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Abstract. In this second part of the two-part paper, the
data driven modeling (DDM) experiment, presented and ex-
plained in the first part, is implemented. Inputs for the
five case studies (half-hourly actual evapotranspiration, daily
peat soil moisture, daily till soil moisture, and two daily
rainfall-runoff datasets) are identified, either based on previ-
ous studies or using the mutual information content. Twelve
groups (realizations) were randomly generated from each
dataset by randomly sampling without replacement from
the original dataset. Neural networks (ANNs), genetic pro-
gramming (GP), evolutionary polynomial regression (EPR),
Support vector machines (SVM), M5 model trees (M5),
K-nearest neighbors (K-nn), and multiple linear regression
(MLR) techniques are implemented and applied to each of
the 12 realizations of each case study. The predictive accu-
racy and uncertainties of the various techniques are assessed
using multiple average overall error measures, scatter plots,
frequency distribution of model residuals, and the deteriora-
tion rate of prediction performance during the testing phase.
Gamma test is used as a guide to assist in selecting the appro-
priate modeling technique. Unlike two nonlinear soil mois-
ture case studies, the results of the experiment conducted
in this research study show that ANNs were a sub-optimal
choice for the actual evapotranspiration and the two rainfall-
runoff case studies. GP is the most successful technique due
to its ability to adapt the model complexity to the modeled
data. EPR performance could be close to GP with datasets
that are more linear than nonlinear. SVM is sensitive to the
kernel choice and if appropriately selected, the performance
of SVM can improve. M5 performs very well with linear
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and semi linear data, which cover wide range of hydrologi-
cal situations. In highly nonlinear case studies, ANNs, K-nn,
and GP could be more successful than other modeling tech-
niques. K-nn is also successful in linear situations, and it
should not be ignored as a potential modeling technique for
hydrological applications.

1 Introduction

The research methodology explained in the first part of this
two-companion paper was implemented in the sequence pre-
sented earlier. First, inputs of the various models were iden-
tified. A mixed approach of input selection was adopted
since identification of optimum inputs was not in itself one
of the objectives of this study. The next section describes
the five different datasets. The two soil moisture datasets
(Elshorbagy and Parasuraman, 2008) and a reduced hourly
version of the evapotranspiration (AET) dataset (Parasura-
man and Elshorbagy, 2008; Parasuraman et al., 2007) were
used in earlier studies. This study benefited from the input
structure identified in the earlier studies, and sometimes (e.g.,
the case of the evapotranspiration dataset) enhanced the in-
put structure by considering more inputs identified using the
mutual information content.

2 Datasets

2.1 Actual evapotranspiration

The eddy covariance (EC)-measured actual evapotranspira-
tion data from the South West Sand Storage (SWSS) facility,
located near Ft. McMurray, Alberta, Canada, is considered
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in this study. The SWSS is currently the largest operational
tailings dam in the world, holding approximately 435 million
cubic meters of material, covering 25 km2, and standing ap-
proximately 40 m high with a 20H:1V side-slope ratio. Soils
consist of mine tailings sand overlain with 0.4 to 0.8 m of top-
soil that is a mixture of peat and secondary mineral soil with a
clay loam texture. Both vegetation species and composition
vary across the SWSS, with dominant groundcover includ-
ing horsetail (Equisetum arvense), fireweed (Epilobium an-
gustifolia), sow thistle (Sonchus arvense), and white and yel-
low sweet clover (Melilotus alba, Melilotus officinalis). Tree
and shrub species include Siberian larch (Larix siberica), hy-
brid poplar (Populus sp. hybrid), trembling aspen (Populus
tremuloides), white spruce (Picea glauca), and willow (Salix
sp.). For the SWSS facility, the ground-water table is located
well below the rooting zone, at a depth between 0.8–1.0 m,
and hence does not directly contribute to the evapotranspira-
tion process. Accurate estimation of actual evapotranspira-
tion from the reconstructed watersheds is of vital importance
as it plays a major role in the water-balance of the system,
which links directly to ecosystem restoration strategies. The
weather station located on top of the SWSS facility measured
the air temperature (AT) (◦C), ground temperature (GT) (◦C),
net radiation (NR) (W/m2), relative humidity (RH), and wind
speed (WS) (m/s). Turbulent fluxes of heat and water vapor
were measured using a CSAT3 sonic anemometer and ther-
mometer (Campbell Scientific) and an LI-7500 CO2/H2O
gas analyzer (Li-Cor). Ground heat flux was measured us-
ing a cm3 radiation and energy balance (REBS) ground heat
flux plate placed at 0.05 m depth. In EC technique, the co-
variance of vertical wind speed with temperature and water
vapor is used to estimate the sensible heat (H) and latent
heat (LE) fluxes (Parasuraman and Elshorbagy, 2008). More
information on the EC technique can be found in Drexler
et al. (2004). Raw turbulence measurements were made at
10 Hz and fluxes were calculated using 30-min block aver-
ages with a 2-D coordinate rotation.

The half hourly EC-measured LE flux (the product of
the latent heat of vaporization and evapotranspiration) at the
SWSS facility for two growing seasons (from 3 May to 21
Sep 2005 and from 27 May 9 Sep 2006) is considered in
this study. The total precipitation during the two seasons is
275 mm and 265 mm, respectively and the average day-time
reference evaporation rate is 0.27 mm/h. Nevertheless for
modeling purposes, the day time (08:00 h – 20:00 h) evap-
otranspiration alone is considered. After eliminating records
of missing data, the remaining number of data instances were
5,307 data points. Since evapotranspiration is commonly
perceived as being highly dependent on climatic variables,
the EC-measured LE flux is modeled as a function of NR,
AT, GT, RH, and WS, as well as possible combinations of
these variables. The descriptive statistics of the datasets used
for training, cross validation, and testing are presented in Ta-
ble 1. The coefficient of variation (CV) of different variables
during training, cross validation, and testing are comparable.

Table 1. Descriptive statistics of the AET dataset.

NR AT GT RH WS LE
W/m2 ◦C ◦C m/s W/m2

Training dataset

Minimum −189.60 −3.40 4.10 0.14 0.40 −80.20
Maximum 875.40 33.90 27.20 0.96 10.20 503.80
Mean 229.70 18.70 16.70 0.50 2.80 144.90
SD 189.40 5.50 3.80 0.20 1.70 90.00
CV 0.82 0.29 0.23 0.34 0.62 0.62

Cross validation dataset

Minimum −119.80 −3.20 3.70 0.16 0.40 −42.20
Maximum 729.50 33.70 26.40 0.95 11.00 405.60
Mean 224.10 18.70 16.90 0.50 2.80 145.90
SD 181.90 5.60 3.80 0.20 1.70 88.70
CV 0.81 0.30 0.23 0.33 0.60 0.61

Testing dataset

Minimum −414.60 −4.30 3.30 0.15 0.40 −56.30
Maximum 801.60 33.80 27.20 0.96 12.30 425.80
Mean 226.90 18.50 16.60 0.50 2.90 143.80
SD 188.90 5.50 3.70 0.20 1.80 89.90
CV 0.83 0.30 0.22 0.34 0.63 0.63

The AET dataset, and each dataset, was randomly sampled
100 times; creating 100 realizations of the dataset with three
split samples (training, cross-validation, and testing) created
from every dataset realization.

