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Abstract. Climate and land ecosystem models simulate a
dry-season vegetation stress in the Amazon forest, but ob-
servations do not support these results, indicating adequate
water supply. Proposed mechanisms include larger soil wa-
ter store and deeper roots in nature and the ability of roots
to move water up and down (hydraulic redistribution), both
absent in the models. Here we provide a first-order assess-
ment of the potential importance of the upward soil water
flux from the groundwater driven by capillarity. We present
a map of equilibrium water table depth from available ob-
servations and a groundwater model simulation constrained
by these observations. We then present a map of maximum
capillary flux these water table depths, combined with the
fine-textured soils in the Amazon, can potentially support.
The maps show that the water table beneath the Amazon
can be shallow in lowlands and river valleys (<5 m in 36%
and<10 m in 60% of Amazonia). These water table depths
can potentially accommodate a maximum capillary flux of
2.1 mm day−1 to the land surface averaged over Amazonia,
but varies from 0.6 to 3.7 mm day−1 across nine study sites.

We note that the results presented here are based on lim-
ited observations and simple equilibrium model calculations,
and as such, have important limitations and must be inter-
preted accordingly. The potential capillary fluxes are not
indicative of their contribution to the actual evapotranspira-
tion, and they are only an assessment of the possible rate
at which this flux can occur, to illustrate the power of soil
capillary force acting on a shallow water table in fine tex-
tured soils. They may over-estimate the actual flux where the
surface soils remain moist. Their contribution to the actual
evapotranspiration can only be assessed through fully cou-
pled model simulation of the dynamic feedbacks between
soil water and groundwater with sub-daily climate forcing.
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(yingfan@rci.rutgers.edu)

The equilibrium water table obtained here serves as the ini-
tial state for the dynamic simulation, and together with the
equilibrium potential capillary flux, will serve as a baseline
to evaluate the diurnal, event, seasonal and inter-annual dy-
namics.

1 Introduction

The Amazon rainforest is the planet’s largest and biologi-
cally richest ecosystem, and the threat of climate change and
deforestation requires an understanding of its responses and
feedbacks to its environment. One standing question is how
well the forest fares in the dry season under the climate to-
day, which is pertinent to how well it will fare under the pro-
jected future climate with a longer dry-season. Although an-
nual rainfall is abundant, a large part of the Amazon experi-
ences a multi-month dry season in the Austral winter. Soil
water deficit and partial shut-down of photosynthesis are in-
deed simulated in state-of-art climate and ecosystem mod-
els (Kleidon and Heimann, 2000; Werth and Avissar, 2004;
Baker et al., 2008; da Rocha et al., 2009). However, a sem-
inal paper over two decades ago (Shuttleworth, 1988) based
on observational syntheses had shown that evapotranspira-
tion (ET) in the dry season is no less than in the wet sea-
son. Subsequent flux-tower measurements at multiple sites
and satellite images revealed the same (Saleska et al., 2003;
Xiao et al., 2005; Huete et al., 2006; Ichii et al., 2007; My-
neni et al., 2007; Juarez et al., 2007; Fisher et al., 2009), all
suggesting that the Amazon forest as whole does well in the
dry-season.

A considerable literature exists proposing different mech-
anisms to explain the observed absence of water stress. First,
soil water store is far greater in nature then assumed in most
land surface models; in nature, this storage is filled in the
wet season and supports ET in the following dry season;
in models, excess infiltration drains through the soil column
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and is removed as river outflow, no longer available for plant
use later. Second, tree roots extend deeper than model soil-
root system and can access deep water (Nepstad et al., 1994;
Kleidon and Heimann, 2000; Ichii et al., 2007; Harper et
al., 2010). But global syntheses of observations suggest that
95% of root mass resides in the top 2 m of soil for all ma-
jor biomes of the world (Schenck and Jackson, 2002), and
tracer studies in the field found that the root system does not
seem to take water beyond 2 m depth (Sternberg et al., 2002;
Romero-Saltos et al., 2005). These observations suggest that
the role of deeper roots is not entirely clear, and they seem
to justify the common practice of including only the top 2 m
soil in models. Third, the small fraction of deep roots, al-
beit insignificant in mass, can be efficient water conduits via
hydraulic lift or redistribution (HR) (Dawson, 1993; Cald-
well et al., 1998; Burgess et al., 1998; Oliveira et al., 2005;
Lee et al, 2005; Amenu and Kumar, 2008); rooting depth
can be tens of meters in plants relying on deep sources as
in arid climate (Canadell et al., 1996). A modeling study
(Lee et al., 2005) found that incorporating HR significantly
reduced, although far from eliminated, the model ET bias
(still 50% less than observed). The modeling study by Baker
at al. (2008) further shows that the combination of all above
(deep soil, deep roots, and HR) performs better than any one
alone. Fourth, upward soil water flux driven by capillary
force in the dry season, from the deeper and wetter soil to
the shallower and drier soil, may be an important mechanism
(da Rocha et al., 2004; Romero-Saltos et al., 2005; Bruno et
al., 2006). Finally, the groundwater may be a source where
it is directly accessible by roots as suggested by field stud-
ies (Poels, 1987; Vourlitis et al., 2008). Diurnal variations in
water table depth that coincide with the period of photosyn-
thesis in a Suriname rainforest are direct indications of water
table contribution to forest ET (Poels, 1987).

We have not found any systematic investigations of the in-
fluence of groundwater on land surface fluxes across the wide
range of hydrologic-ecologic conditions found in the Ama-
zon. Observations of water table depth were reported at very
few sites in the Large Scale Biosphere-Atmosphere Experi-
ment in Amazonia (LBA), an internationally-coordinated re-
search initiative led by Brazilian scientists. Nor did we find
Amazon-wide modeling studies that incorporate the water ta-
ble in simulating Amazon land surface fluxes. The objective
of this study is to make a preliminary assessment of the po-
tential importance of the groundwater. First, we present wa-
ter table observations compiled from multiple sources. Sec-
ond, we synthesize the sparse observations using a simple 2-
dimensional groundwater flow model, to interpolate the ob-
servations and to elucidate process controls on water table
depth from hillsope to continental scales. Third, we calculate
the potential (maximum) capillarity-driven soil water fluxes
from the modeled water table in the Amazon by solving the
Richards Equation, and place them in the context of available
ET estimates. Throughout the study, we attempt to keep the
methodology as simple as possible.

