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Abstract. Flood frequency analysis (FFA) entails the es-
timation of the upper tail of a probability density function
(PDF) of annual peak flows obtained from either the annual
maximum series or partial duration series. In hydrological
practice, the properties of various methods of upper quan-
tiles estimation are identified with the case of known pop-
ulation distribution function. In reality, the assumed hypo-
thetical model differs from the true one and one cannot as-
sess the magnitude of error caused by model misspecifica-
tion in respect to any estimated statistics. The opinion about
the accuracy of the methods of upper quantiles estimation
formed from the case of known population distribution func-
tion is upheld. The above-mentioned issue is the subject
of the paper. The accuracy of large quantile assessments
obtained from the four estimation methods is compared to
two-parameter log-normal and log-Gumbel distributions and
their three-parameter counterparts, i.e., three-parameter log-
normal and GEV distributions. The cases of true and false
hypothetical models are considered. The accuracy of flood
quantile estimates depends on the sample size, the distribu-
tion type (both true and hypothetical), and strongly depends
on the estimation method. In particular, the maximum like-
lihood method loses its advantageous properties in case of
model misspecification.

1 Introduction

Flood frequency analysis (FFA) provides information about
the probable size of flood flows. The estimates of the quan-
tiles of maximum flows obtained in this way have many prac-
tical applications. This information is required for designing
hydraulic structures, determining the limits of flood zones
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with varying degrees of flood risk, estimating the risk of ex-
ploitation of floodplains, as well as for the valuation of the
contributions of many branches of the insurance market. FFA
provides support for the governing bodies of water resources
in decision-making processes and plays a very important role
in reducing the flood risk.

The flood frequency analysis boils down to the estimation
of the upper tail, i.e., the upper quantiles of the probability
density function of the annual (or partial duration) maximum
flows, and the distribution function assumed is the statisti-
cal hypothesis. The problem of flood frequency modelling
refers to the choice of the probability distribution describing
the annual peak flows along with the method of estimation
parameters and, thus, quantiles of this distribution. This is-
sue is called the distribution and estimation (D/E) procedure.
The accuracy of quantile estimate is measured by the mean
square error (MSE) and the bias (B). In a classical hydro-
logical approach, the properties of the estimation methods
are analysed under the assumption that the hypothetical dis-
tribution adopted is true. In the literature, there are several
papers concerning an analysis of the accuracy of the esti-
mates of large quantiles for the selected probability distri-
bution (e.g., Landwehr et al., 1980; Kuczera, 1982; Hoshi
et al., 1984). The properties of the estimation method ob-
served for some distribution are often automatically general-
ized to other distributions. In the literature, three estimation
methods have been usually compared, including the method
of conventional moments (MOM), the method of linear mo-
ments (LMM) and the maximum likelihood method (MLM).
In this paper, another method is proposed for the comparative
analysis; it is the method built on the mean deviation (MDM).
Due to the analytical intractability of the mean deviation in
statistics, this method was not yet widely applied in the FFA.
However, using the simulation techniques can cope with this
inconvenience. The application of the MDM to the estima-
tion of the flood quantiles has been proposed in Markiewicz
et al. (2006) and Markiewicz and Strupczewski (2009).
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Table 1. Dispersion and skewness measures.

Estimation method Dispersion measure Skewness measure

MOM Standard σ = µ1/2
2 =

[
+∞∫
−∞

(x −µ)2dF (x)

]1/2

Third µ3 =

+∞∫
−∞

(x −µ)3dF (x)

deviation moment

LMM Second λ2 =

+∞∫
−∞

2(x −µ)F (x)dF (x) Third λ3 = µ+

+∞∫
−∞

6x
[
F2(x)−F (x)

]
dF (x)