2.2 Soil moisture content

Over the years, several large scale soil cover (reconstructed
watersheds) experiments have been conducted to assess the
performance of different reclamation strategies in northern
Alberta, Canada, by studying the basic mechanisms that con-
trol the moisture movement within these covers. In particu-
lar, three experimental soil covers (D1, D2, and D3) were
established in the year 1999. The experimental covers were
constructed over the saline-sodic overburden with thickness
of 0.50 m, 0.35 m, and 1.0 m, comprising a thin layer of peat
mineral mix over varying thickness of secondary (glacial/till)
soil. Cover D1 consists of 20 cm of peat overlying 30 cm of
till, and it is considered for this study. The soil cover has
an area of 1 ha (approximately 200 m long and 50 m wide),
with a 5:1 slope (5 horizontal to 1 vertical). This recon-
structed watershed, compared to natural watersheds, is not
stable during its initial stages, and hence evolves over time
to achieve hydro-sustainability. In order to track the evolu-
tion (hydrological changes) of the watershed, intensive in-
strumentations were installed in the watershed. Each water-
shed has an individual soil station located at the middle of
the slope, which measures the volumetric soil moisture con-
tent of the upper peat (SMP) and the lower till (SMT) layers,
twice a day. Soil moisture is measured using TDR principles
with model CS615 (Boese, 2003). The TDR sensors were
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installed laterally into the soil profile. Watershed D1 has
eight TDR sensors installed over a depth range of 0.05 m to
1.00 m. Hourly values of soil temperature of peat (STP) and
till (STT) layers are measured using thermisters buried in the
watershed at the depth ranges corresponding to the TDR sen-
sors. Consequently, D1 has eight soil temperature sensors. A
weather station located in the mid-slope measures air temper-
ature (AT), and precipitation (P ). Similarly, Bowen station
located at the mid-slope measures net-radiation (NR) and en-
ergy fluxes. All the meteorological variables are measured in
an hourly scale. More details on the field instrumentation
program and the data collected can be found in Boese (2003)
and Elshorbagy et al. (2007).

Average daily values of precipitation, air temperature, soil
temperature (STP and STT), net radiation (NR), soil mois-
ture (SMP and SMT) as well as possible combinations of
them, are considered for modeling purposes. The ground
temperature and soil moisture contents are depth averaged
for each layer (upper peat and lower till). As the soil stratum
is frozen during the winter, only summer (May–September)
time data of years 2000 till 2006 are considered. The to-
tal number of instances available for modeling purposes was
972 data points. As the reconstructed watersheds evolve over
time to achieve hydro-sustainability, the freeze-thaw cycles
and decomposition of highly organic peat layer increases
the porosity of the soil and consequently increase infiltra-
tion rates (Haigh, 2000). Hence, modeling the moisture dy-
namics of such evolving watersheds would be adding to the
already challenging task of modeling soil moisture. The de-
scriptive statistics of the datasets used for training, cross val-
idation, and testing are presented in Table 2 for the peat and
the till layer datasets, respectively. For modeling purposes,
two datasets were generated from the site; one for predicting
SMP and the other for SMT. The same set of inputs was used
in both datasets. The coefficient of variation (CV) of differ-
ent variables during training, cross validation, and testing are
comparable (Table 2).

2.3 Rainfall-runoff

The rainfall-runoff dataset used in this study is taken from
the Ourthe subcatchment, which is a subcatchment of River
Meuse The river basin covers part of France, Belgium and
The Netherlands (Fig. 1). The area analyzed in this research
is approximately 22 000 km2, from Borgharen-dorp (Jeker
basin on the Netherlands border) to Meuse source-St Mihiel
(Lorraine basin in France). This meso-scale catchment sys-
tem has been widely explored with data driven and expert
knowledge (de Wit, 2001; Tu et al., 2005).

The greater part of the discharge of the River Meuse is sup-
plied by its tributaries. Groundwater, precipitation and arti-
ficial extractions constitute the discharge to a smaller extent
(de Wit, 2001). The Meuse has a great number of tributaries,
varying greatly in their sizes. The largest is the Ourthe, with
a contributing area of 3.626 km2. The Ourthe subcatchment

Table 2. Descriptive statistics of the daily peat and till moisture
datasets.

P AT NR STP STT SMP SMT
mm ◦C W/m2 ◦C ◦C

Training dataset

Minimum 0.00 −6.30 −10.40 0.50 −0.50 0.304 0.240
Maximum 43.70 25.20 204.40 18.20 16.30 0.539 0.316
Mean 1.54 13.63 90.64 11.71 10.48 0.442 0.288
SD 4.20 6.10 50.22 3.79 3.49 0.055 0.018
CV 2.72 0.45 0.55 0.32 0.33 0.124 0.062

Cross validation dataset

Minimum 0.00 −3.90 0.00 0.50 −0.70 0.305 0.241
Maximum 27.18 22.90 226.10 18.20 16.10 0.542 0.316
Mean 1.68 13.80 92.96 11.75 10.32 0.440 0.289
SD 3.99 4.96 49.98 4.03 4.17 0.055 0.018
CV 2.38 0.36 0.54 0.34 0.40 0.125 0.062

Testing dataset

Minimum 0.00 −6.80 0.00 −0.10 −0.60 0.306 0.241
Maximum 23.60 25.80 223.60 18.20 16.10 0.543 0.316
Mean 1.48 14.07 96.94 11.88 10.45 0.440 0.288
SD 3.32 5.96 50.91 3.77 3.56 0.054 0.018
CV 2.25 0.42 0.53 0.32 0.34 0.123 0.061

has large discharges rising fast. Through its nature and loca-
tion, close to the Dutch border, the Ourthe is also the most
important Meuse tributary for flood forecasts. In its upper
course, the Ourthe consists of two branches: the Ourthe Oc-
cidentale and the Ourthe Orientale, merging near Nisramont.
Near Comblain-au-Pont, the Amblève joins the Ourthe and
near Angleur the Ourthe also receives the Vesdre. Measur-
ing from the source of the Ourthe Occidentale, the Ourthe is
approximately 175 km long.

The average travel time from upstream to downstream is
one day (Berger, 1992). More information about the hydro-
logical properties of the basin and the data validation are re-
ferred to Berger (1992) and De Wit (2007). The daily rainfall
and runoff data of the Ourthe subcatchment from 11 January,
1988 till 31 December 1998 (4.008 data points) were used for
modeling purposes in this study. Two distinct datasets were
created: (i) the first is a dataset where only rainfall data were
used as model inputs to predict the runoff; and (ii) the second
is the same dataset but the preceding time step (t-1) runoff,
in addition to the rainfall data, were used as inputs to predict
the runoff at timet . The descriptive statistics of the variables
that are used as model outputs in this study are presented in
Table 3.

Figure 2 presents the inputs identified for the AET case
study using AMI method. For the two rainfall-runoff
datasets, the Average Mutual Information (AMI) method was
used to identify the inputs for predicting the daily runoff
(Fig. 3). The inputs-output of the five case studies are pre-
sented in Table 4. One should note that in light of the focus
of this study, which is the comparative analysis of various
data driven techniques, the important criterion is to use the
same set of inputs across all adopted models. After inputs
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Table 3. Descriptive statistics of the output variables of all datasets.