2 Water table observations

The first issue to be examined is the depth of the water ta-
ble. A deep water table will have little influence on root-
zone soil moisture and surface fluxes, but a shallow water
table (within or not far below rooting depth) will impede soil
water drainage during rain periods and hence prolong the ef-
fect of rain, and moisten deep roots and shallow soil during
dry periods via hydraulic redistribution and capillary flux.

We compiled observations of water table depth (WTD) at
34 351 sites over the South American continent (Fig. 1) from
government archives and published literature. We searched
the government database of each country in S. America and
each province except for Brazil and Chile which have a na-
tional database. Repeated emails were sent and phone calls
were made where no data was found on the government web-
site or the data is incomplete. Tens of published articles are
also found which reported the water table depth. Data are
mostly presented as plots or maps, from which we read the
approximate values. More information on the compilation of
these observations are provided in the Supplement.

The Brazilian Geological Survey (http://siagasweb.cprm.
gov.br/layout/index.php, last accessed on 14 October 2010)
is the single largest source (98%) with 33 570 wells in un-
confined aquifers. Unfortunately they are concentrated in
the developed eastern and southeastern Brazil and clustered
over large metro regions, because these wells were drilled
for groundwater exploitation, not for observation and re-
search; groundwater is considered cleaner and has replaced
surface water to be the major source for municipal supply.
About 95% of the wells in the dataset report high pumping
rates. In Amazonia, all metro regions are situated on princi-
ple aquifers and supplied by groundwater (see Fig. S1, Sup-
plement). This introduces a low bias in the observations, an
issue to be kept in mind when validating model simulations
that cannot incorporate groundwater pumping. However, this
is the best dataset available at this time, and it offers a lower
bound to the natural water table depth.

In the Amazon, WTD varied from land surface to 159 m
(distribution shown in Fig. 1 inset). Even with widespread
pumping, the water table is relatively shallow: 34% of the
sites with WTD<5 m, 57% of the sites with WTD<10 m,
and the peak of the histogram occurs at 2–4 m. This suggests
that a shallow WTD is widely observed. At least at these
observation sites, it has the potential to influence the land
surface.

However, these observations are far too sparse to resolve
the spatial variations in water table at scales relevant to sur-
face and groundwater convergence (hilltops to valleys) and
to synthesize the patterns of climate and terrain control on
groundwater regimes across the continent. There is a need to
first, interpolate the observations to fill in the gaps, and sec-
ond, to synthesize the observations within the framework of
hydrologic processes, so that the hydrologic reasons of deep
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Fig. 1. Observations of water table depth, WTD (m), compiled from government archives and 
published literature, with the outline of Amazonia ecosystem (inset gives the histogram of WTD). 
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Fig. 1. Observations of water table depth, WTD (m), compiled from
government archives and published literature, with the outline of
Amazonia ecosystem (inset gives the histogram of WTD).

vs. shallow water table can be revealed. This is the subject of
the next section.

3 Groundwater flow simulation

We use a groundwater model to simulate the hydrologic
equilibrium water table depth over the continent. This
equilibrium water table depth reflects the long-term bal-
ance between the climate-induced vertical flux (P -ET) and
terrain-induced lateral divergence from high grounds and
convergence into discharge zones. The model was devel-
oped and tested in our recent work over N. America using
>567 000 site observations and mapped wetlands (e.g., Fan
and Miguez-Macho, 2010). The model concept is simple
(Fig. 2a); climate forcing is precipitation (P ) minus ET and
surface runoff (Qs), giving the net flux across the water table,
or recharge (R): R = P −ET−Qs. The latter is redistributed
by lateral groundwater divergence under high grounds (Q)

and convergence under lowlands, which feeds rivers and wet-
lands (Qr). The water table position is constrained by the sea
level along the coast, the ultimate baseline for continental
drainage. The resulting water table is an undulating surface
beneath land topography, occasionally seen at the surface as

springs, wetlands and rivers, and merging with the sea level
along the coastline.

At the hydrologic equilibrium, mass balance dictates that
in hillslope cells, recharge (R) balances lateral divergence
(Q) to the lower neighbors (Fig. 2a):

R =

∑
Q (1)

And in valley cells, lateral convergence (Q) balances dis-
charge into rivers and wetlands (Qr):∑

Q = Qr (2)

Equation (2) also applies to coastal cells where groundwater
must exit before the sea. River-wetland cells appear natu-
rally in the simulation where water table rises to the land
surface as dictated by mass balance. At these cells, the
water table is reset at the surface, mimicking river and ET
removal in nature (Qr). The lateral groundwater flow be-
tween cells (Q) is calculated with the Darcy’s law and the
Dupuit-Forchheimer Approximation (lateral flow only) (see,
e.g., Freeze and Cherry, 1979), which relates the water table
slope to groundwater flow rate:

Q = wT

(
h−hn

l

)
(3)

whereQ is the flow between the center cell and neighbor
n, w the width of cell interface,T the transmissivity,h the
water table head above sea level,hn the head in neighborn,
and l the distance in between. To obtainT (integration of
hydraulic conductivity over depth), we examine two cases
(Fig. 2b): water table above (case-a) or below (case-b) the
depth (d0) with known hydraulic conductivityK0. The dis-
tinction is necessary because global soil datasets do not in-
clude information below the top 2–3 m of land surface, and
hence they need to be treated separately. In Case-a, the water
table depthd1 is shallower thand0 and we have,

T = T1+T2,T1 = K0(d0−d1),T2 =

∞∫
0

Kdz′

=

∞∫
0

K0exp(−
z′

f
)dz′

= K0f (4)

wherez′ is depth belowd0, with K assumed to decrease ex-
ponentially fromK0,

K = K0exp(−z′/f ) (5)

wheref is the e-folding depth (more below). In Case-b, the
water table isd2 below the knownK,

T=

∞∫
d2

Kdz′
=

∞∫
d2

K0exp(−
z′

f
)dz′

= K0f exp

(
−

z−h−d0

f

)
(6)

wherez is land surface elevation of the center cell.
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Fig.2. (a) Schematic of the 2D groundwater model to simulate the climate (recharge R), terrain (lateral 
flow Q) and sea level (boundary condition) control on water table depth over a continent. In upland 
cells, recharge balances lateral groundwater divergence to lower neighbors. In valley or coastal cells, 
lateral groundwater convergence discharges into wetlands and rivers, (b) details of calculating flow 
transmissivity, T, for Case-a, water table within the depth of known soil hydraulic conductivity (K), and 
Case-b, water table below the known depth where K is assumed to decrease exponentially with depth. 
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Fig. 2. (a)Schematic of the 2-D groundwater model to simulate the climate (rechargeR), terrain (lateral flowQ) and sea level (boundary
condition) control on water table depth over a continent. In upland cells, recharge balances lateral groundwater divergence to lower neighbors.
In valley or coastal cells, lateral groundwater convergence discharges into wetlands and rivers,(b) details of calculating flow transmissivity,
T , for Case-a, water table within the depth of known soil hydraulic conductivity (K), and Case-b, water table below the known depth where
K is assumed to decrease exponentially with depth.

