches. Therefore, the
Radarsat-1 satellite, which is capable of acquiring data at dif-
ferent incidence angles, can be used to estimate soil moisture
and surface roughness. However, development of a method
adapted to RADARSAT-1 data for estimation of these param-
eters is critical.

Mapping of surface characteristics can be performed ei-
ther from point measurements or from estimated values from
models and remote sensing. Soil moisture from microwave
remote sensing instruments can be derived by converting the
detected dielectric constant into volumetric moisture content.
The accuracy of remote sensing data depends on sensor res-
olution and the algorithms or models applied to the signal to
obtain soil moisture or roughness estimate. These results in
information on spatial variability (Benallegue et al., 1998),
and the derived values provide a map of the area without in-
terpolating data as with point measurements.

The objective of this paper is to propose an algorithm to
retrieve soil surface parameters from two or three SAR im-
ages with different incidence angles (multi angular configu-
ration). Therefore, a transformation approach is formulated
and defined to solve the inverse problem for the operational
retrieval and mapping of soil surface roughness and moisture.

The strategy consists of formulating the inverse problem in
the context of multi-angular RADARSAT-1 data. We investi-
gated the relationship between the C-band radar response and
soil parameters, specifically the soil dielectric constant (ε)
and rms height (s), which are used to constrain target param-
eters in the Geometrical Optics Model (GOM) (Ulaby et al.,
1982), the Oh Model (OM) (Oh et al., 1992), and the Modi-
fied Dubois Model (MDM) (Angles, 2001). Based on results
obtained with MDM, a roughness and moisture map for the
Chateauguay watershed (Quebec, Canada) was produced.

2 Study site and data description

The agricultural site chosen for this study is part of the
Chateauguay watershed (73◦46′ W, 45◦19′ N) located on the
south shore of the St. Lawrence River and southwest of Mon-
treal, Canada (Fig. 1). This area consists primarily of agricul-
tural fields on a rather flat relief plateau with homogeneous
texture comprised of approximately 36% clay, 42% silt, and
22% sand. During ground surveys, the parcel surfaces were
determined as rough to very rough.

Roughness and moisture measurements were performed
simultaneously for 27 agricultural parcels with image acqui-
sitions (Fig. 2). Roughness measurements were determined
using a homemade needle profilometer with a length of 2
m. For calculation of RMS height, six 2 m long (1.5 cm
sampling interval) surface profiles (three parallel and three
perpendicular to the soil furrows) were investigated for each
parcel. These profiles were photographed and then digitized.
The method for extracting and modeling roughness param-
eters, such as rms height and correlation length, has been
described in detail by Beaulieu et al. (1995). However, this
method introduces some errors that affect roughness estima-
tion, which may be caused by different sources, such as the
discretization interval and profilometer resolution (Mattia et
al., 2003, 2006). Verhoest et al. (2008) presented a detailed
review on different sources of the error.

Soil surface moisture measurements were performed with
a Thetaprobe soil moisture sensor based on the time do-
main reflectometry (TDR) (Delta Devices Ltd., 1996) con-
cept. The measurements reflect moisture in the 0–5 cm depth
corresponding to the length of the Thetaprobe needles. A
total of 15 samples were collected for each land parcel. The
direct outputs (DC voltage in V) were converted to both volu-
metric soil moisture content (m3 m−3) and dielectric constant
using the equation presented in the Thetaprobe Soil Moisture
User Manual (Delta Devices Ltd., 1996). The final results are
presented for both soil moisture content and dielectric con-
stant. Additionally, five 0–5 cm soil samples for each par-
cel were transferred to our laboratory to evaluate the results
obtained with this method. Wet and dry weights were used
to determine gravimetric and volumetric soil moisture con-
tent. The soil moisture contents (m3 m−3) obtained by these
two methods were compared, and a volumetric soil moisture
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Fig. 1. Location of study area.
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Fig. 2. Location of the parcels (Airborne photography over Chateauguay watershed). 

 

Fig. 2. Location of the parcels (Airborne photography over Chateauguay watershed).

difference of 1.8% was observed between the two methods.
The exact position of each in-situ measurement was regis-
tered by GPS.