Evapo- Peat Till Runoff
transpiration moisture moisture (m3/s)

(W/m2)

Count 5307.00 972.00 972.00 4008.00
Minimum −80.20 0.30 0.24 1.07
Median 133.09 0.45 0.29 11.39
Average 144.52 0.44 0.29 21.91
Maximum 503.77 0.54 0.32 370.63
St. deviation 89.79 0.05 0.02 29.93
CV 0.62 0.12 0.06 1.37
Skew 0.51 −0.72 −1.33 4.06

have been identified, each dataset was randomly sampled 100
times; creating 100 realizations of the dataset with three split
samples (one half for training, one sixth for cross-validation,
and one third for testing) created from every dataset real-
ization. Figure 4 shows an example of this process for the
peat moisture dataset. Similar process was conducted with
each one of the five case studies. Based on the similarity of
the statistical properties (mean and standard deviation) of the
three split samples, the best 12 realizations of each dataset
are identified for the modeling exercise in this study.

3 Model implementation

3.1 Artificial neural networks (ANNs)

The Levenberg-Marquardt algorithm was used for training
all neural network models using the MATLAB Neural Net-
works toolbox. For each of the 12 dataset realizations of a
case study, the ANN was executed 200 times with 200 differ-
ent random weight initializations. The best model of the 200
runs was identified as the best ANN model. The cross vali-
dation sub dataset was used to stop the training process. Ac-
cordingly, 12 ANN models were developed and tested using
the corresponding unseen dataset. In all optimum ANN mod-
els, the number of input nodes was equivalent to the number
of inputs, and all networks had one output node. The number
of hidden nodes ranged from three to 13, with an average
number of seven hidden nodes in single hidden layer ANNs.

3.2 Genetic programming (GP)

Discipulus Software (Francone, 2001) was used to imple-
ment the program-based GP to all datasets. GP was ap-
plied to the various dataset realizations similar to the way
followed with ANNs. The addition, subtraction, multipli-
cation, comparison, conditions, division, and trigonometric
operators were allowed. The program size varied from 80-
512 bits, with population size of 500 and generations with-
out improvement up to 300. The probabilities of mutation

and crossover were 30% and 50%, respectively. The pro-
gram was allowed to run for at least two hours. The authors
experimented with the run time and observed that improve-
ment could be almost negligible beyond two hours. Similar
to the case of ANN applications, 12 non-dominated GP mod-
els were developed and tested on the corresponding testing
set of each case study.

3.3 Evolutionary polynomial regression (EPR)

The EPR Toolbox (Laucelli et al., 2005) was used to im-
plement the static EPR technique to all datasets, following
the same experimental steps adopted with the ANNs and the
GP techniques. The EPR Toolbox allows for many choices
in terms of the polynomial types, functions used within the
polynomial terms, and the number of terms and exponents.
In this study, the default number of terms (up to five) was
used whereas a comprehensive search among the possible
combinations of polynomial types and functions was con-
ducted. Accordingly, 12 non-dominated EPR models were
developed and tested on the corresponding testing set of each
case study. The EPR type and function developed for each
case study are presented in Table 5.

3.4 Support vector machine (SVM)

WEKA 3.6.0 Software (Bouckaert et al., 2008) was used in
this study to implement the SVM to all datasets, following
the same experimental steps adopted with the previous tech-
niques. SVM models with linear, polynomial, and radial ba-
sis function (RBF) kernels were tested on all datasets. With
the exception of the Rainfall – runoff II case study, the RBF
kernel was found to provide the best predictive performance.
In case of the rainfall-runoff II case study, both linear and
RBF kernels were almost on par. Therefore, SVM with RBF
kernel was adopted in this study. The constant C (Elshorbagy
et al., 2010, Part 1) and the kernel parameterγ were op-
timized from an exponential range of the following values:
0.0313; 0.0625; 0.125; 0.25; 0.50; 1.00; 2.00; 4.00; 8.00;
and 16.00. Non-dominated 12 SVM models were developed
and tested on the corresponding testing set of each case study.

3.5 M5 model trees

WEKA 3.6.0 Software (Bouckaert et al., 2008) was used in
this study to implement the M5 model trees to all datasets,
following the same experimental steps adopted with the pre-
vious techniques. The tree pruning coefficient was optimized
during the execution of the models to minimize the average
squared error. A range of values from 3–30 was tested in this
study. 12 M5 model tree models were developed and tested
on the corresponding testing set of each case study.
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Table 4. Inputs and outputs of all case studies.

Case study Inputs Output

Actual evapotranspiration ATt ; GTt ; GTt−1 ; NRt ; NRt−1 ; AET (W/m2)

(half hourly) Sum(NR−4) ; RHt ; WSt

Upper layer (peat) Pt ; ATt ; NRt ; STPt ; STTt ; SMP (dimensionless)
soil moisture content (daily) Sum(P−6) ; Sum(AT−6)

Lower layer (till) Pt ; ATt ; NRt ; STPt ; STTt ; SMT (dimensionless)
soil moisture content (daily) Sum(P−6) ; Sum(AT−6)

Rainfall-runoff I (daily) Pt ;Pt−1 ; Pt−2 ; Pt−3 ; Pt−4 Qt I (m3/s)

Rainfall-runoff II (daily) Pt ;Pt−1 ; Pt−2 ; Pt−3 ; Pt−4 ; Qt−1 Qt II (m3/s)

AT: air temperature (◦C); GT: ground temperature (◦C); NR: net radiation (W/m2); Sum(NR−4): the cumulative net radiation over the
preceding four time steps; RH: relative humidity; WS: wind speed (m/s);P : precipitation (mm); STP: depth averaged soil temperature of
the upper peat layer (◦C); STT: depth averaged soil temperature of the lower till layer (◦C); Sum(P−6): the cumulative precipitation over the
preceding six time steps (mm); Sum(AT−6): the cumulative air temperature over the preceding six time steps (◦C); SMP: depth averaged
soil moisture content of the upper peat layer; SMT: depth averaged soil moisture content of the lower till layer; and Qt : the runoff (m3/s).

 
Fig. 1. The Meuse river basin and the sub-basins upstream of Borgharen. Sub-basin 10 (Ourthe) is used in the case study.

3.6 K-nearest neighbors (K-nn)

WEKA 3.6.0 Software (Bouckaert et al., 2008) was used in
this study to implement the K-nn technique to all datasets,
following the same experimental steps adopted with the pre-
vious techniques. The number of the nearest neighbors was

optimized during the execution of the models to minimize the
average squared error. A range of values from 1–50 neigh-
bors was tested in this study. Accordingly, 12 K-nn models
were developed and tested on the corresponding testing set of
each case study. The ranges of the optimum numbers of near-
est neighbors for each case study are presented in Table 6.
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Fig. 2. Average mutual information and correlation of inputs-output
for the evapotranspiration case study.
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Fig. 3. Average mutual information and correlation of inputs-output
for the rainfall-runoff case study.