To calculate groundwater flow, hydraulic conductivityK

for the geologic material must be known at tens of meters
of depth, but global soil datasets do not go below the top 2–
3 m of land surface. Lacking actual measurements, we adopt
common assumptions on its vertical distribution. Permeabil-
ity of the Earth’s crust generally decreases with depth (Man-
ning and Ingebritsen, 1999). At the scales of tens of me-
ters, it is widely assumed that the decay is exponential (e.g.,
Beven and Kirkby, 1979; Jiang et al., 2009), in the form of
Eq. (5). The e-folding depth,f , reflecting sediment-bedrock
profile at a location, depends on the balance among tectonics,
in-situ weathering, and erosion-deposition, a complex func-
tion of climate, geology and biota. But the balance depends
strongly on terrain slope; the steeper the land, the thinner the
soil. Climate plays an important role but the mechanisms
are more complex; e.g., low rainfall produces low sediment
runoff, leading to sediment accumulation and deep soil; high
rainfall leads to deeper percolation and denser biota, enhanc-
ing in-situ weathering and leading to deeper soil as well. For

simplicity with only the first order control, we consider the
terrain slope only. The function off (in m) with slopes

is determined by calibration to best reproduce water table
and wetland observations in N. America (Fan and Miguez-
Macho, 2010) and takes the form:

f =
75

1+150 s
,f ≥ 4 m (7)

Since there are no continental-scale observations of water ta-
ble recharge (R in Eq. (1) and Fig. 2a), it is obtained from
four global land surface models asR = P −ET−Qs (Fig. 3)
whereP is observation-based, but ET andQrms (surface
runoff) are model simulated. The HTESSEL model is the
land surface component of the ECMWF GCM (Balsamo et
al., 2009). The other three, CLM, MOSAIC, and NOAH,
are participants of the NASA’s Global Land Data Assimila-
tion System (GLDAS) (Rodell et al., 2004). The four models
had been run to simulate the global land hydrology over the
past decades. The four models give different estimates of
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 Fig. 3. Mean annual water table recharge (mm yr-1) simulated by four global land surface models: (a) 

HTESSEL (Balsamo et al., 2009, data from B. van den Hurk), (b) CLM, (c) MOSAIC, and (d) NOAH 
(last three from GLADS, Rodell et al., 2004).  

28yrs, 1979-2007 
Amazonia Mean: 

411 mm

10yrs, 1986-1995 
Amazonia Mean: 

839 mm 

28yrs, 1979-2007 
Amazonia Mean: 

476 mm 

28yrs, 1979-2007 
Amazonia Mean: 

787 mm

(a) (b) 

(d) (c) 

Fig. 3. Mean annual water table recharge (mm yr−1) simulated by
four global land surface models:(a) HTESSEL (Balsamo et al.,
2009, data from B. van den Hurk),(b) CLM, (c) MOSAIC, and(d)
NOAH (last three from GLADS, Rodell et al., 2004).

recharge forcing due to inherent differences in flux parame-
terization and soil configurations (see Table 1 for soil depth
and layer information). We note that CLM gives the low-
est recharge estimates in the Amazonia which will result in
the deepest water table simulation; everything else equal, a
higherR leads to a higher water table. To obtain the range
of water table depths due to uncertainties in recharge, we use
R from all four models and choose the one that best agrees
with WTD observations and gives a conservative (or deeper)
estimate of the water table depth and its potential impact on
land surface hydrological balance.

Digital topography data, at 3 arc-second resolution, was
obtained from the US Geologic Survey (http://hydrosheds.
cr.usgs.gov/, last accessed on 14 October 2010) and ag-
gregated to 9 arc-second for the simulation in S. Amer-
ica (∼157 m×274 m at the southern tip of the continent, to
∼280 m×274 m at the Equator), totaling 248 103 766 cells
over the continent and 84 184 468 in Amazonia. This grid
size is a compromise between the need to resolve fine terrain
features and computation feasibility. Terrain slope is shown
in Fig. 4a, which is used to calculate the rate of decrease in
permeability with depth (Eq. 7). It gives the first indication
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 Fig. 4. (a) Terrain slope at 9 arc-second resolution, and (b) soil texture classes from GLDAS (Rodell et al., 2004).  

Fig. 4. (a) Terrain slope at 9 arc-second resolution, and(b) soil
texture classes from GLDAS (Rodell et al., 2004).

of land drainage efficiency; the flat (purple) Orinoco, upper
and middle Amazon, and the vast area from Brazilian Pan-
tanal to Argentina Pampas are regions of poor drainage and
likely high water table.

Soil information is derived from UNESCO’s Food and
Agriculture Organization (FAO) digital soil map of the
world at 5 arc-minute grids. Fractions of silt, clay, and
sand are mapped to 12 soil-texture classes defined by
the US Department of Agriculture (http://soils.usda.gov/
education/resources/lessons/texture/, last accessed on 14 Oc-
tober 2010). The 12 soil classes (Fig. 4b) are assigned soil
hydraulic parameters based on established and commonly
adopted procedures (Clapp and Hornberger, 1978). The
dominant soil types in the Amazonia are clay-loam (class
8) and clay (class 11), both fine-textured and conducive to
strong capillary fluxes.

Lateral boundary condition for the water table head is set
at sea level along the coast. Although our primary interest
is in the Amazonia, the simulation needs to include the en-
tire continent so that the sea level, the true physical boundary
condition for water table head, can be used to constrain the
model. Starting the initial water table at the land surface, we
solve the flow equations iteratively until the mass balance er-
ror is less than 1 mm year−1. This is done by first, calculating
the lateral flow between the cells based on the initial water
table guess using the Darcy’s equation, second, checking the
mass balance at each cell, and third, adjusting the water ta-
ble up (if influx > outflux) or down (if influx< outflux) to
reduce the imbalance. This procedure is repeated until mass
balance error is<1 mm year−1 at all cells. The simulations,
forced by four recharge estimates, are shown in Fig. 5 at the
9 arc-sec resolution (∼274 m).