The satellite data used in this study correspond to a
RADARSAT-1 image pair. The first image was acquired
on 15 November 1999 in S3 (Standard-3) mode with in-
cidence angles ranging from 30 to 35◦, and the second
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image was acquired on 18 November 1999 in S7 (Standard-
7) mode with incidence angles ranging from 45 to 49◦.
The third image was acquired on 12 November 1999 in S1
(Standard-1) mode with incidence angle ranging from 20 to
25◦. Notably, the third image was used only for GOM. The
RADARSAT DN values were converted to the backscatter-
ing coefficient (σ 0) according to Shepard (1998). An av-
erageσ 0 (dB) was assigned to each parcel (approximately
20 to 30 pixels) to include the spatial variability and avoid
problems related to georeferencing of individual pixels of the
parcels in the study area (homogeneous soil structure, bare
soil, homogeneous ploughing). The surface roughness and
moisture were measured in-situ on 15 and 18 November (the
same dates as the satellite image acquisitions). Between the
periods of data acquisition, the weather was stable and sur-
face moisture had not changed significantly because of the
low evaporation and temperature at that time of the year.
According to local observations and Environment Canada,
average daily temperatures were 2.3◦C (with a minimum
value of 1.5◦ and a maximum value of 7◦), and there was
no recorded rainfall or ground frost between the two acquisi-
tion dates. However, 20 parcels were selected with nearly the
same moisture and roughness for the two dates to completely
satisfy the conditions of this study. Therefore, the difference
between the measurements on the two days for soil moisture
and soil roughness were less than 8% and 5%, respectively.

3 Methodology

As mentioned previously, soil moisture and soil surface
roughness were estimated from SAR images based on an in-
version algorithm. Estimation of soil moisture and soil sur-
face roughness can be achieved using the inversion of theo-
retical or empirical methods, and the relationship to the mea-
sured backscatter coefficient from images was converted into
soil surface parameters. At least two equations are required
because there was more than one unknown parameter, such
as the dielectric constant and RMS height, which can be pro-
vided by multi-technique algorithms.

A previous ground based experiment (Chanzy et al., 1998;
Baghdadi et al., 2006; Rahman et al., 2007) and theoretical
study (Sahebi et al., 2001, 2002; Fung et al., 1996) demon-
strated that the multi-angular configuration is the best for
estimation of bare soil surface parameters. Therefore, the
multi-angular configuration was used for the inversion of
backscattering models to estimate roughness and soil mois-
ture from RADARSAT-1 data acquired at two different in-
cidence angles. This approach was tested with different
RADARSAT-1 images acquired at different incidence an-
gles (between 20 and 49◦), and the images presented herein
yielded the best results.

3.1 Model descriptions

As previously discussed, the aim of this study was to esti-
mate bare soil surface parameters using multi-angular ap-
proaches. This process was performed using existing theo-
retical and empirical backscatter models that introduce the
relationship between backscatter coefficient and surface pa-
rameters (roughness and dielectric constant).

The comparison of the mentioned backscattering models
was performed using simulations by GOM (Geometrical Op-
tics Model; Ulaby et al., 1982), OM (Oh Model; Oh et al.,
1992), and MDM (Modified Dubois Model; Angles, 2001),
since this study site profile contains very rough surfaces.
Other models, such as IEM (Fung, 1994) and SPM (Ulaby
et al., 1982), could not be used in this study because of the
incompatibility between the validity range of the models and
study area conditions.

3.1.1 Geometrical Optics Model (GOM)

The Geometrical Optics Model (GOM), which is also known
as the Kirchhoff method, under the stationary phase approx-
imation is intended to express scattering by rough surfaces
with 0.06 k2`2 > ks, k` > 6 and 2ks cosθ2 > 10, where`
is the correlation length,k is the wave number (k = 2π/λ,
whereλ is the wavelength),s is the root mean square (RMS
heights), andθ is the incidence angle. This model predicts
thatσ 0

hh (θ ) =σ 0
vv (θ ) at all incidence angles of the radar sig-

nal. The expression for the co-polarized backscattering coef-
ficient is given by:

σ 0
pp(θ) =

[ ∣∣Rpp(0)
∣∣2(

2 m2 cos4 θ
)] × exp

(
tan2 θ

2 m2

)
(1)

whereRpp(0) is the surface reflectivity from normal inci-
dence, and m is the rms slope of the surface and is equal
to

√
2s/` and s/` for Gaussian and exponential functions,

respectively (Oh et al., 1992). According to Oh et al. (1992),
the exponential function is adapted to smooth surfaces and
the Gaussian autocorrelation function is adapted to rough
surfaces. Based on the study area descriptions (rough to very
rough surfaces), the Gaussian autocorrelation function was
chosen for calculating m values.