L-moment L-moment

MDM Mean δµ=

+∞∫
−∞

|x −µ|dF (x) Skewness δS = µ−x0.5

deviation measure

As the objective function for the selection of the probabil-
ity density function to the data should be the best fit of the
distribution to empirical data, primarily in the range of the
upper quantiles, making allowance for low quality of largest
sample data. Moreover, no simple statistical model can re-
produce the dataset in its entire range of variability. This
would require the use of too many parameters that cannot be
estimated reliably and efficiently from a data series which is
usually of relatively small size. The probability of the correct
identification of density function on the basis of short hydro-
logical samples is very low, even in the ideal case, when a
set of alternative distributions contains the true density func-
tion (e.g., Mitosek et al., 2006). Therefore, the traditional
approach based on the knowledge of theoretical distribution
is not acceptable. In papers by Strupczewski et al. (2002a,b)
and Weglarczyk et al. (2002), the asymptotic bias of quantile
in the case of assuming the wrong distribution has been de-
rived for various estimation methods and for selected pairs of
probability functions. If the hypothetical distribution is a true
one, then for a given estimation method, the bias of quantile
estimate results from a finite random sample on the basis of
which we assess the value of a quantile, but when the hypo-
thetical distribution differs from the true one, the total bias of
quantile estimator also includes the error resulting from the
model.

The aim of the study is to show that the theoretical prop-
erties of various estimation methods vary significantly when
the choice of a hypothetical distribution is incorrect, which
is very likely in the realities of hydrology. The paper is or-
ganized as follows. After providing some introduction to the
topic, the four estimation methods and the probability distri-
butions analysed in the paper are presented in Sects. 2 and 3,
respectively. The next section provides studies on the ac-
curacy of upper quantile estimates for these two- and three-
parameter distributions under the assumption of true hypo-
thetical distribution. A similar discussion, for the case of
false hypothetical distribution, is presented in Sect. 5. The
paper is concluded in the final section.

2 Estimation methods

Several systems of summary statistics describing the proper-
ties of a random sample have been developed. Based on dif-
ferent principles they provide, in particular, the measures of
location, dispersion, skewness and kurtosis, which consecu-
tively serve for identifying and fitting PDFs. It is convenient
to use dimensionless versions of the summary statistic sets
in the form of summary statistic ratios. They measure the
shape of a distribution independently of its scale of measure-
ment. Among the systems of summary statistics, the most
popular are the system of conventional moments and that of
linear moments (L-moments). TheL-moments create an at-
tractive system because their estimators, in contrast to the
classical moments estimators, are not biased and the sam-
pling L-moment ratios have very small biases for moderate
and large samples (e.g., Hosking and Wallis, 1997). For both
the system of conventional and that of linear moments, the
measure of location is expressed by the mean(µ≡ λ1), and
the measures of dispersion and skewness are presented in Ta-
ble 1.

For the estimation of statistical characteristics, the method
of moments (MOM) (e.g., Kendall and Stuart, 1969), and the
method of linear moments (LMM) (e.g., Hosking and Wal-
lis, 1997), have been alternatively used. The MDM is an
innovative method based on applying the mean deviationδµ
about the mean value(µ) as a measure of dispersion (see Ta-
ble 1), with the mean as a measure of location andδS as a
measure of skewness (Markiewicz et al., 2006; Markiewicz
and Strupczewski, 2009). The complement to the estimation
methods based on distribution characteristics is the MLM
(e.g., Kendall and Stuart, 1973), which is based on the main
probability mass. The MLM is sometimes regarded as the
most appropriate method because it allows us to obtain the
asymptotically most efficient estimators. However, the MLM
involves relatively large computational difficulties and that,
the maximum likelihood, estimators do not always exist.
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Table 2. Probability density functions of log-normal and GEV distributions.

Distribution Probability density function (PDF)

Log-normal 3 (LN3) f (x) =
1

(x−ε)b
√

2π
exp

[
−

(ln(x−ε)−m)2

2b2

]
ε = 0: log-normal 2 (LN2) m-scale,b > 0-shape;ε <x < ∞

Generalized extreme f (x) =
1
α

[
−

κ
α (x −ε)

]1/κ−1exp
{
−

[
−

κ
α (x −ε)