We note the broad features in WTD distribution common
to all four simulations. A shallow water table is found in
four types of settings. The first is the humid lowlands of the
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Table 1. Comparison of biases in the simulated WTD using four recharge estimates, for the continental validation.

Model (no. layers, Residual Histogram Correlation with Correlation with Correlation with

soil depth) Shift Stand. Dev. Skew Precipitation Land Elevation Terrain Slope

HTESSEL (4, 2.89 m) −0.55 21.35 +0.10 +0.2458 −0.1282 −0.2800
CLM (10, 3.44 m) +1.91 18.19 +1.10 +0.0370 −0.0530 −0.3681
MOSAIC (3, 3.50 m) −4.36 22.38 −0.34 +0.2447 −0.1376 −0.2814
NOAH (4, 2.0 m) +2.66 18.19 +1.11 +0.0846 −0.0592 −0.3484

Orinoco and Amazon basins with high rainfall over a land of
poor drainage. The unusually low elevation of the interior
Amazon, at such a great distance from its outlet, was mar-
veled at by early explorers (e.g., Wallace, 1889) describing
the region as a flat plate with a steep rim (the Andes). The
Pastaza-Marãnón basins in the Peruvian Amazon, no more
than 200 m above sea level, are down-warped basins as the
Andes rose (Clapperton, 1993) and are being actively filled
in by sediments derived from the Andes. Drainage in these
continental depressions simply cannot keep pace with the
high annual rainfall. The second setting is the flat lowlands
in semi-arid to arid climate, but nonetheless receiving large-
scale groundwater convergence, as in the vast region from
Mato Grosso of Brazil to the Pampas of Argentina, where the
Pantanal, the world’s largest freshwater wetland, has devel-
oped; in the model, this is a direct result of allowing lateral
redistribution of recharge by groundwater flow at inter-cell
to continental scales. The third setting is the coastal belt be-
cause the water table cannot drop blow the sea level; in the
model, this is a direct result of setting the sea level as the
lateral boundary condition. The fourth is the river valleys
(details in Figs. 9 and 11) dissecting the plateaus of Guyana
and Brazilian Highlands where the shallow water table along
river corridors is known to support gallery forests in other-
wise dry grasslands (Whitmore and Prance, 1987; Clapper-
ton, 1993); in the model, this is a direct result of hillslope
to catchment-scale groundwater convergence, a process that
hydrologists know very well.

It is seen here that a primary function of the groundwater
flow system is to re-organize the land surface surplus (i.e.,
rechargeR) according to the terrain structure at hillslope to
continental scales, with respect to the sea level control on
coastal drainage. This terrain structure and sea level control
may over-ride climate control in many cases in maintaining a
high water table, such as in the Pampas region of Argentina,
the river corridors in the Cerrados of eastern Brazil, and the
arid valleys and coastal zones in Peru and Chile.

4 Validation of WTD simulations

We validate the simulations with all available observations,
first over the continent, second over the Amazonia, and third
at nine research sites reported in the literature.
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Fig. 5. Simulated equilibrium water table depth (m) forced by recharge from (a) HTESSEL, (b) CLM, 
(c) MOSAIC, and (d) NOAH. Fig. 5. Simulated equilibrium water table depth (m) forced by

recharge from(a) HTESSEL, (b) CLM, (c) MOSAIC, and (d)
NOAH.

4.1 Over the continent

The 34 351 site observations (Fig. 1) fall into 27 947 model
cells over the continent. We examine the model residual
(simulated – observed head). Without systematic biases, the
residual should follow a zero-mean and symmetrical distribu-
tion with no dependence on climate or terrain but allowance
for random deviations due to coarse grids (∼274 m cell vs.
well/point observations), generalization in geology (neglect-
ing aquifer heterogeneity) and the temporal noise (obser-
vations taken at different times). Table 1 summarizes the
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Fig. 6. Residual statistics for the four simulations:(a) histogram of the residual (modeled head - observed head),(b) residual vs. annual
precipitation,(c) vs. land elevation, and(d) vs. terrain slope, with the Pearson correlation coefficient (r) given.

residual statistics, and Fig. 6 plots the residual histogram (a),
dependence of residual on annual precipitation (b), land ele-
vation (c) and slope (d), from the four recharge forcings. The
simulation using HTESSEL recharge has the smallest conti-
nental mean residual (−0.55 m, i.e., simulation 0.55 m too
low compared to observations); Mosaic has the largest resid-
ual (−4.36 m, simulation 4.36 m too low); CLM and NOAH
both have a positive residual (1.91 m and 2.66 m too high,
respectively). Because the observations likely contain a low
bias due to pumping, the CLM and NOAH forced simula-
tions may be closer to the natural water table conditions.
Common among the four is a negative residual correlation
with terrain slope, that is, the positive model-bias occurs
mainly in flat areas, consistent to the notion of low bias in ob-
servations due to pumping which occurs at flat lands where
cities, industries and agriculture are located.

4.2 Over the Amazonia

Validation statistics over the Amazonia (outline in Fig. 1),
where 2511 grid cells have observations, is given in Table 2
and Fig. 7. The CLM-forced simulation has the smallest
mean bias, but even CLM, the lowest recharge over the
Amazon (Fig. 3), produces a water table that is 2.31 m too
high compared to the observations. Groundwater pumping,
clustered over large metro regions in Amazonia is again
thought to be a cause; large cities such as Manaus, Belém,
Santaŕem, Rio Branco, and Boa Vista, situated on major

aquifers, are partially, and the city of Vilhena is entirely,
supplied by groundwater. In the state of Maranhão (capital
being S̃ao Lúıs), 70% of the water supply for its cities comes
from the groundwater. The fact that these observations are
in dense clusters over major cities further enhances their
influence on the statistics because any pumping well in the
cluster would affect all the other wells nearby. The mostly
eliminated groundwater recharge over urban pavements
also contributes toward the low bias (http://www.ana.gov.
br/pnrhnovo/documentos/01%20Disponibilidade%20e%
20Demandas/VF%20DisponibilidadeDemanda.pdf, last
accessed on 14 October 2010). However, it is difficult
to remove these effects without some degree of arbitrary
manipulation of the data, and thus we use them here but
recognize the biases.