3.1.2 Oh Model (OM)

Oh et al. (1992) developed an empirical model based on ex-
perimental data acquired in L-, C-, and X-bands (1.5, 4.75,
and 9.5 GHz respectively) because of the inadequate per-
formance of theoretical models for predicting the backscat-
ter response of random surfaces. This model was designed
for surfaces with various moisture conditions and roughness
from slightly smooth to very rough and does not incorporate
the correlation length. The valid surface conditions cover
the following ranges: 0.1 < ks < 6.0, 2.6 < k` < 19.7 and
9%< mv < 31%, wheremv is the volumetric soil moisture.
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The backscattering coefficients in HH polarization for this
model can be expressed by:

σ 0
hh = g

√
p cos3 θ [0v(θ) + 0h(θ)] (2)

where

√
p = 1 −

(
2 θ

π

)[1/300)]

× exp (−ks),

g = 0.7
[
1 − exp

(
−0.65 (ks)1.8

)]
and00 is the Fresnel reflectivity of surface at nadir.0v and
0h are the Fresnel reflection coefficients for horizontal and
vertical polarization, respectively. Correlation length effect
is not included.

3.1.3 Modified Dubois Model (MDM)

The empirical model developed by Dubois et al. (1995) was
initially developed to separate moisture and roughness using
a bipolarization approach. This model is limited toks ≤ 2.5,
θ ≥ 30◦, and moisture contentsmv ≤ 35%. This model was
tested over the study area by researchers at Université de
Sherbrooke (Angles, 2001), and the results demonstrated an
important difference between simulated and measured val-
ues of moisture and roughness. The method that Dubois et
al. (1995) followed was used to adapt the Dubois model to
measured data over the Quebec agricultural area. This case
was comprised of two agriculture sites that included more
than 40 observed fields. One site with more than 25 fields
was selected for model development, and the other site was
used for validation and calibration. A total of 10 different
RADARSAT-1 images (C-band, HH-polarized and incidence
angles between 20◦ and 50◦) and measured ground data (soil
surface roughness, soil moisture, and soil texture) were used
to overcome this discrepancy. The images were corrected
geometrically and the backscattering coefficients of the bare
soils were then extracted. The same methods presented by
Dubois et al. (1995) were followed exactly, and the constant
parameters were recalculated. The obtained results demon-
strate an improvement of 5.65 dB (equivalent to 43%) for the
S1 image mode, 2.32 dB (equivalent to 17%) for the S3 im-
age mode, and 0.3 dB (equivalent to 2%) for the S7 image
mode.

This modification is presented as a new model referred
to as the Modified Dubois Model (MDM). MDM expresses
the backscattering coefficient for this model and is described
by Eq. (3) that can be applied to bare agricultural surfaces
in Quebec with 1 cm< s < 6 cm and 14%< mv < 32% (An-
gles, 2001).

σ 0
hh = 10−3.67

×
cos1.5 θ

sin5 θ
× 100.112 tanθ ε (3)

× (ks. sin θ)0.883
× λ0.7

wherek is the wave number (k = 2π/λ) andλ is the wave-
length.

Applying this model to RADARSAT-1 data acquired at
two different incidence angles of the same target with a short
time interval, this approach generates a two equation system
with two unknowns, which can be resolved to obtains andε.
However, this model should be tested in other regions with
different conditions for validation purposes.

4 Inversion method

4.1 Method description

If backscatter coefficient (σ 0
hh in this case) measurements for

a given surface at the incidence anglesθ1, θ2 andθ3 (if appli-
cable) are available, then the land-surface parameters, which
are the same in all images, can be computed by inverting the
above models.