4 Results and analysis

4.1 Evapotranspiration case study

The performance of the various techniques applied to the
half-hourly actual evapotranspiration (AET) case study is
provided in Table 7. The best, the worst, and the average
of the performances of the 12 models of all techniques are
shown. It is certainly useful to judge techniques based on the
range of performances (difference between the best and the
worst models), however, if a single value is needed, then one
has to rely on the average performance. Table 7 supports the
idea that in most cases, it is not possible to find a technique
that dominates others with respect to all error measures. But
if a technique is better than the rest with respect to two differ-
ent error measures (e.g., RMSE and R), this can be a strong
indication of the superiority of such a technique. In the AET
case study, GP, SVM, M5 model trees, and K-nn techniques
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Fig. 4. Statistical properties of the training/cross-validation/testing
subsets for 100 random realizations. Tr: Training; Va: Validation;
Te: Testing.

can be identified as the best techniques, followed by EPR,
in terms of the predictive accuracy. The performance of the
ANNs was worse than the linear regression (MLR) technique
in this particular case study. This highlights the important
fact that the half-hourly AET data were captured reasonably
well in a linear relationship considering the provided model
inputs. Therefore, a technique that forces nonlinear struc-
tures on the input-output relationship (ANNs) may not be
favorable in all cases. Certainly, the AET data are not strictly
linear; that is why local and/or modular linear models (e.g.,
M5 and K-nn) could be optimum choices.

Since all 12 models of each technique are non-dominated
models and represent possible performances of the technique
under consideration, the output of all 12 models are inte-
grated in one set and presented in Fig. 5. The figure shows the
scatter plots of observed vs. predicted AET data. The scat-
ter around the 45-degree line supports the conclusion made
earlier regarding the performances of the various techniques.
However, the plots allow to make two additional observa-
tions; first, all techniques were less successful in predicting
high values. The tips of the data plumes were always be-
low the 45-degree line. This might be an indication that
the ideal inputs that can describe all dynamics of the pro-
cess for this case study have not been optimally identified.
The SVM (Fig. 5d) was more successful than other tech-
niques in approaching the high values. The M5 model trees
and MLR (Fig. 5e and g) were the least successful in this
regard. Table 8 shows the ideal point error (IPE) measure
calculated for all techniques. The IPE statistic, integrating
all four error measures in one indicator, lends another sup-
port to the conclusions made earlier. Except the ANNs, all
other techniques have close performances, with the possibil-
ity of identifying the SVM, GP, M5, and K-nn; followed by
EPR as better techniques than the rest. The utility of the
idea of adopting multiple models (12 in this study) based
on different random realizations of the datasets to evaluate
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Fig. 5. scatter plots of observed and predicted evapotranspiration.(a) ANNs, (b) GP,(c) EPR,(d) SVM, (e)M5, (f) K-nn, and(g) MLR.

Table 5. EPR type and functions of all case studies.

Case study EPR type Function (f )

Actual evapotranspiration Sum [ai*X1*X2*f(X1*X2)] + a o No function
(half hourly)

Upper layer (peat) Sum [ai*f(X1*X2)] + a o Exponential
soil moisture content (daily)

Lower layer (till) Sum [ai*f(X1*X2)] + a o Logarithm
soil moisture content (daily)

Rainfall-runoff I (daily) Sum [ai*X1*X2*f(X1)*f(X2)] + a o No function

Rainfall-runoff II (daily) Sum [ai*X1*X2*f(X1)*f(X2)] + a o No function
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Table 6. The optimum number of nearest neighbors (K-nn) of the 12 models in each case study.

All 12 values Min. Average Max.

evapotranspiration 17–28–10–21–21–34–22–18–26–9–15–40 9 22 40
Upper layer 4–4–9–5–4–3–5–5–12–7–4–4 3 6 12
soil moisture
Lower layer 9–4–2–2–8–10–7–3–5–6–9–6 2 6 10
soil moisture
Rainfall-runoff I 19–33–9–11–3–18–8–24–44–12–6–13 3 17 44
Rainfall-runoff II 2–7–3–4–1–2–2–3–6–3–3–5 1 3 7

Table 7. Testing results of all models applied to theevapotranspirationdataset.

Models RMSE MARE MB R

Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst

ANNs 46.32 57.08 85.77 0.52 1.25 2.25−1.59 5.87 57.95 0.87 0.84 0.74
GP 42.17 43.90 46.04 0.58 0.69 0.84 −0.09 0.27 1.65 0.88 0.87 0.86
EPR 44.69 46.30 48.04 0.62 0.82 1.07 0.01 0.90 3.08 0.87 0.86 0.85
SVM 41.61 44.52 49.25 0.48 0.54 0.64 −1.26 −2.84 −4.90 0.84 0.87 0.88
M5 42.85 44.42 46.19 0.53 0.63 0.72 0.17 −0.03 1.97 0.86 0.87 0.88
K−nn 43.05 44.65 46.42 0.58 0.69 0.80 0.09−0.39 −2.16 0.88 0.87 0.86
MLR 46.81 48.49 50.27 0.78 0.93 1.13−0.15 0.14 2.81 0.85 0.84 0.83
Näıve – – – – – – – – – – – –

various techniques presents itself through Tables 7 and 8. If
the modeler picks, for example, the best model of one tech-
nique and compares it with the worst model of another tech-
nique, a different and perhaps biased conclusion might be
made regarding the performance of these techniques. The
best ANN model with IPE value of 0.31 is much better than
the worst EPR model with IPE value of 0.37 (Table 8).

Based on the outputs of the 12 non-dominated models of
each technique, the predictive uncertainty of the various tech-
niques can be easily analyzed. The residuals (predicted value
minus observed value) of the 12 models were integrated in
one set to conduct probabilistic analysis. Frequency curves
were constructed for the residuals of each technique. @RISK
Software (Palisade Corporation, 2005) was used to fit the
best probability distribution from a selection of more than
15 possible distributions. The best-found probability distri-
butions of the residuals of the various techniques are shown
in Fig. 6. The Logistic (α, β) distribution was found to fit
the residuals of all modeling techniques, with different val-
ues of location parameterα and scale parameterβ. Ideally,
the best technique is the one that has residuals represented
by the narrowest, symmetrical, and tallest (has the highest
probability value at zero residuals) probability distribution.
Such a distribution implies the smallest level of predictive
uncertainty, which could be translated to the highest level of
reliability. Figure 6 reveals that, not only in terms of the
predictive accuracy, but also the predictive uncertainty SVM

is the best, flollowed by GP, K-nn, M5 and EPR. Clearly, the
ANN technique leads to the most uncertain results with the
widest range of residuals, whereas the MLR is occupying the
middle position.

The Kolmogorov-Smirnov (KS) nonparametric test was
conducted on the model residuals of all techniques to test
the null hypothesis that the model residuals of any two tech-
niques are sampled from the same distribution. The test was
conducted at the default significance level ofp = 0.05. The
matrix of thep-values is given as Table 9. With the excep-
tion of K-nn and M5 techniques, there is strong statistical ev-
idence that the residuals of the various techniques are stem-
ming from different distributions. Even though the visual
assessment of Fig. 6 shows that the SVM, M5, and K-nn are
very similar, the KS test indicates that the SVM performs
differently.

4.2 Peat (upper layer) soil moisture case study

The performance of the various techniques applied to the
daily soil moisture data of the upper peat layer (SMP) case
study is provided in Table 10. Unlike the evapotranspiration
case study, Table 10 shows that both ANNs and GP tech-
niques can be considered superior to other modeling tech-
niques due to their domination with respect to the four error
measures. It has to be noted that in case of soil moisture
content, low values of the RMSE and the MARE might be
misleading because the entire dataset is limited to a narrow
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Table 8. IPE testing results of all models applied to all datasets.