Another possible cause is that even the CLM recharge,
the lowest of the four GLDAS model estimates, contains a
positive bias. The GLDAS land models did not include the
water table as a source of ET, and if indeed the water ta-
ble is an important source as hypothesized here, then these
models may have likely under-estimated the ET and over-
estimate the recharge. Figure 8 shows the 30 year mean
water balance as simulated by CLM, with precipitation (P )
based on observations. The mean ET rate in the Amazon
(Fig. 8b) is in the range of 3.0–4.5 mm day−1, very close to
the observations and model synthesis of 3.75 mm day−1 by
Fisher et al. (2009). It suggests that CLM mean soil wa-
ter balance, and hence the soil water drainage or water table
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Table 2. Same as Table 1, but over the Amazonian ecosystem (outline in Fig. 1).

Model (no. layers, Residual Histogram Correlation with Correlation with Correlation with

soil depth) Shift Stand. Dev. Skew Precipitation Land Elevation Terrain Slope

HTESSEL (4, 2.89 m) +4.36 8.59 +1.63 −0.1073 +0.0902 −0.0955
CLM (10, 3.44 m) +2.31 8.71 +1.52 −0.0779 +0.0454 −0.1827
MOSAIC (3, 3.50 m) +2.75 8.80 +1.37 −0.0040 −0.0076 −0.1755
NOAH (4, 2.0 m) +4.11 8.65 +1.74 −0.0825 +0.0679 −0.1136

 

Copernicus Publications 
Bahnhofsallee 1e 
37081 Göttingen 
Germany 
 
Martin Rasmussen (Managing Director) 
Nadine Deisel (Head of Production/Promotion) 

Contact 
publications@copernicus.org 
http://publications.copernicus.org 
Phone +49-551-900339-50 
Fax +49-551-900339-70 

Legal Body  
Copernicus Gesellschaft mbH 
Based in Göttingen 
Registered in HRB 131 298 
County Court Göttingen 
Tax Office FA Göttingen 
USt-IdNr. DE216566440 

 

Page 1/1 

 
 
 
 
 
 

Fig. 7. Same as Fig. 6, but for validation over the Amazonia (outline shown in Fig. 1).

recharge, is reasonable. However, recharge is calculated as
R = P −ET−Qs, whereQrms is surface runoff, so biases in
Qrms also matter. There are no surface runoff observations
to assessQrms , and the issue of possible recharge bias re-
mains unsolved. An estimate of recharge as a result of water
table feedbacks can only be achieved by coupled soil water
and groundwater simulations which is the intention of our
future work. In this paper, we keep our analysis simple and
attempt to provide a preliminary water table assessment from
available recharge estimates.

We note that the large residual standard deviation in Ta-
bles 1 and 2 have several causes. First, the mean water table
depth over the grids of∼274 m are compared with well ob-
servations taken at a point, and depending on whether the
point is on the hilltop or at the valley bottom, the observed
water table can vary. For example, in the Ducke Reserve near
Manaus (Cuartas, 2008), the water table head can differ by
>30 m within the span of a grid cell. Second, groundwater

pumping can lower the local water table by tens of meters,
rendering the observations greatly different from the natu-
ral conditions which the model attempts to simulate. Third,
heterogeneity in local permeability is neglected due to the
lack of actual permeability data across the continent. Instead,
a uniform parameterization is applied which considers only
the influence of terrain slope on soil depth. While this may
work well over the continent statistically, it can misrepre-
sent local conditions and causing the large deviation between
model and observations. Fourth, while the model attempts
to simulate a hydrologic equilibrium condition, the observa-
tions are taken at various times over several decades; nearly
all of the sites have only one reading, that is, each observa-
tion point has a different time stamp. This introduces a large
temporal noise that also causes a large deviation between
model and observations. Thus the large standard deviation
is a result of inherent deficiencies in the observations (point
nature, groundwater pumping, and temporal noise) and the
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Fig. 8. CLM long-term (1979-2008) mean water balance: (a) precipitation P, (b) ET flux, (c) 
surface runoff Qs, and (d) water table recharge R, all in mm/day. The latter is estimated as 
R=P-ET-Qs. 

(a) (b) 

(c) (d) 

Fig. 8. CLM long-term (1979–2008) mean water balance:(a) precipitationP , (b) ET flux, (c) surface runoffQrms , and(d) water table
rechargeR, all in mm/day. The latter is estimated asR = P −ET−Qs.

simple parameterization of permeability in the absence of ac-
tual measurements. These issues cannot be resolved by this
study alone without fundamental improvement in the obser-
vational dataset, detailed characterization of local aquifers
over the continent, and greater computational power. How-
ever, our goal is to provide a first-order assessment of the
water table position and its potential influence on land sur-
face fluxes. The result may illustrate the need to improve
groundwater observations and subsurface datasets in support
of better large-scale groundwater models.

4.3 At nine research sites reported in the literature

As a third step of validation, we zoom into various study sites
reported in the literature and examine how well the simulated
water table compares with local observations where they are
available. In particular, we assess how well the model re-
produces the observed spatial patterns along the topographic
gradient. A search of literature found nine sites in Amazo-
nia with WTD reports (Fig. 9). These research sites are not
affected by groundwater pumping based on the descriptions

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Sites of detailed validation using water table observations from published 
literature (base-map: vegetation index from R. Simmon, NASA Earth Observatory).  

White Sand 

Juruena 

Manaus 

Kabo/Tonka 

Bananal Island 

Redenção 

Acre 

Sinop 

Santarem 

Fig. 9. Sites of detailed validation using water table observations
from published literature (base-map: vegetation index fromR. Sim-
mon, NASA Earth Observatory).
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Fig. 10. Simulated WTD (m) surrounding the nine sites (Fig. 9) with WTD observations (white cell = 
WTD at land surface). 