As previously explained, three models were chosen. The
MDM is analytically invertible. Equations (4) and (5) show
the inversion of this model to calculate land-surface parame-
ters using the multi-angular approach for hh-polarization:

εr =
log [A]

0.112 × (tan θ1 − tan θ2)
(4)

s =
1

k
× (5)

0.883

√
103.67 × σ 0

hh(θ1) ×
sin4.117(θ1)

cos1.5(θ2)
× A

−

(
tan(θ1)

tan(θ1)−tan(θ2)

)
× λ−0.7

wher σ 0
hh (θ1) and σ 0

hh (θ2) are the backscatter coefficients
measured atθ1 andθ2, respectively, and:

A =
σ 0

hh(θ1) × sin4.117(θ1) × cos1.5(θ2)

σ 0
hh(θ2) × sin4.117(θ2) ×cos1.5(θ1)

(6)

The OM and GOM are not invertible in this manner.
For these models, the numerical iterative Newton-Raphson
method (Ortega and Rheinboldt, 1970) was used in the re-
trieval algorithm to solve the inverse problem.

In this regards, the variable matrices (the unknown vari-
ables) ares andεr for OM ands, εr, and` for GOM. The
known parameters in the model are the backscatter coeffi-
cients at two or three different incidence angles. The algo-
rithm can be summarized as follows:

Step 1. Presentations of the zeroed functions (fi) are is-
sued by using GOM and OM based on the multi-angular ap-
proach. For example, these functions for OM are:

f1 = σ 0
hh(θ1)−g

√
pcos3θ1[0v(θ1)+0h(θ1)] = 0 (7a)

f2 = σ 0
hh(θ2)−g

√
pcos3θ2[0v(θ2)+0h(θ2)] = 0 (7b)

(p andg functions are already explained in Eq. 2).
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Fig. 3. Scatter plot of volumetric soil moisture content measured and estimated by MDM. 

 

Fig. 3. Scatter plot of volumetric soil moisture content measured
and estimated by MDM.

Step 2. Computation of the error matrix based on an ini-
tial guess of the variables (εr ands for OM; εr, s, and` for
GOM).

Step 3. Computation of the matrixαij , which is the rela-
tion between the backscatter coefficient and the soil surface
parameters. Equations (8) and (9) present this matrix for OM
and GOM respectively:

for OM α =


∂f1
∂s

∂f1
∂εr

∂f2
∂s

∂f2
∂εr

 (8)

for GOM α =


∂f1
∂s

∂f1
∂εr

∂f1
∂`

∂f2
∂s

∂f2
∂εr

∂f2
∂`

∂f3
∂s

∂f3
∂εr

∂f3
∂`

 (9)

Step 4. Calculation of the error (δxj ) in the estimation of
land surface properties.

Step 5. Correction of the error in the estimation of soil
surface parameters.

Step 6. Through 5 are repeated until convergence is
reached; that is,δ = 10−5 for this case.

4.2 Evaluation of the results

Evaluation of errors requires comparisons between predicted
and measured surface parameters. All comparisons between
measured in-situ and predicted surface parameters obtained
by RADARSAT-1 images are presented on an even basis
for rms heights and surface dielectric constants (separately).
They are carried out using the coefficient of performance
CP ′

A (James and Burgess, 1982):

CP ′
A =

n∑
i=1

(S(i) − O(i))2/

n∑
i=1

(
O(i) − Oavg

)2 (10)
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Fig. 4. Scatter plot of volumetric soil moisture contentmeasured and estimated by OM. 

 

Fig. 4. Scatter plot of volumetric soil moisture contentmeasured
and estimated by OM.
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Fig. 5. Scatter plot of volumetric soil moisture contentmeasured and estimated by GOM. 

 

Fig. 5. Scatter plot of volumetric soil moisture contentmeasured
and estimated by GOM.

whereO(i) is thei-th observed parameter,Oavg is the mean
value of the observed parameter,S(i) is the i-th predicted
parameter using radar images, andn is the total number of
events. The coefficient of performance approaches zero as
observed and predicted values get closer. This coefficient
can demonstrate the efficiency of each model for estimating
surface parameters. In this study, the mean total absolute
error for the results of each model is also calculated.

5 Results and discussion

Figures 3 to 8 present a comparison between the values of
surface parameters estimated from the inversion of radar data
and those measured in-situ. For rms height, the results with
minimum error are given by GOM with a mean absolute er-
ror of 1.12 cm followed by MDM (with a mean error equal
to 1.23 cm) and OM (with a mean error equal to 2.08 cm).
However, MDM definitely has the best estimation for the
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Fig. 6. Scatter plot of rms height measured and estimated by MDM. 