]1/κ
}

values (GEV)
ε = 0: log-Gumbel (LG) α > 0-scale,κ < 0-shape;ε <x < ∞

3 Probability distributions

The true probability distribution, which reflects the time se-
ries of extreme flows for a given gauging station, is not
known. The study on a distribution form which would de-
scribe the observed data series is the subject of many pa-
pers, such as Jenkinson (1969) or NERC (1975). The hy-
drological report of the World Meteorological Organization
from 1989 (Cunnane, 1989) shows that the most commonly
used and recommended were Gumbel and log-normal distri-
butions. Nowadays, the researchers of hydrological extreme
events recommend the use of the heavy-tailed distributions
for modelling the annual maximum flows (e.g., FEH, 1999;
Rao and Hamed, 2000; Katz et al., 2002). However, as yet,
the certificate of a heavy tail of hydrological variables is not
sufficiently convincing (e.g., Rowinski et al., 2002; Weglar-
czyk et al., 2002). The heavy-tailed distributions have con-
ventional moments only in a certain range of shape parameter
values and the range decreases with growing moment order.
Since the hydrological samples of peak flows are usually of a
relatively small size, in order to estimate many parameters re-
liably and efficiently, both two- and three-parameter distribu-
tions are used in FFA, where in the three-parameter distribu-
tions the third parameter(ε) serves as lower bound (e.g., Rao
and Hamed, 2000). In the paper, to assess the accuracy of the
estimates of high quantiles, two two-parameter distributions
have been selected, i.e., log-normal 2 (LN2) and log-Gumbel
(LG) and their three-parameter counterparts, LN3 and GEV.
Density functions of distributions are shown in Table 2. Both
two- and three-parameter log-normal distributions represent
the classical (albeit borderline) type of distribution, while the
LG and GEV are heavy-tailed.

4 True hypothetical distribution

Since the true probability distribution of an observed peak
flow series is not known, it would seem that the choice of
a hypothetical distribution is the key point to the accurate
estimation of high quantiles. However, as discussed in this
section, the case where the assumed distribution is consistent
with the real one, shows that the ranking of the methods with

respect to the accuracy of large quantile estimate strongly
depends on the type of the true distribution and its shape.

The issue is analysed in the example of the quantilex=0.99,
otherwise known as the quantile 1%. This is likely the most
commonly estimated design value for the dimensioning of
hydrological structures and it defines the flow value which is
exceeded, on average, once every 100 years.

4.1 Simulation experiment

Simulation experiments are performed for two-parameter
distributions, LN2 and LG, the variation coefficient
CV (CV = σ/µ) varying from 0.2 to 1.0 , with any mean
µ> 0. The N -element samples are considered forN =

20(10)100. In each case, 20 000 random samples are gen-
erated. The value ofxF=0.99 is calculated using four estima-
tion methods under the right assumption that the population
is log-normal and log-Gumbel distributed, respectively. The
accuracy of the quantilexF=0.99 estimates is expressed by the
relative root mean square error(δ RMSE) and the relative
bias(δ B):

δ RMSE
(
x̂0.99

)
=

√
E

(
x̂0.99 − x0.99

)2

x0.99
, (1)

δ B
(
x̂0.99

)
=

E
(
x̂0.99 − x0.99

)
x0.99

The results of the experiment are presented in Tables 3
and 4 for LN2 and LG distributions, respectively. For the
sake of brevity, the selected sample sizes are shown in the
tables, i.e.,N equals 20, 60 and 100. In all tables, the best
values of the relative RMSE and B on each row are bolded.
In the asymptotic case, i.e., forN → ∞, δ RMSE

(
x̂0.99

)
and

δ B
(
x̂0.99

)
converge to zero. The quantile value in the first

column is the true value.
For three-parameter distributions, LN3 and GEV, the mean

equals zero, the standard deviation equals one and various

values of skewness coefficientCS

(
CS= µ3/µ3/2

2

)
are as-

sumed for the Monte Carlo experiment. The results are
shown in Tables 5 and 6. The range ofCS value considered
here is conditioned by the existence of skewness coefficient

www.hydrol-earth-syst-sci.net/14/2167/2010/ Hydrol. Earth Syst. Sci., 14, 2167–2175, 2010



2170 I. Markiewicz et al.: On accuracy of upper quantiles estimation

Table 3. Relative accuracy[%] of x̂0.99 for a sample from LN2, assuming LN2 model.