Kabu/Tonka White Sand Manaus 

Santarem Redencao Acre

Juruena Sinop Bananal Island 

Fig. 10. Simulated WTD (m) surrounding the nine sites (Fig. 9) with WTD observations (white cell = WTD at land surface).

given in the articles. The reported WTD are compared with
the simulation forced by CLM (smallest bias, lowest recharge
and deepest water table). The simulated WTD over a 50×50
cell area surrounding the sites is shown in Fig. 10. Compar-
isons between simulated and observed WTD at three charac-
teristic topographic positions (valley, mid-slope, and plateau)
are given in Table 3 and plotted in Fig. 11. Note that the large
range in both the observed and simulated WTD is due to the
fact that the exact location of observations are not given in the
articles but only described as valley (or low-ground), mid-
slope (or mid-ground) and plateau (or high-ground) or sim-
ilar categories. The simulated counterparts are also broadly
defined, with the range of WTD in Table 3 and Fig. 11 based
on the maps in Fig. 10. This general comparison suggests
that the CLM-forced simulation is accurate in the valleys as
expected, as they are groundwater convergence zones, but it
is deeper than observed under mid-grounds and high-grounds
in seven of the nine cases.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Comparison of simulated and observed water table depth (m) at the nine sites (data in table 3).
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Fig. 11. Comparison of simulated and observed water table depth
(m) at the nine sites (data in Table 3).
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Table 3. Information on the 9 sites for detailed validation and comparison between observed and simulated WTD (forced by CLM).

Site and Source Location Annual P (mm) Soil Vegetation Observed WTD (m) Simulated WTD∗ (m)
Latitude◦ Longitude◦ Elevation, m valley midslope plateau valley midslope plateau

Kabo/Tonka (Poels,
1987)

5.29 −55.65 30–50 2116 sandy loam dense evergreen
forest

0–1 2–5 4–8 0–2.5 2.5–10 10–20

White Sand
(Bongers et al.,
1985; Coomes and
Grubb, 1996)

2.49 −66.14 99–105 2600–3600 bleached sand palm forest to
short caatinga

0–0.4 0–0.9 0.4–1 0–2.5 2.5–5 5–10

Manaus (Cuartas,
2008; Hodnett et
al., 1997a, 1997b)

−3.13 −60.12 30–120 1800–2800 clay loam dense evergreen
forest

0–0.5 0.5–5 20–40 0–2.5 2.5–20 20–40

Santarem (Nepstad
et al., 2002)

−2.897 −54.952 ∼ 160 2000 Oxisol rich in
kaolinite clay

dense evergreen
forest

> 12 0–2.5 2.5–10 10–40

Redenç̃ao (Grogan
and Galvao, 2006)

−7.83 −50.27 220–250 1700–1900 varied sand
shallow rock

transitional ever-
green forest

0–4 0–8 2–10 0–2.5 2.5–5 5–20

Acre (Selhorst et
al., 2003)

−10.0831 −67.6236 ∼ 220 1640 Oxisol evergreen forest 3–9 6–10 0–2.5 2.5–10 10–20

Bananal Island
(Borma et al.,
2009)

−9.82 −50.15 170–182 1656 hydromorphic
sand

flooded savvana
and forest

0–2 0–2 0.6–4.5 0–2.5 0–2.5 2.5–10

Juruena (Jirka et al.,
2007)

−10.50 −58.50 240–280 2200 clay loam ecotone
rainforest
– savanna

0–1 0.5–3 3–7 0–2.5 2.5–10 10–40

Sinop (Vourlitis et
al., 2008)

−11.4125 −55.325 335 1857 quartzarenic
neosol – sandy

tropical semi-
deciduous forest

3–3.5 0–2.5 2.5–10 10–20

∗ Corresponds to the center area of the images in Fig. 10.

In summary, the validations with point observations over
the continent and the Amazonia suggest that the simulations
in general have no systematic biases along climate and ter-
rain gradients, but all four give a WTD that is shallower than
observed in the Amazonia. Likely causes are the low bias
in the observations from pumping and possible high bias in
GLDAS recharge estimates. To be conservative, we use the
simulation from the lowest recharge in the Amazon (CLM)
for the remainder of the study. We note that the CLM-forced
WTD, when compared with detailed observations at nine
sites, appears accurate in the valleys but too deep under mid
and high grounds, which may under-estimate its potential in-
fluence on the land surface in upland ecosystems.

Based on the CLM-forced simulation, 36% of the area in
Amazonia has a WTD<5 m, and 60%<10 m. This is close
to the observations where 34% has a WTD<5 m, and 57%
<10 m. Note that groundwater observations for exploitation
purposes are rarely made in swampy and inhabitable regions
where the WTD is at or above the surface, and hence such
conditions may be under-sampled. The extremely steep or
arid regions are also likely under-sampled. In this sense,
the simulated WTD distribution may better reflect the nat-
ural range and distributions of WTD.

The potential influence of the water table on land surface
depends not only on its depth but also on the soil character-
istics that control the strength of capillary flux. Next we cal-
culate the upward soil capillary flux the soils of the Amazon

can potentially support from the simulated WTD distribution
based on simple calculations.

5 Calculating potential soil capillary flux from the
water table

Soil water movement occurs in 3 vertical zones (Fig. 12a).
Above the water table, the soil is unsaturated, and both cap-
illary force (C, upward or downward) and gravity forces (G,
downward) drive the flux; below the water table, the soil is
fully saturated and gravity drives the lateral exchange with
the neighboring area depending on the water table slope.
Above the water table is a zone of saturation termed capil-
lary fringe (or tension-saturated-zone). The physics of soil
water movement in a column is described by the Richards
Equation, solved in most land surface components of climate
and ecosystem models. We use the Clapp-Hornberger (1978)
soil water retention relation and solve the Richards Equation
numerically for the two dominant soil types in the Amazo-
nia (clay-loam and clay, Fig. 4b), with a prescribed bound-
ary condition of wilting point in the top layer (all layers are
0.05 m thick) and saturation in the layer containing the water
table. The resulting soil moisture profiles and capillary fluxes
are shown in Fig. 12b for the two soil types. The soil mois-
ture profiles indicate that the water table can keep the shal-
low soils above their wilting point for all water table depths
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Fig. 12. (a) Typical soil water zones. Upward and downward capillary fluxes (C) and downward gravity flux (G) drive soil water movement 
above the water table, and gravity (G) drives the flow below the water table. (b) Theoretical soil moisture profile and upward capillary flux 
(mm day-1) calculated from the Richards Equation, with wilting point prescribed in the top 0.05 m and saturation at the water table at 
various depths (1, 2, 5, 10, and 20 m), for the two most abundant soil types in the Amazon (clay-loam and clay). These fluxes represent 
the potential or maximum strength of the capillary force. 
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Fig. 12. (a)Typical soil water zones. Upward and downward capillary fluxes (C) and downward gravity flux (G) drive soil water movement
above the water table, and gravity (G) drives the flow below the water table.(b) Soil moisture profile and upward capillary flux (mm day−1)

calculated from the Richards Equation, with wilting point prescribed in the top 0.05 m and saturation at the water table of various depths (1,
2, 5, 10, and 20 m), for the two most abundant soil types in the Amazon (clay-loam and clay).

examined here (1–20 m). Upward capillary fluxes from the
water table are very large with WTD< 2 m but decreases
rapidly as the water table drops deeper, similar to an expo-
nential decay.