Fig. 6. Scatter plot of rms height measured and estimated by MDM.
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Fig. 7. Scatter plot of rms height measured and estimated by OM. 

 

Fig. 7. Scatter plot of rms height measured and estimated by OM.

dielectric constant and soil moisture content with an error
equal to 2.46 – equal to 3.88 (m3 m−3) in volumetric soil
moisture – followed by OM with an error equal to 3.35 –
equal to 6.03 (m3 m−3) in volumetric soil moisture – and
GOM with an error equal to 4.59 – equal to 8.72 (m3m−3)
in volumetric soil moisture. As previously explained, the co-
efficient of performance (CP ′

A) was also used to compare
these results. Table 1 presents the values of this coefficient.
These results show that the inversion of MDM yields the best
results for estimating soil surface parameters.

For MDM and OM, estimation of the dielectric constant
is more exact than estimation of rms height. In contrast, the
RMS height estimated by GOM is more exact. For GOM,
total values ofCP ′

A for the dielectric constant are greater
than those for rms height (Table 1). This sensitivity to rough-
ness may be explained by the behavior of GOM. Accord-
ing to this model, the statistical variation in surface rough-
ness is characterized by the RMS height, correlation length,
and correlation function represented by the rms slope (m) in
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Fig. 8. Scatter plot of rms height measured and estimated by GOM. 

 

Fig. 8. Scatter plot of rms height measured and estimated by GOM.

Table 1. Mean absolute error and coefficient of performance (CP′
A )

for surface parameters obtained by inversion approach.

Models Errors CP′A

rms Dielectric Soil rms Dielectric Total
height constant moisture height constant
(cm) content

(m3 m−3)

MDM 1.23 2.46 3.88 2.26 1.7 1.98
GOM 1.12 4.59 8.72 2.03 6.28 4.16
OM 2.08 3.35 6.03 6.30 3.59 4.95

Eq. (1). Therefore, the accuracy of the roughness estimation
also depends on estimation of the correlation length. How-
ever, in MDM and OM, roughness is characterized only by
rms height.

This study presents an approach to estimate surface pa-
rameters derived from SAR satellite data with acceptance er-
rors calculated by comparing ground truth and estimated soil
surface parameters. However, there are still errors in the esti-
mation of soil surface parameters. Further investigations are
required to understand this limitation, but several possibili-
ties can already be suggested:

– Failure of the models to present a real relationship be-
tween radar signal properties and target parameters. Un-
fortunately, none of the backscatter models provides re-
sults in good agreement with experimental observations
for all polarization configurations over a wide range of
incident angles, even when confined to the presumed
validity range (Henderson and Lewis, 1998; Baghdadi
et al., 2004; Leconte et al., 2004; Moran et al., 2004).
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Fig. 9. Variation of the dielectric constant as a function of rms height for two different. 
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– Behavior of the models in the multi-angular approach
context to find an exact solution. Consider the case of
two dimensions to simultaneously solve:{

f 1 : fθ1,σ
0(ε, s) = 0

f 2 : fθ2,σ
0(ε, s) = 0

(11)

An example of this case is presented by Eqs. (7a)
and (7b) for OM. Each of the functions has zero re-
gions where the function signs reverse (i.e. change pos-
itive to negative sign). Unfortunately, the functionsf1
and f2 are not co-dependent according to the model
behavior. Figure 9 shows the curvesε vs. s for par-
cel no 120 (σ 0

1 = −10.07 dB andσ 0
2 = 10.77 dB for

θ1 = 35◦ andθ2 = 47.4◦, respectively) simulated by OM
as an example of this situation. The solution obtained
with these data was that the coordinates = 2.32 cm and
ε = 5 was the closest point (minimum Euclidean dis-
tance) between the two curves. Therefore, the algo-
rithm cannot properly solve the problem. This result
was also observed in some cases in the inversion with
GOM. Figure 10 shows the same curves simulated by
MDM. These curves intersect exactly ats = 3.25 cm and
ε = 11.75, which is the exact solution of the system of
equations.