T = LN2, H = LN2 MOM LMM MDM MLM
µ> 0 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B

CV = 0.2 20 8.690 −1.574 8.875 0.191 8.960 −0.850 8.634 −1.416
x0.99= 1.554µ 60 5.089 −0.531 5.049 0.061 5.172 −0.276 4.985 −0.451

100 3.963 −0.327 3.901 0.023 4.014 −0.179 4.070 −0.322

CV = 0.6 20 25.80 −5.500 26.51 1.189 26.15 −1.130 23.98 −2.087
x0.99= 3.115µ 60 16.40 −2.087 14.97 0.387 15.06 −0.355 13.85 −0.674

100 13.21 −1.271 11.56 0.209 11.69 −0.244 10.70 −0.450

CV = 1.0 20 38.64 −11.41 43.30 2.097 42.53 −0.661 37.17 −0.999
x0.99= 4.905µ 60 26.38 −5.319 24.33 0.723 24.24 −0.131 21.01 −0.306

100 22.14 −3.524 18.82 0.443 18.79 −0.087 16.16 −0.245

Table 4. Relative accuracy[%] of x̂0.99 for a sample from LG, assuming LG model.

T = LG, H = LG MOM LMM MDM MLM
µ> 0 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B

CV = 0.2 20 15.86 −3.409 15.30 0.387 15.35 −0.612 12.67 −1.403
x0.99= 1.711µ 60 10.33 −1.371 8.693 0.131 8.785 −0.186 7.158 −0.468

100 8.475 −0.848 6.733 0.070 6.816 −0.125 5.545 −0.292

CV = 0.6 20 32.74 −14.19 40.78 1.196 41.37 −0.071 30.04 −0.817
x0.99= 3.183µ 60 23.52 −8.713 23.69 0.489 24.05 0.182 16.62 −0.314

100 20.40 −6.804 18.81 0.378 19.05 0.201 12.72 −0.220

CV = 1.0 20 40.38 −22.27 52.30 0.363 52.47 −0.851 39.70 0.408
x0.99= 4.167µ 60 28.37 −16.29 32.89 0.272 33.24 0.112 21.34 0.072

100 24.66 −13.40 27.20 0.367 27.35 0.320 16.24 0.000

for GEV distribution, which takes values greater than 1.1396
(e.g., Markiewicz et al., 2006, p. 394). Moreover, the maxi-
mum likelihood estimation of GEV distribution is not always
satisfactory and for some samples it appears that the likeli-
hood function does not have a local maximum (Hosking et
al., 1985). In our simulations of the GEV distribution, this
non-regularity of the likelihood function causes occasional
non-convergence of the modified Powell hybrid algorithm
(More et al., 1980; IMSL, 1997) that is used to maximize
the log-likelihood. The last column in Table 6 shows the re-
liability of MLM for the GEV distribution.

4.2 Accuracy of upper quantile estimates for
two-parameter distributions

For both distributions, LN2 and LG, for any value of vari-
ation coefficient, the method of moments gives the great-
est bias, and the higher theCV value the greater the bias.
For small samples of 20 elements from LN2 distribution,
the relative bias of quantilex0.99 estimated by MOM in-
creases from−1.57% forCV = 0.2 to−11.41% forCV = 1.0

(Table 3), while for LG distribution, these values are, respec-
tively, −3.41% and−22.27% (Table 4). For small values
of CV (CV = 0.2) the difference betweenδ B

(
x̂0.99

)
from the

MOM and from the second method in terms of high bias,
i.e., the MLM, is not large, but the distance increases with
increasingCV value. For the two distributions, the output of
the method of maximum likelihood converges to those of the
MDM and LMM, which are the best among the four estima-
tion methods studied; in most cases they give a relative bias
lower than 1% in absolute value. A clear negative MOM de-
tachment from other methods is observed for bias of LG. It
remains large even for statistically large sample, particularly
for a largeCV population value. It is also worth noting that
the MDM produces a competitive bias to LMM.