Evapotranspiration Peat moisture Till moisture Rainfall-runoff I Rainfall-runoff II
(AET) (SMP) (SMT) (R-R II) (R-R I)

Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst

ANNs 0.31 0.51 0.79 0.58 0.65 0.71 0.49 0.57 0.92 0.51 0.57 0.69 0.24 0.47 0.78
GP 0.29 0.30 0.33 0.56 0.63 0.72 0.43 0.53 0.67 0.50 0.55 0.58 0.17 0.20 0.22
EPR 0.31 0.33 0.37 0.65 0.68 0.72 0.55 0.58 0.63 0.52 0.56 0.68 0.19 0.22 0.28
SVM 0.28 0.29 0.32 0.65 0.80 0.90 0.55 0.60 0.69 0.52 0.57 0.62 0.24 0.37 0.54
M5 0.29 0.30 0.31 0.57 0.64 0.74 0.49 0.56 0.63 0.500.52 0.53 0.18 0.20 0.22
K-nn 0.29 0.31 0.32 0.57 0.65 0.71 0.44 0.51 0.52 0.52 0.54 0.57 0.55 0.59 0.67
MLR 0.34 0.36 0.39 0.72 0.74 0.78 0.57 0.60 0.63 0.51 0.53 0.55 0.44 0.48 0.52
Näıve – – – – – – – – – – – – 0.32 0.35 0.42
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Fig. 6. Probability distribution of the 12 model residuals of all tech-
niques (evapotranspiration case study).

range (0.30–0.55) of values (Table 3). In this case, the R
statistic becomes the most important indicator (Elshorbagy
and Parasuraman, 2008). For example, if an average-all
model is constructed just by assuming that the best predic-
tor is the average soil moisture value of all observations in
the training dataset, the predicted value will be always 0.442.
In this case, the RMSE and the MARE values are 0.05 and
0.10, respectively, but the R statistic value is almost zero; in-
dicating an extremely poor model. Accordingly, ANNs and

Table 9. The p-values of the two samples K-S test on the model
residuals (evapotranspiration).

ANNs GP EPR SVM M5 K-nn MLR

ANNs 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GP 1 0.0001 0.0000 0.0000 0.0000 0.0000
EPR 1 0.0000 0.0000 0.0000 0.0000
SVM 1 0.0000 0.0000 0.0000
M5 1 0.051 0.0000
K-nn 1 0.0000
MLR 1

GP are the best modeling techniques for this case study (pro-
ducing theR values of 0.60 and 0.61, respectively), followed
by the K-nn and the M5 techniques. The MLR is clearly
inferior to other techniques, which points to the possibility
that the SMP dataset is a highly nonlinear dataset. The au-
thors believe that this is a major reason for the relative suc-
cess of ANNs in this case study compared to the previous
(AET) case study. The moisture storage effect (Elshorbagy
and El-Baroudy, 2009; Elshorbagy and Parasuraman, 2008)
attributes to the nonlinearity of the process. Techniques that
can handle highly nonlinear data (ANNs and GP) were quite
successful, followed closely by local/modular models (M5
and K-nn). Even though the EPR technique was relatively
close to the K-nn and M5, the performance of the SVM tech-
nique was the poorest with anR value of 0.44; slightly higher
than the MLR.

The scatter plots (Fig. 7) show clearly that the error mea-
sures, including the IPE (Table 8), reflect only the aver-
age overall performance of the models, and favored models
that produce scatter with less dispersion (e.g., GP and EPR).
However, the plots reveal that ANNs outperforms other tech-
niques where, at least, the trend of the higher range of peat
moisture values was captured better than the other techniques
could do. Similar to the AET case study, frequency curves
were constructed for the residuals of each technique (Fig. 8).
Interestingly, the best-found probability distributions of the
residuals of the various techniques differed. The LogLogistic
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Fig. 7. Scatter plots of observed and predicted peat moisture content,(a) ANNs, (b) GP,(c) EPR,(d) SVM, (e)M5, (f) K-nn, and(g) MLR.

Table 10.Testing results of all models applied to thePeat moisturedataset.

Models RMSE MARE MB R

Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst

ANNs 0.041 0.046 0.051 0.076 0.083 0.090 0.000 −.001 −.009 0.66 0.60 0.53
GP 0.040 0.044 0.050 0.076 0.084 0.091 0.000 −.001 −.007 0.70 0.61 0.47
EPR 0.045 0.047 0.050 0.087 0.091 0.097 0.0000.001 0.006 0.56 0.52 0.46
SVM 0.048 0.051 0.053 0.081 0.092 0.098−.004 0.011 0.016 0.57 0.44 0.35
M5 0.041 0.045 0.050 0.075 0.084 0.098 0.001 0.000 0.004 0.66 0.57 0.37
K-nn 0.042 0.047 0.051 0.073 0.083 0.090 0.000 0.000 0.005 0.62 0.53 0.43
MLR 0.049 0.050 0.052 0.96 0.099 0.104 0.000 0.001 0.004 0.43 0.40 0.33
Näıve – − – – − – – − – – − –
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Fig. 8. Probability distribution of the 12 model residuals of all tech-
niques (peat moisture case study).

(γ , β, α) probability distribution was found to fit the resid-
uals of SVM and K-nn, and M5 modeling techniques, Lo-
gistic (α, β) for ANNs, Lognormal (µ, σ ) for GP, Beta (α1,
α2) for EPR and MLR techniques. This reflects the fact that
the adopted modeling techniques are different in the way that
they predict the output and minimize the errors, even if their
average overall error values are close. The frequency curves
reflect the considerable outperformance of the ANNs, K-nn,
M5, and SVM over other more uncertain and biased tech-
niques, such as MLR and the EPR techniques. An impor-
tant observation here is the lower uncertainty of the SVM
technique. The small uncertainty of the SVM technique re-
flected by the probability distribution is affected by the nar-
row range of residuals and small overall RMSE, however, the
SVM models are poor in capturing the trend of the SMP data
– this is indicated by the lowerR value.

The Kolmogorov-Smirnov nonparametric test was con-
ducted on the model residuals of all techniques to test the
null hypothesis that the model residuals of any two tech-
niques are sampled from the same distribution. The matrix
of thep-values is given in Table 11. There is strong statisti-
cal evidence that the residuals of the various techniques are
stemming from different populations.

Table 11. Thep-values of the two samples K-S test on the model
residuals (peat moisture).

ANNs GP EPR SVM M5 K-nn MLR

ANNs 1 0.0000 0.0021 0.0000 0.0000 0.0156 0.0000
GP 1 0.0001 0.0000 0.0015 0.0000 0.0000
EPR 1 0.0000 0.0003 0.0000 0.0069
SVM 1 0.0000 0.0000 0.0000
M5 1 0.0000 0.0000
K-nn 1 0.0000
MLR 1

4.3 Till (lower layer) moisture case study

The till moisture case study (SMT) is similar to the previous
case study with regard to the small variability in the dataset,
and the nonlinear response to the climatic variables due to the
large storage effect. Table 3 shows that the variability (CV)
of the till moisture data is half of that of the peat moisture
data, whereas the skew in the till moisture dataset is nearly
double that of the peat moisture. The error measures shown
in Table 12 (and in particular the R statistic) reveal that K-
nn, GP, and ANNs are better candidates than other model-
ing techniques based on the same argument mentioned ear-
lier regarding theR statistic. Similar to the previous case
study, SVM and MLR techniques were the lowest in the rank
with regard to the prediction accuracy. The small variabil-
ity, combined with the high nonlinearity, of the SMT dataset
contributed to the relative success of the K-nn technique in
this particular case study. The failure of the MLR is an in-
dicator of the potential utility of the ANNs for modeling the
SMT.