Before applying the above method to the Amazon, two
issues must be addressed. First, the theoretical maximum
flux obtained above exceeds the potential evaporation rate at
shallow water table depths (Fig. 12b), because the latter is
limited by available energy, atmospheric vapor pressure and
turbulence, and diffusion kinetics, but the former is entirely
driven by the metric potential between the dry top and the
saturated water table. To address this issue, we place a cap
of 5 mm day−1 to the solution of Richards Equation. This
cap is below the maximum observed ET; globally, closed
canopy tropical forests can evaporate up to 2 m year−1, or
5.5 mm day−1 (Gordon et al., 2005); estimates of ET from
a wet forest in Costa Rica, based on two methods (Penman-
Montieth and Priestly-Taylor), are 5.2 and 6.3 mm day−1 in
1998 and 1999 respectively (Loescher et al., 2005). Thus a
cap of 5 mm day−1 used here is considered reasonable.

The second issue is that the Amazonian surface soil on the
valley floors may never dry down to the wilting point due to
the presence of a shallow water table maintained by contin-
uous groundwater convergence. Hence the combination of
a wilting-point top soil and a shallow water table is theoret-
ically inconsistent. To address this problem, we solve the
Richards Equation with a prescribed top soil at 50% satura-
tion (mid point between wilting point and porosity). The re-
sulting capillary flux is>5 mm day−1 if WTD is <3.55 m in
the clay-loam soil and<1.8 m in the clay soil. The water ta-
ble in the valleys is generally shallower than these values and
therefore the capillary flux is greater than 5 mm day−1. That

is, the 5 mm day−1 cap discussed in the earlier paragraph has
effectively addressed this issue.

We applied the above method (with the cap) to the Amazon
water table and soils. Figure 13 gives the CLM-forced WTD
simulation in the Amazon, with details at nine sites that have
ET estimates. Based on this equilibrium WTD map and the
soil types in the Amazon (Fig. 4b), we calculate the capillary
flux, cap it under 5 mm day−1, and aggregate it from 9 arc-
second (WTD grid) to 1 arc-minute (∼2 km, footprint of flux
towers). The resulting flux over the Amazonia is shown in
Fig. 14. Averaged over the Amazonia, it is 2.1 mm day−1,
compared to the annual mean ET of∼3.8 mm day−1 esti-
mated by Fisher et al. (2009). At the nine sites with ET esti-
mates in Fig. 14, the potential capillary flux (upper number)
and the annual (wet and dry season) mean ET (lower num-
ber) are given. Where the water table is shallow only in the
valleys (Jaru, Guyaflux), the potential capillary flux over a
2 km grid at the site is<1 mm day−1, and where it is shal-
low over broader areas (Acre, Bananal Island), the flux can
be >3 mm day−1. Weak capillarity in sandy soils in Kabu-
Tonka (Poels, 1987) and Sinop (Vourlitis, 2008) reduces the
potential water table influence. We note that although we
made a comparison of the potential capillary flux to the es-
timated actual ET, the former is the maximum capillary flux
that can occur in the Amazon if the surface soil is at wilting
point. It is meant to illustrate the possible rate of this flux if
such dry condition occurs, and hence is not directly compa-
rable to the actual ET which is used here only to provide a
reference.
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Fig. 13. Spatial details in the CLM-forced WTD simulation (m) in Amazonia and around the nine sites with independent ET estimates (white 
cells = WTD at land surface). 
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Fig. 13.Spatial details in the CLM-forced WTD simulation (m) in Amazonia and around the nine sites with independent ET estimates (white
cells = WTD at land surface).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Fig. 14. Calculated equilibrium potential capillary flux (mm day-1) from the CLM-forced water table simulation in the Amazonia, with details 
around nine sites with ET estimates. The numbers given are potential capillary flux from the water table over annual mean (dry and wet 
season) total ET, both in mm day-1. ET source: Manaus, Santarem, Caxiuana, Jaru and Sinop (Juarez et al., 2007), Bananal Island (Borma, et 
al., 2009), Guyaflux and Amazonian mean (Fisher et al., 2009), Kabu-Tonka (Poels, 1987), Acre (Duarte et al., 2008). 
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Fig. 14. Calculated equilibrium potential capillary flux (mm day−1) from the CLM-forced water table simulation in the Amazonia, with
details around nine sites with ET estimates. The numbers given are potential capillary flux from the water table over annual mean (dry and
wet season) total ET, both in mm day−1. ET source: Manaus, Santarem, Caxiuana, Jaru and Sinop (Juarez et al., 2007), Bananal Island
(Borma, et al., 2009), Guyaflux and Amazonian mean (Fisher et al., 2009), Kabu-Tonka (Poels, 1987), Acre (Duarte et al., 2008).
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Table 4. WTD and capillary flux (mm day−1) over the flux-tower footprint (∼2 km) from four simulations at nine sites with independent
ET estimates and the mean over the Amazonia.