The relative root mean square error of quantile 0.99 esti-
mate is the smallest for MLM both for LN2 and LG distribu-
tion except for LN2 withCV = 0.2 andN = 100 where it is
the largest one. Among the methods built on summary statis-
tics, i.e., MOM, LMM, MDM, the method MOM produces
the smallestδ RMSE

(
x̂0.99

)
for small samples(N = 20)

of LN2 distribution, regardless of the value ofCV and for
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Table 5. Relative accuracy[%] of x̂0.99 for a sample from LN3, assuming LN3 model.

T = LN3, H = LN3 MOM LMM MDM MLM
µ = 0,σ = 1 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B

CS= 2.0 20 11.68 −4.87 14.18 1.29 14.12 1.366 21.13 4.288
x0.99= 3.519 60 7.644 −2.46 7.844 0.252 8.326 0.132 7.954 0.937

100 6.313 −1.74 6.011 0.198 6.628 0.144 5.847 0.517

CS= 4.0 20 13.40 −6.05 16.64 0.653 14.37 −0.54 27.08 7.338
x0.99= 3.905 60 9.530 −3.34 9.411 0.382 9.198 0.045 9.194 1.712

100 7.851 −2.51 7.126 0.035 7.058 0.024 6.604 0.971

Table 6. Relative accuracy[%] of x̂0.99 for a sample from GEV, assuming GEV model.

T = GEV,H = GEV MOM LMM MDM MLM Reliability
µ = 0,σ = 1 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B of MLM

CS= 2.0 20 36.23 −12.05 53.69 22.37 45.23 17.06 82.61 14.14 93.78%
x0.99= 3.479 60 25.02 −7.640 27.91 7.510 30.06 11.08 32.71 3.076 95.83%

100 20.73 −6.009 21.25 3.857 23.91 7.212 23.71 1.725 96.01%

CS= 4.0 20 47.68 −19.47 59.07 13.52 43.33 11.86 111.1 21.54 95.17%
x0.99= 3.696 60 34.35 −12.12 34.31 2.070 29.96 8.114 38.85 4.491 98.19%

100 28.68 −9.514 27.14 0.319 24.37 4.958 28.00 2.165 98.67%

log-Gumbel distribution andCV ≥ 0.6, regardless of the sam-
ple size. While in other cases considered, the MOM is the
method that yields the highest root mean square error among
the four estimation methods studied.

It is worth noting that for the heavy-tailed distributions of
largeCV value (i.e., with large skewness as well this time),
the bias of the MOM estimator of the standard deviation, and
consequently of the 1% quantile, decreases very slowly with
increasing sample size. This is clearly evident in Table 4.

4.3 Accuracy of upper quantile estimates for
three-parameter distributions

The strong inferiority of MOM in respect of the relative bias
of x0.99 quantile assessment, which has been observed for
LN2 and LG distributions, does not occur in the case of tree
parameter LN3 and GEV. For 20-element samples, the abso-
lute value ofδ B

(
x̂0.99

)
obtained from MOM is similar to the

analogical value obtained from MLM both for LN3 distribu-
tion (Table 5) and GEV (Table 6). Then, with increasing sam-
ple size, the absoluteδ B

(
x̂0.99

)
decreases significantly in the

case of MLM and slightly in the case of MOM. For LN3 and
the analysed range ofCS, the LMM and MDM yield signif-
icantly smallerδ B

(
x̂0.99

)
than MOM and MLM, regardless

of the sample size, while in the case of GEV this regularity
is not observed.

Theδ RMSE
(
x̂0.99

)
of MLM is worth the special attention.

Comparing the two-parameter distributions, the addition of

the location parameter to the distribution characteristics ef-
fects in degradation of MLM position in theδ RMSE ranking
both for the LN3 and GEV distributions. The MLM losses
its first place in all cases except the large samples(N = 100)
of the LN3. However even then, the superiority of the MLM
over the three other methods is very small. For both dis-
tributions and small samples(N = 20), the ML-estimates of
x̂0.99 have the highestδ RMSE of all four estimation meth-
ods considered and the differences between the quantile as-
sessments obtained from the MLM and other three methods
are considerable. For example, in the case of LN3 distribu-
tion of CS = 2.0 andN = 20, the relative root mean square
error of x̂0.99 obtained from the MLM is 21.13%, while
δ RMSE

(
x̂0.99

)
from the MOM, LMM and MDM are only

11.68%, 14.18% and 14.12%, respectively (Table 5). For
the GEV distribution, analogical values ofδ RMSE

(
x̂0.99

)
are 82.61%, 36.23%, 53.69%, 45.23% for methods MLM,
MOM, LMM and MDM, respectively (Table 6). The first
place of MOM in δ RMSE ranking is observed for LN3
and GEV with populationCS = 2.0, while if CS = 4.0, the
method based on mean deviation is the best with respect to
δ RMSE of quantile 0.99 estimate.