– Incompatibility between ground measurements and
estimated parameters. The ground data for each parcel
are issued by some point measurements, and the mean
is presented as rms height and dielectric constant of
the parcel. This result was also reported by Lehrsch et
al. (1988) and Bryant et al. (2007). Bryant et al. (2007)
stated that measurement accuracy is the limiting factor
in the accuracy of the soil moisture predictions for
many cases. The accuracy of the in-situ measurements
can be divided into three factors: (1) horizontal resolu-
tion, (2) vertical resolution, and (3) human-based error
during digitization (Verhoest et al., 2008).

Bryant et al. (2007) evaluated the effect of aver-
aging soil roughness parameters from a different
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Fig. 10. Variation of the dielectric constant as a function of rms height for two different. 
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number of profiles on the soil surface parameters
retrieval. These data revealed differences in volumetric
soil moisture reaching up to 3.6% when comparing re-
trievals obtained with roughness parameters determined
from 10 and 20 profiles.

Moreover, Álvarez-Mozos et al. (2009) investi-
gated the spatial variability of roughness at the field
scale and the impact on soil moisture retrieval for
different fields. The conclusions of this study were
the accuracy of the retrieved soil moisture depends on
the variability of roughness parameters and in-field
measurements.

In this study, the number of measurements enough
to calculate an accurate mean value respects the
recommendation presented by Baghdadi et al. (2008).

– Influence of tillage direction and look direction. The
orientation of mechanical tillage, which can be re-
lated to roughness measurements, has an influence on
backscattering signals (Remond et al., 1999; Smyth et
al., 2000; Zhixiong et al., 2005). However, the backscat-
ter models do not enable the simulation of this influ-
ence directly. Also, the use of images acquired at dif-
ferent orbits (ascending and descending) is sometimes
inevitable in temporal studies with SAR data. The look
direction accounted for a 1.5 dB difference inσ 0 for
ERS-1 images by Gauthier et al. (1998). Smyth et
al. (2000) obtained a maximum 2 dB difference inσ 0

for RADARSAT-1.

– Influence of speckle and climatic conditions on radar
signals. Discussion of these problems is not the aim
of this paper. However, these phenomena can produce
some errors when calculating backscatter coefficients
from satellite images.

Additionally, there is an important limitation in opera-
tional use of the multi-angular approach. Acquisition condi-
tions for multi-angular RADARSAT, Envisat, and PALSAR-
ALOS data can often imply that the images were collected
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Fig. 11. rms height map at pixel scale. 

 

Fig. 11. rms height map at pixel scale.

several days apart, which indicates that the soil moisture and
roughness might change between the two acquisition dates
(e.g., rain, strong evaporation, ploughing). In the case of
RADARSAT-1, this interval depends on the selection mode
of data acquisition and can range from one to three days.
However, the interval may be longer in some cases because
of the other acquisition orders.

This situation should be improved with multi-sensor
approaches, such as a combination of RADARSAT-1,
RADARSAT-2, and ENVISAT images. In this regard, a set
of RADARSAT-1 and ENVISAT can be combined with an
interval of 4 to 9 h. In addition, the combination of multi-
angular, multi-polarization, or multi-frequency can be con-
sidered. However, this limitation is less important in regions
with stable weather, such as arid or semi-arid regions, which
typically experience no significant changes in soil surface
condition.

6 Surface parameter mapping

The inversion algorithm using the MDM model was applied
to two RADARSAT-1 images of the watershed under study.
Two key points should be noted: (1) forest and urban ar-
eas are masked on the maps, and (2) the humidity maps are
presented in terms of volumetric soil moisture (m3 m−3) ob-
tained by inverting the empirical model of the dielectric con-
stant developed by Halikainen et al. (1985). This application
was performed at two different scales: pixel scale and ho-
mogeneous zone scale. At pixel scale (Figs. 11 and 12), the
inversion was applied directly on the two images pixel by
pixel. The speckle in the images was reduced using Lee fil-
tering (Lee, 1981). Due to field observation and ground truth
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Fig. 12. Volumetric humidity map at pixel scale. 

 

Fig. 12. Volumetric humidity map at pixel scale.

data, the pixel scale maps are more accurate for the spatial
distribution of soil surface parameters. However, the pixel
values vary and not tractable for use, and therefore, the sur-
face parameter distribution over the watershed is difficult to
determine. The homogeneous zone scale was utilized to re-
duce this problem. Each homogeneous zone on a radar image
presents a minimal variance in the backscatter coefficients.
Furthermore, the physical characteristics of the soil surface
are almost the same within the homogeneous zone. This type
of presentation allows for a general view of surface parame-
ter distribution (Figs. 13 and 14).