Frequency curves were constructed for the residuals of
each technique (Fig. 9) to investigate the predictive uncer-
tainty. The graph in this case provides useful and more in-
sightful view of the predictive reliability of the various tech-
niques. The K-nn, GP, ANNs, and the SVM are clearly less
uncertain and less skewed than EPR and other linear tech-
niques (M5 and MLR) in this case study. The best-found
probability distributions of the residuals of the various tech-
niques differed across techniques. The LogLogistic (γ , β,
α) distribution was found to fit the residuals of SVM and K-
nn, and ANNs modeling techniques, Logistic (α, β) for GP,
Lognormal (µ, σ) for EPR and MLR, and ExtremeValue (a,
b) for M5. This reflects the fact that some of the adopted
modeling techniques are really different in the way that they
predict the output and minimize the errors, whereas some
similarity is identified among the ANNs, K-nn, and SVM
techniques. This similarity is only in terms of approach-
ing the optimum solution, and leaving model residuals to
be similarly distributed, but not necessarily in the distribu-
tion parameters. Similar to the SMP case study, less uncer-
tainty with the use of the SVM is due to model residuals that
stay around the mean, and thus, reduce the variability and
the average error. This should not be confused with the poor
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Table 12.Testing results of all models applied to the Till moisture dataset.

Models RMSE MARE MB R
Best Ave. Worst Best Ave. Worst Best Ave. Worst Best Ave. Worst

ANNs 0.014 0.015 0.020 0.037 0.041 0.058 0.000 −.002 −.006 0.63 0.55 0.21
GP 0.012 0.015 0.020 0.034 0.040 0.046 0.000 −.001 0.002 0.72 0.57 0.38
EPR 0.015 0.016 0.017 0.0420.044 0.047 0.000 0.000 0.002 0.52 0.44 0.32
SVM 0.015 0.016 0.017 0.038 0.040 0.043 0.001 0.003 0.005 0.57 0.48 0.32
M5 0.014 0.016 0.017 0.037 0.042 0.047 0.000 0.000 0.002 0.59 0.46 0.30
K-nn 0.013 0.015 0.017 0.034 0.038 0.040 0.000 0.000 0.002 0.70 0.57 0.49
MLR 0.016 0.016 0.017 0.043 0.045 0.047 0.000 0.000 0.002 0.50 0.41 0.32
Näıve – – – – – – – – – – – –

Table 13. Thep-values of the two samples K-S test on the model
residuals (till moisture).

ANNs GP EPR SVM M5 K-nn MLR

ANNs 1 0.0040 0.0043 0.0000 0.0094 0.0000 0.0000
GP 1 0.0400 0.0000 0.1843 0.0000 0.0006
EPR 1 0.0000 0.1667 0.0000 0.0101
SVM 1 0.0000 0.0001 0.0000
M5 1 0.0000 0.0007
K-nn 1 0.0000
MLR 1

accuracy of capturing trends in the data (lowR value in Ta-
ble 12 and even high IPE value in Table 8).

The Kolmogorov-Smirnov nonparametric test was con-
ducted on the model residuals (raw data; not fitted distri-
bution) of all techniques to test the null hypothesis that the
model residuals of any two techniques are sampled from the
same population. The matrix of thep-values is given as Ta-
ble 13. The K-S test reveals that there is no evidence to reject
the hypothesis in the case of the EPR and M5, and also GP
and M5. The visual analysis of Fig. 9 confirms the finding
regarding EPR and M5; however, M5 and GP are visually
different. The reason is that the graph presents the best-fit
distributions that should be used to make conclusions regard-
ing the potential of the techniques and their possible perfor-
mance on untested cases in the future. The K-S is a non-
parametric test that relies on the cumulative frequency of the
sample itself. For the rest of the adopted techniques, there
is strong statistical evidence that the residuals of the various
techniques are stemming from different populations.

4.4 Rainfall-runoff case study I

The performance of the various techniques applied to the
daily rainfall-runoff I (R-R I) case study is provided in Ta-
ble 14. In this case study, the preceding runoff was not used
as an input for the models, therefore, the information content
can be considered limited (only rainfall of the current and
the three preceding days were used). The performances of
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Fig. 9. Probability distribution of the 12 model residuals of all tech-
niques (till moisture case study).

all techniques were almost on par as shown by close values
of average RMSE andR (Table 14) as well as close values
of the IPE indicator (Table 8). Nonetheless, one can observe
that M5, GP, and MLR were slightly better and less biased
(lower MB values) than the other techniques. In a situation
like this R-R I case study, where the information content it-
self is limited; it may not be possible to differentiate among
the various modeling techniques. The limiting factor for the
prediction accuracy becomes the information content rather
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Table 14.Testing results of all models applied to the Rainfall-Runoff I .

Models RMSE MARE MB R

Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst

ANNs 24.94 26.25 28.24 1.04 1.47 2.03 0.59−2.25 −8.78 0.59 0.53 0.40
GP 22.93 24.91 27.49 1.61 1.71 1.83 0.52 1.05 1.84 0.66 0.57 0.52
EPR 24.32 27.05 39.93 1.55 1.69 1.81−0.05 0.05 1.66 0.61 0.54 0.49
SVM 25.22 26.16 26.83 1.01 1.11 1.18 −4.99 −6.06 −7.75 0.60 0.54 0.47
M5 24.11 24.64 25.57 1.48 1.60 1.65 0.05 −0.47 −1.92 0.62 0.58 0.54
K−nn 25.13 25.98 27.39 1.45 1.58 1.70−0.74 −1.55 −3.28 0.58 0.52 0.44
MLR 24.20 24.93 25.77 1.5 1.61 1.71 0.01 0.12 −1.55 0.60 0.56 0.53
Näıve − − − − − − − − − − − −

Table 15.Testing results of all models applied to the Rainfall-Runoff II.

Models RMSE MARE MB R

Best Ave Worst Best Ave Worst Best Ave. Worst Best Ave Worst

ANNs 5.61 9.13 14.77 0.10 0.21 0.43−0.27 −0.69 7.54 0.99 0.97 0.91
GP 4.28 4.92 6.03 0.09 0.11 0.14 0.03 0.06 0.62 0.990.99 0.98
EPR 4.69 5.55 6.95 0.10 0.11 0.15 0.02 0.01−0.34 0.99 0.98 0.97
SVM 6.47 10.12 15.62 0.09 0.12 0.15−0.02 −0.59 −1.53 0.98 0.94 0.87
M5 4.4 5.2 6.0 0.09 0.09 0.10 0.00 0.00 0.44 0.99 0.99 0.98
K−nn 10.4 11.8 13.8 0.33 0.37 0.42−1.26 −1.86 −2.63 0.96 0.93 0.89
MLR 6.8 7.8 9.4 0.31 0.35 0.41 −0.06 0.07 0.48 0.97 0.97 0.95
Näıve 8.8 10.1 12.1 0.12 0.12 0.12−0.01 0.04 −0.44 0.96 0.94 0.92

than the predictive capability of the various techniques. A
linear (e.g., MLR) or a modular linear (M5) technique is suf-
ficient for such dataset.