5 False hypothetical distribution

Due to the fact that the true probability distribution of the an-
nual maximum flow series is not detectable, the assumption
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Table 7. Relative accuracy[%] of x̂0.99 for a sample from LN2, assuming LG model.

T = LN2, H = LG MOM LMM MDM MLM
µ> 0 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B

C
(LN)
V = 0.2 20 12.83 8.065 20.67 16.59 19.30 14.84 40.44 33.91

x0.99= 1.554µ 60 11.10 9.399 17.83 16.39 17.23 15.68 41.20 38.61
100 10.71 9.662 17.21 16.34 16.77 15.82 41.46 39.83
∞ 10.08 10.08 16.31 16.31 16.09 16.09 42.09 42.09

C
(LN)
V = 0.6 20 21.21 −3.006 45.02 29.91 42.10 26.12 190.5 142.6

x0.99= 3.115µ 60 13.26 0.169 35.24 29.45 33.77 27.70 174.9 156.4
100 10.68 0.924 32.95 29.33 31.75 27.97 171.9 160.2
∞ 2.194 2.194 29.22 29.22 28.46 28.46 167.4 167.4

C
(LN)
V = 1.0 20 32.26 −21.69 49.25 23.13 46.96 19.43 490.3 312.7

x0.99= 4.905µ 60 23.73 −18.18 35.06 23.67 33.54 21.72 385.9 324.8
100 21.19 −17.19 31.22 23.76 29.84 22.12 366.5 329.0
∞ 15.04 −15.04 23.90 23.90 22.78 22.78 337.9 337.9

Table 8. Relative accuracy[%] of x̂0.99 for a sample from LG, assuming LN2 model.

T = LG, H = LN2 MOM LMM MDM MLM
µ> 0 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B

C
(LG)
V = 0.2 20 18.21 −11.75 16.94 −12.76 17.41 −13.31 17.73 −14.55

x0.99= 1.711µ 60 13.58 −10.13 14.34 −12.88 14.45 −12.97 15.02 −13.74
100 12.20 −9.767 13.80 −12.89 13.82 −12.90 14.44 −13.56
∞ 9.157 −9.157 12.97 −12.97 12.87 −12.87 13.30 −13.30

C
(LG)
V = 0.6 20 45.48 −16.71 40.40 −19.84 43.01 −20.19 35.11 −28.46

x0.99= 3.183µ 60 35.28 −10.63 28.26 −20.84 28.79 −20.67 30.27 −27.93
100 31.16 −8.830 25.76 −21.08 25.99 −20.82 29.25 −27.84
∞ 2.147 −2.147 21.55 −21.55 21.22 −21.22 27.70 −27.70

C
(LG)
V = 1.0 20 61.95 −17.71 63.39 −19.47 56.80 −20.20 42.12 −33.77

x0.99= 4.167µ 60 50.09 −8.599 40.71 −21.20 38.16 −20.72 36.42 −33.72
100 45.57 −5.411 35.97 −21.65 31.77 −21.24 35.34 −33.72
∞ 17.70 17.70 22.65 −22.65 22.15 −22.15 33.70 −33.70

of a false hypothetical distribution seems to be more realistic.
The error of the estimate of quantile 0.99 differs significantly
for particular options of true and hypothetical distribution as-
sumed, giving an evidence of strong influence of the type dis-
tribution, both true and hypothetical, on the accuracy of the
estimators of large quantiles.