As shown in Fig. 15, creating a homogeneous zone is com-
prised of four steps:

1. Improving the image contrast: contrast is only to pro-
vide better viewing of the images and does not modify
the pixel values. This step provides a better view of the
images for manual digitization (step 3).

2. Noise reduction. This step is performed using de-
speckle filters. Generally, the adaptive filters, such as
gamma, Lee or Frost filters, reduce noise notably. In
this study, the Lee filter and a low-pass filter (mean
filter) were tested. As expected, the Lee filter reduced
speckle better than the low-pass filter, but it modified
the pixel values and changed the final results. In con-
trast, the low-pass filter reduced noise less than the Lee
filter, but the pixel values did not change significantly.
This fact was evaluated by comparing the ground
truth measurement and soil surface estimated values
obtained from the images. The algorithm was applied
on filtered images, and the results were compared with
control points from in-situ measurements. In general,
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Fig. 13. rms height map in homogeneous zone scale. 
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Fig. 14. Volumetric humidity map at homogeneous zone scale. 

 

Fig. 14. Volumetric humidity map at homogeneous zone scale.

the final results of the images filtered by low-pass filter
have the lowest error.

However, the final results (homogeneous zone maps)
were approximately the same. Therefore, the best filter
should be chosen in each case. For this study, the
low-pass filter was the best option.

3. Edge detection of homogeneous zones. In this step,
Sobel filters were used to delimit the homogeneous
zones based on the minimal variance ofσ 0 in each zone
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Fig. 15. Flowchart of homogeneous zone calculation. 
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(Angles, 2001), and the edge of each zone was detected
using an edge detection filter. For a few zones, the edge
polygon was not correctly closed. This problem was
corrected manually.

4. Averaging. In the last step, the average of theσ 0s in
each zone was calculated and presented as the homoge-
neous zoneσ 0 value.

7 Conclusions

This work has demonstrated the possibility of using the
multi-angular approach to derive soil moisture and surface
roughness from a pair of RADARSAT-1 images.

The proposed algorithm were presented in five phases:
(1) image pre-processing and co-registration, (2) extraction
of backscattering coefficients, (3) choosing the appropriate
backscattering model, (4) inversion of backscattering models
(analytically or numerically) for calculation of soil surface
parameters, and (5) presenting the calculated parameters.

Despite the generation of some errors, this estimation de-
rived from SAR satellite data is a potentially useful tool for
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estimating soil surface roughness and moisture over extended
areas. The source of errors can be expressed either by some
essential averaging, the behavior of the backscattering mod-
els, or the incompatibility of the ground measurements and
results obtained using satellite images. However, the re-
sults presented herein demonstrated that the multi-angular
approach, it is possible to obtain the acceptable results for
the overall watershed area.

The Modified Dubois Model (MDM) developed for agri-
cultural sites in Quebec was used to minimize the influence
of backscatter models and presented minimal errors. This re-
sult was obtained by comparing the same results calculated
by GOM, MDM, and OM.

From an application point of view, the final products of
this investigation are soil surface parameter maps. These
maps were produced at two different scales that can serve
for many applications, such as hydrological models and agri-
cultural or environmental management. For example, the
pixel scale maps of moisture and roughness can readily be
used in hydrological models based on pixel-like units, such
as AGNPS (Young et al., 1987) or ANSWERS (Beasley et
al., 1980). However, the homogeneous zone maps present
the soil surface distribution over a large area and can be
used in agricultural or hydrological management at the sub-
catchment scale by hydrological response units, such as the
SWAT (Soil and Water Assessment Tool) model (Arnold et
al., 1993). However, there is still a major limitation to this
approach for an operational use in hydrology. Acquisition
conditions for multi-angular RADARSAT-1 data can often
imply several days between collections of the two images.
Soil moisture and roughness can change between the two
dates (e.g., rain, strong evaporation, ploughing). However,
this situation should improve with RADARSAT-2 or multi-
sensor approaches, such as a combination of RADARSAT-1
and ENVISAT images.
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