Site CLM MOSAIC NOAH HTESSEL Independent ET Estimate
(R = 411 mm) (R = 476 mm) (R = 787 mm) (R = 839 mm) (mm day−1)

WTD (m) Flux WTD (m) Flux WTD (m) Flux WTD (m) Flux
(mm day−1) (mm day−1) (mm day−1) (mm day−1)

Acre 5.59 3.1 6.49 2.6 3.99 3.6 5.07 3.3 2.0
Bananal Island 2.00 3.7 2.43 3.1 1.56 4.0 1.52 4.0 3.9
Caxiuana 11.44 1.5 10.71 1.5 8.44 2.0 7.95 2.1 3.6
Guyaflux 10.38 0.8 8.64 1.1 6.19 1.5 8.02 1.2 4.6
Jaru 15.43 0.6 16.71 0.5 10.67 0.9 9.56 1.0 2.8
Kabu-Tonka 5.83 2.0 5.91 2.0 4.74 2.2 4.01 2.4 4.5
Manaus (K34) 14.69 1.8 13.62 1.9 11.92 2.1 11.37 2.2 3.1
Santarem (K67) 8.83 1.2 9.60 1.0 6.86 1.5 5.45 1.9 2.8
Sinop 11.58 1.1 13.23 1.0 9.63 1.2 8.83 1.3 2.8

Amazonia Mean 9.16 2.1 9.47 2.2 7.37 2.6 7.36 2.6 3.8

6 Discussions

The above analyses suggest that the water table is shallow in
large areas in the Amazon, and that where it is shallow and
the soil is fine-textured, it has the potential to support signifi-
cant capillary fluxes to the land surface. However, the results
presented here are based on limited observations and simple
equilibrium model calculations, and as such, may have im-
portant limitations and must be interpreted accordingly. The
most notable of these limitations are discussed in this section.

First, the simulated water table depth, even forced by the
lowest recharge estimates (CLM), is on the average shal-
lower than observed. This was attributed to the low bias in
the observations due to wide-spread groundwater pumping
(the wells are highly clustered and 98% of them are pumping
wells), but it could also have been caused by a high bias in the
recharge forcing (ET from water table, or negative recharge,
was not considered in GLDAS models). Although CLM esti-
mated ET (Fig. 8b) is in the right range, the nature of bias in
the simulated surface runoff cannot be ascertained, and un-
certainties in CLM recharge cannot be quantified. This issue
can only be resolved with coupled soil water-groundwater
simulations, which is our next step. In the coupled simula-
tion, the equilibrium water table obtained here, with recharge
diagnosed from off-line models, will serve as the initial wa-
ter table condition, from which the system will co-evolve in
response to climate forcing at multiple scales, with a fully
prognostic groundwater depth.

For the purpose of the present study, the saving grace is
that the simulated water table depth and the capillary flux are
not highly sensitive to recharge differences. The recharge
ranged 411–839 m yr−1 over Amazonia among the four esti-
mates (Fig. 3, more than doubled from CLM to HTESSEL),
but the resulting mean Amazonia WTD ranged only 9.47–
7.36 m (Fig. 5, a 1.8 m difference). This is because ground-

water drainage is self-limiting (e.g., de Vries, 1994, 1995;
Eltahir and Yeh, 1999; Marani et al., 2001); as recharge in-
creases, the water table rises, steepening the hydraulic gradi-
ent from hills to valleys and expanding the channel network
by groundwater seepage, both accelerating drainage and ef-
fectively bringing down the water table; as the recharge de-
creases, the water table falls, flattening the hydraulic gradi-
ent and bringing the water table below local streams, both
reducing discharge and preserving the groundwater store.
This negative feedback dampens the water table sensitivity
to recharge uncertainties.

In addition, the 1.8 m difference in WTD due to the large
recharge difference, only led to a range in the calculated po-
tential capillary flux of 2.1–2.6 mm day−1 (Fig. 15, Table 4).
The reason is that the main difference in WTD occurred un-
der higher grounds, and since it is already sufficiently deep to
render capillary flux insignificant, further deepening of WTD
has little effect. As shown in Fig. 12b and discussed earlier,
the capillary flux is sensitive to WTD only at shallow depths.
Thus the uncertainties in the recharge estimates are reduced
through the negative feedbacks between recharge and WTD,
and the insensitivity of capillary flux to further deepening
of the WTD. While acknowledging these uncertainties, we
believe that they do not fundamentally alter the results pre-
sented here.

Second, the potential capillary flux is not indicative of its
contribution to the actual ET, and it is only an assessment
of the possible rate at which this flux can occur, or the po-
tential power of capillary force in the soils due to a shallow
water table and fine textured soils. As such, it is a theoreti-
cal result and likely much higher than what occurs in the real
world of the Amazon if the top soil never dries down to the
wilting point; it is well known that soil capillary flux is sen-
sitive to the surface boundary condition (e.g., Salvucci and
Entekhabi 1994, 1995; Bogaart et al., 2008). In fact, such
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Fig. 15. Maps of potential capillary flux (mm day-1), showing Amazonian mean, based on the four WTD simulations.  
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Fig. 15. Maps of potential capillary flux (mm day−1), showing Amazonian mean, based on the four WTD simulations.

dry conditions may happen only at the end of the dry season
and/or in a drought; over the majority of the time and space
in the Amazon, soil water flux is likely directed downward.
However, the only way to assess the real and regional im-
pact of the water table in the Amazon, with higher degrees of
certainty, is through fully-coupled and dynamic model simu-
lations which are the focus of our future work. The equilib-
rium water table obtained here serves as the initial state for
the dynamic simulation, and together with the equilibrium
potential capillary flux, will serve as a baseline to evaluate
the diurnal, event, seasonal and inter-annual dynamics.

In conclusion, observations and model simulations suggest
that the water table can be shallow in the lowlands and val-
leys in the Amazon, and that this water table distribution can
potentially influence the land surface flux by supporting up-
ward soil capillary fluxes. The actual contribution of ground-
water to land surface ET can only be ascertained through
coupled and dynamic simulations of soil water and ground-
water feedbacks. However, similar studies conducted else-
where have shown that inclusion of the water table in climate
model simulations can increase and stabilize soil moisture
and ET, cooling the surface and enhancing local convective
and downwind precipitation (York et al., 2002; Liang et al.,
2003; Yeh and Eltahir, 2005; Yu et al., 2006; Niu et al., 2007;
Maxwell et al., 2007; Fan et al., 2007; Miguez-Macho et al.,
2007; Bierkens and Van den Hurk, 2007; Maxwell and Kol-
let, 2008; Miguez-Macho et al., 2008; Anyah et al., 2008;
Yuan et al., 2009; Jiang et al., 2009; Yeh and Famiglietti,

2009). Whether groundwater is also important in the Ama-
zon remains to be investigated. The present study is the first
step in this investigation, by establishing a climatologic equi-
librium water table depth and potential (or maximum) capil-
lary flux it can support, which will serve as the initial water
table condition for the dynamic simulations and the baseline
for comparison of equilibrium and dynamic results.

Supplementary material related to this
article is available online at:
http://www.hydrol-earth-syst-sci.net/14/2039/2010/
hess-14-2039-2010-supplement.pdf.
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