5.1 Simulation experiment

The Monte Carlo experiment is carried out similarly as in
the case of true hypothetical distribution; however, the hypo-
thetical distribution is incorrectly assumed. Therefore, two
options for two-parameter distributions are considered, i.e.,
T = LN2, H = LG (Table 7) andT = LG, H = LN2 (Table 8),

and two options for three-parameter PDFs, i.e.,T = LN3,
H = GEV (Table 9) andT = GEV, H = LN3 (Table 10).
Note that the bias for the asymptotic case(N → ∞) can
be obtained analytically for two-parameter distributions, see
Strupczewski et al. (2002a,b) and Weglarczyk et al. (2002),
while for three-parameter PDFs analogical values have not
been derived yet. For the option of false hypothetical distri-
bution, if the sample converges to infinity, the bias is the total
error of quantile estimate, see Tables 7 and 8.
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Table 9. Relative accuracy[%] of x̂0.99 for a sample from LN3, assuming GEV model.

T = LN3, H = GEV MOM LMM MDM MLM Reliability
µ = 1 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B of MLM

C
(LN3)
S = 2.0 20 36.31 −12.45 53.79 21.57 45.39 16.15 45.11 10.13 88.03%

x0.99= 3.519 60 24.89 −8.018 28.71 7.946 31.38 12.56 23.34 7.663 96.41%
100 20.61 −6.086 22.40 5.369 26.10 10.13 17.30 6.638 96.94%

C
(LN3)
S = 4.0 20 51.18 −22.86 57.41 7.624 40.11 −10.80 * * 77.93%

x0.99= 3.905 60 35.11 −15.09 35.06 3.333 28.22 −3.860 65.60 35.76 92.99%
100 28.67 −12.36 27.29 3.257 23.75 −0.470 55.85 35.48 92.18%

* Values are unreliable due to a low percentage of successful estimation.

Table 10.Relative accuracy[%] of x̂0.99 for a sample from GEV, assuming LN3 model.

T = GEV,H = LN3 MOM LMM MDM MLM
µ = 1 N δ RMSE δ B δ RMSE δ B δ RMSE δ B δ RMSE δ B

C
(GEV)
S = 2.0 20 41.29 −17.54 48.99 1.887 48.17 1.643 66.80 6.154

x0.99= 3.479 60 28.10 −8.912 27.49 −2.329 28.91 −3.493 25.53 −4.279
100 23.04 −6.317 21.25 −2.673 22.67 −4.055 19.44 −5.439

C
(GEV)
S = 4.0 20 51.45 −21.70 61.93 −0.290 55.06 −4.047 75.95 5.476

x0.99= 3.696 60 36.79 −11.01 34.95 −3.349 33.48 −6.472 28.89 −8.278
100 30.70 −7.657 27.03 −3.733 26.30 −6.715 22.69 −10.01

5.2 Accuracy of upper quantile estimates for
two-parameter distributions

In the case ofT = LN2, H = LG, the method of maximum
likelihood is ranked the worst among four analysed esti-
mation methods. MLM generates the greatest both relative
bias and relative root mean square error (Table 7). The
MLM errors are large even for small values of the coeffi-
cient of variation and forCV = 0.2, δ B

(
x̂0.99

)
varies from

33.91% to 39.83%, depending on the size of the sample, and
δ RMSE

(
x̂0.99

)
is 40.44% to 41.46%, reaching 42% for the

asymptotic case. With increasingCV of LN2 distribution,
the errors increase significantly. ForCV = 1.0, δ B

(
x̂0.99

)
equals 312.7% for 20-elemement samples and 329.0% for
100-element samples, whileδ RMSE

(
x̂0.99

)
is 490.3% and

366.5%, respectively. ForN → ∞ both errors are 337.9%.
Other methods of estimation, built on summary statistics, are
much more accurate. In the considered range ofCV , MOM
turns out to be the best with the smallest bothδ B (absolute
values are compared) andδ RMSE. The second place is oc-
cupied by MDM and next is LMM.