The best-found probability distributions of the residuals of
the various techniques did not differ. The Logistic (α, β)

probability distribution, with different parameter values for
each technique, was found to fit the residuals of all modeling
techniques. This reflects the fact that the adopted modeling
techniques produce residuals that have similar nature, and
that all techniques were similar in the way that they predict
the output and minimize the errors (Fig. 10). Even though
the visual analysis of Fig. 10 shows almost no practical dif-
ferences among the various probability distributions, thep-
values of the K-S test (Table not shown because all values
are zeros) indicate that there is strong evidence to reject the
null hypothesis. Based on the K-S test, the model residuals
of the various techniques could represent different distribu-
tions. There is no contradiction between the K-S test results
and the visual test because a slight shift on the graph might
be translated to a statistically significant difference.

4.5 Rainfall-runoff case study II

This rainfall-runoff II (R-R II) case study is the same as the
previous R-R I dataset with one difference; that is the pre-
ceding runoff was used as an additional input. In such a
strongly autocorrelated series as the daily runoff, providing

the preceding runoff as an input to predict the current runoff
make strong information content at the disposal of the pre-
dictive models. Even though the MLR technique may not be
suitable for this case study because one of the inputs (pre-
ceding runoff) is autocorrelated, it is used to show how much
information can be a captured by a global linear model. In
addition to this, a näıve model for predicting the daily runoff
was developed just by using the preceding runoff value as an
estimate of the current runoff. The performance of the vari-
ous techniques applied to the daily R-R II case study is pro-
vided in Table 15. GP, M5, and EPR, followed by the MLR,
techniques are better choices than the other techniques for
this case studies. They provide the lowest RMSE, MARE,
MB, and the highest R values. The IPE indicator in Table 8
also mostly supports this finding. Expectedly, the presence
of the preceding runoff as an input in this case study makes
the input-output relationship more globally linear than non-
linear. The superiority of the MLR over the ANNs supports
this idea. Instance-based leaning techniques that use sim-
ple average of the nearest neighbors (K-nn) may not be a
good choice. K-nn found almost most of the information
within a range of very small number of neighbors (average
of 3 neighbors, Table 6), but the failure to regress the in-
formation weakens the input-output relationship. The infor-
mation capture in linear models could be even enhanced by
local/modular techniques, such as the M5 model trees.
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Fig. 10. Probability distribution of the 12 model residuals of all
techniques (rainfall-runoff I case study).

Figure 11 shows the scatter plots of observed vs. predicted
runoff II data. The scatter around the 45-degree line supports
the conclusion made earlier regarding the superiority of the
GP, M5, and EPR, and the inferiority of K-nn, ANNs, and
SVM techniques. The success of GP, EPR, and M5 across
all ranges of the dataset is noticeable (Fig. 11b, c, e). With
the exception of the SVM and naı̈ve models, the best-found
probability distributions of the residuals of the various tech-
niques did not differ. The Logistic (α, β) probability distri-
bution, with different parameter values for each technique,
was found to fit the residuals of ANNs, GP, EPR, M5, K-nn,
and MLR techniques, whereas Normal (µ, σ) was found to
fit the residuals of the SVM and the naı̈ve models. In spite
of the similarity in the best-fit distribution, the parameters
were completely different even visually (Fig. 12). All model-
ing techniques produced symmetrical distributions of model
residuals, but GP, EPR, and M5 possess the smallest predic-
tive uncertainty. Thep-values of the K-S test (Table 16) in-
dicate that there is strong evidence to reject the null hypothe-
sis. Based on the K-S test, the model residuals of the various
techniques could represent different distributions.

Table 16. Thep-values of the two samples K-S test on the model
residuals (rainfall-runoff II).

ANNs GP EPR SVM M5 K-nn MLR

ANNs 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GP 1 0.0003 0.0000 0.0000 0.0000 0.0000
EPR 1 0.0000 0.0000 0.0000 0.0000
SVM 1 0.0000 0.0000 0.0000
M5 1 0.0000 0.0000
K-nn 1 0.0000
MLR 1

5 Discussion

After evaluating the various data driven modeling (DDM)
techniques from both perspectives of prediction accuracy and
uncertainty, one of the means to gain further insight into their
modeling capabilities is to compare the performance dete-
rioration in the testing phase to that in the training phase.
Less deterioration may indicate a higher level of reliability
and less uncertainty about the technique’s performance in fu-
ture and untested applications. The percent deterioration is
calculated for each technique by dividing the difference be-
tween training and testing performance by the training per-
formance. A negative percent means that the performance
of the technique during the testing phase was better than
that during the training phase. Table 17 presents the percent
deterioration in both RMSE and MARE for all techniques
and case studies. For each technique, the average values of
RMSE and MARE of the 12 models were used. A few obser-
vations can be noted from Table 17: (i) ANNs had the highest
level of performance deterioration in all case studies, which
is an intricate characteristic of the technique and perhaps any
highly nonlinear technique. ANNs seem to go after some in-
dividual and local patterns even when training is stopped by
cross-validation; (ii) similar to ANNs, SVM suffered from
similar phenomenon in four out of the five case studies. This
might be counter intuitive and requires further investigation
because a technique that employs the concept of error tol-
erance and flatness of the approximation function should do
better in this regard. Users of SVM are encouraged to study
further the effect of the error tolerance and the flatness co-
efficient C on the technique performance; (iii) in nonlinear
case studies (e.g., peat and till soil moisture), the compro-
mise between improving the prediction accuracy while re-
ducing the deterioration might be difficult. The deterioration
of the K-nn technique in both case studies was the highest,
while performing relatively better than other techniques in
terms of the prediction accuracy and uncertainty; (iv) EPR,
almost similar to MLR, was excellent in its generalization
ability. The deterioration of performance during the testing
phase was very small in all case studies; highlighting a great
potential of this technique; and (v) in most cases GP and M5
model trees were not far from the EPR regarding the per-
formance deterioration. Therefore, whenever EPR, GP, and
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Fig. 11. scatter plots of observed and predicted runoff II,(a) ANNs, (b) GP,(c) EPR,(d) SVM, (e)M5, (f) K-nn, (g) MLR, and(h) naive.

Table 17.The percent deterioration of model performance during testing compared to training.

AET SMP SMT R-R I R-R II
RMSE MARE RMSE MARE RMSE MARE RMSE MARE RMSE MARE

ANNs 29 118 27 26 23 26 18 −8 127 65
GP 0 10 11 10 12 9 13 0 11 2
EPR 1 12 4 4 2 2 16 −1 7 −1
SVM 22 47 11 19 17 29 20 12 140 73
M5 1 12 12 12 8 7 8 1 15 6
K-nn 4 16 26 29 24 26 12 9 45 46
MLR −1 11 1 2 0 1 1 0 0 −1
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Fig. 12. Probability distribution of the 12 model residuals of all
techniques (rainfall-runoff II case study).

M5 are comparable to other techniques in terms of prediction
accuracy and uncertainty, they deserve to be given preference
as candidate modeling techniques.