For the optionT = LG, H = LN2, as in the previous case,
the relative bias of thex0.99 estimator is the greatest in case
for MLM, but the differences compared to other methods are
not so great (Table 8). The lowestδ B

(
x̂0.99

)
values are pro-

duced by MOM. The method of moments is the only method

for which the value of the relative bias strongly depends on
the sample size. Other methods, MDM, LMM and MLM, al-
ready forN = 20 give values ofδ B

(
x̂0.99

)
almost consistent

with the asymptotic case. The methods MDM and LMM
yield almost identical bias and they are classified between
the best method MOM and the worst MLM. Regarding the
relative root mean square error, for anyCV value the rank of
estimation methods strongly depends on sample size. In gen-
eral, for smallCV values, of the size 0.2, the method MLM
is the worst and MOM is the best. With the increase ofCV ,
δ RMSE

(
x̂0.99

)
increases for MOM and decreases for MLM.

It is worth noting that in the case of false hypothetical
distribution, the absolute total bias does not necessarily de-
crease with increasing sample size. This is due to the fact
that the sampling and model biases may have the opposite
signs. While in the case of true hypothetical distribution, the
absolute total bias does decrease with the sample size.

5.3 Accuracy of upper quantile estimates for
three-parameter distributions

In the case ofT = LN3, H = GEV andCS = 2.0, the four
analysed estimation methods yield comparable values of
bothδ B

(
x̂0.99

)
(in absolute value) andδ RMSE

(
x̂0.99

)
, with-

out clear superiority of one method over the other (Table 9).
However, forCS = 4.0, the maximum likelihood method is
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strongly inferior to other three methods and the method based
on mean deviation ranks very well. For 100-element sam-
ples, the relative bias of̂x0.99 obtained from MLM is 35.48%,
while δ B

(
x̂0.99

)
from the methods MOM, LMM and MDM

are only−12.36%, 3.257% and−0.470%, respectively. The
analogical values ofδ RMSE

(
x̂0.99

)
are 55.85%, 28.67%,

27.29%, and 23.75% for MLM, MOM, LMM and MDM,
in turn.

For the optionT = GEV, H = LN3, the relative bias of the
estimate of quantile 0.99 is the largest for MOM, followed
by MLM, and then by MDM and LMM (Table 10). The rank
of estimation method in respect ofδ RMSE value strongly
depends on sample size. For the considered range ofCS
andN = 20, the sequence of methods from that which gives
the smallestδ RMSE

(
x̂0.99

)
to this which gives the high-

estδ RMSE
(
x̂0.99

)
is as follows: MOM, MDM, LMM and

MLM, while for N > 60 the order is opposite.

6 Conclusions

Since the upper quantiles are design values for the dimen-
sioning of hydrological structures, the accuracy of their es-
timates is a major and extremely important issue for flood
frequency analysis. The studies presented in this paper show
that the accuracy of the estimates of flood quantiles depends
on the sample size, type of distributions, both real and hy-
pothetical, and strongly depends on the method of estima-
tion. Therefore, the properties of estimation methods cannot
be generalized in respect to distribution type or sample size,
even if the hypothetical distribution is true. However, it is
worthy to note that for two-parameter distributions, in the
case of model misspecification, the MLM yields the high-
est bias of upper quantile estimates regardless on the sample
size, while the MOM the smallest one. The correct identifi-
cation of the distribution on the basis of short data series is
not possible in hydrological reality. This finding essentially
diminishes the practical usefulness of MLM in hydrological
extremes analysis because its efficiency may not compensate
for the (frequently) huge bias produced by the assumption of
a false PDF in the region of high non-exceedance probability
quantiles which the user is often interested in. It marks a de-
parture of hydrological extreme value analysis from the clas-
sical, statistical theory of extremes whose core is maximum
likelihood method. The person making the choice of the dis-
tribution and estimation (D/E) procedure, e.g., explorer, hy-
drologist, designer, should be aware of the impact of the pro-
cedure selection on the value of desirable estimate. Presented
in this paper a comparative analysis of large quantile esti-
mates obtained by various methods of estimation under the
assumption of true or false, but close to the true type of dis-
tribution, can be a source of information about the properties
of selected D/E procedures. The studies on the estimation
methods of flood quantiles when the hypothetical model is

untrue should be continued. Despite a century of research,
the problem of flood flows modelling is still open.
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