One of the fundamental questions of this research study is
whether there are real differences among the techniques un-
der consideration with regard to their predictive capabilities.
The results and analysis show that serious evaluation of the
various techniques has to rely on multiple ways, such as the
average overall error represented by multiple error measures,
scatter plots of the observed vs. predicted outputs, probabilis-
tic analysis of the model residuals, and statistical tests of the
significance of the differences among the residuals of various
models/techniques. As an example, the SVM technique per-
formed well on the peat moisture case study in terms of the
overall average error measures and the probability distribu-
tion of the residuals, however, the scatter plots reveal that the
models were not behavioral; i.e., could not capture the trend
of the phenomenon at all. On the other hand, the superior-
ity of the ANNs over other techniques on the same dataset
was revealed by the scatter plots. The analysis presented in
the previous section shows that SVM, M5, K-nn, and GP
techniques were the best candidates for modeling the evap-
otranspiration case study. In the peat moisture case study,
ANNs, GP, and followed by K-nn, M5, and EPR provided
the best performances, whereas ANNs, GP, and K-nn were

the best for modeling the till moisture dataset. Even though
the K-S test show that the difference between the residuals
of GP and M5 was insignificant, this should be treated with
caution. The test compares the residuals but fail to assess the
difference in theR statistic, which is the key indicator in this
particular case study. M5 was not successful in this nonlinear
dataset. For the rainfall-runoff I dataset, all techniques were
on par, and perhaps there is no need for a sophisticated non-
linear model. In the last case study (rainfall-runoff II), that
has an autoregressive term and hence can be described by
less non-linear mappings, GP, M5, and EPR were obviously
better than the other techniques.

Neural networks could be one of the optimum modeling
choices for highly nonlinear case studies (e.g., peat and till
soil moisture), but could be completely dominated by other
techniques as it was the case for the AET and the rainfall-
runoff II case study, depending on the level of linearity in the
dataset. M5 is an excellent choice for linear and some non-
linear dataset; it performed poorly only in the till moisture
dataset. EPR, though it was not a top choice except in the
rainfall-runoff II case study, was never completely dominated
by other methods, and sometimes it was among the best tech-
niques. The excellent generalization ability (minimum per-
formance deterioration during the testing phase) of the EPR
adds to its potential for hydrological applications. However,
in nonlinear datasets, EPR was always less successful than
GP. GP was the only technique that was always either the top
model or, at least, among the best models regarding both pre-
diction accuracy and uncertainty. The ability of GP to adapt
the structural complexity of the generated model/program to
the dataset could be one of the main reasons of its superb
predictive capability. The SVM seems to be significantly af-
fected by the choice of kernels. In this study, the RBF kernel
was chosen based on its performance on the cross valida-
tion sample of most case studies (four out of five cases). In
the linear rainfall-runoff II case study, when a linear kernel
was tested, the prediction accuracy, represented by RMSE,
MARE, andR, improved by 20–25%.

Two limitations of this study have to be noted. First, the
effect of the model inputs on the predictive capabilities was
not investigated. Adding more important inputs, or remov-
ing some of them, affects the degree of linearity/nonlinearity
of the input-output relationship, and thus, the model perfor-
mance. Such an effect may differ from one technique to
the other. Second, some capabilities of the various tech-
niques and tools were not, and perhaps cannot be, thor-
oughly covered. The Discipulus software for GP was run
for almost two hours each time. It was observed that al-
lowing from 24–48 h of run could slightly improve the re-
sults. The EPR tool allows for multiobjective optimization,
rather than just minimizing the squared error, but it was not
tried in this study. Also instance-based techniques (K-nn)
could be further improved using weighted average or regres-
sion of the nearest neighbors. ANNs could be trained us-
ing Bayesian regularization algorithm (Demuth and Beale,
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Table 18.The gamma test results on all case studies.

Case Error variance 0 statistic Error variance V-ratio Gradient M
study MLR technique best technique statistic

AET 2302 2778 1928 (GP) 0.207 0.0414 1200
SMP 0.0025 0.0018 0.002 (ANNs) 0.410 0.2970 500
SMT 0.0003 0.0002 0.0002 (K-nn) 0.273 0.4140 520
R-R I 459 495 397 (M5) 0.560 0.1040 1300
R-R II 26 27 7 (GP) 0.013 0.1100 1100

2001), which could improve the generalization ability. In this
study, multiobjective cost functions were avoided as much
as possible. However, future research by the authors and/or
other researchers could add to this experiment and build on
it.

In this experiment, the main objective was to investigate
the predictive capabilities of the various data driven tech-
niques. However, a brief ensemble prediction analysis was
conducted in this study. For every case study (e.g., AET), en-
semble prediction was calculated by averaging the predicted
output values from the six modeling techniques. This pro-
cess was repeated for each of the 12 dataset realizations. A
summary of the ensemble prediction accuracy is provided in
Table 19. In the cases of the AET and the P-R I dataset, en-
semble predictions were not different from the results of the
best individual technique. However, ensemble predictions
were better than the best individual techniques in the cases
of SMP and SMT. Interestingly, in the case of the P-R II case
study, the best individual technique (GP) performed better
than the ensemble. Apparently, when GP performed notably
better than the other techniques, the results of the ensemble
(averages of all techniques) will not improve the prediction
accuracy (Table 19).

The non-parametric Gamma test (0-test) (Chuzhanova et
al., 1998; Evans and Jones, 2002, and recently applied in
hydrology by Remesan et al., 2008) was conducted to gain
insight into the predictability and the complexities of the
modeled processes, and possible leads into selection of suit-
able modeling techniques. The0 statistic was calculated for
every dataset using the original training and cross-validation
subsets as one integrated subset (all unique points). The V-
ratio, gradient, and the M-test were all calculated using the
scaled data (zero mean and 0.5 standard deviation as spec-
ified by WinGamma software). The0 statistic was calcu-
lated using the unscaled data to facilitate the comparison with
the error variance of the various modeling techniques (Ta-
ble 18). The following observations can be made: (i) for the
AET case study, the error variance of the linear regression
technique (2302) was already lower than the statistic; indi-
cating that complex nonlinear model (e.g., ANNs) may not
be necessary. The low gradient value of 0.041 shows that a
noncomplex smooth function can be used for modeling the
AET process, whereas the reasonably low V-ratio indicates

that there is high predictability in the output variable. GP,
shown to perform well on all case studies, achieved the low-
est error variance. Even though it is lower than the estimated
0, but when it is divided by the AET variance (Table 1),
the ratio is 0.23; similar to the V-ratio.; (ii) for the R-R I
case study, similar to the AET, there is no need for nonlin-
ear complex model, especially in light of the high V-ratio
that indicates low level of predictability. The low level of
predictability is attributed to the lack of appropriate inputs,
which was rectified in the R-R II case study. All techniques
were found to perform on par. The slight superiority of the
M5 (ratio of error variance to output variance is 0.44), which
is a modular linear technique can be attributed to the fact that
it does not produce a smooth function. This is something
that the0-test may not capture well; (iii) similar conclusions
can be made for the R-R II case study. Nonlinear techniques,
such as ANNs, will not perform well. The very low V-ratio
that indicates very high predictability might be achieved by
techniques that can outperform MLR, yet have the ability to
adapt to linear situations. As expected GP, EPR, and M5 per-
formed extremely well in this case; (iv) both SMP and SMT
case studies, the MLR technique failed to achieve the esti-
mated0 value, and actually produced ratios of error variance
to output variance of 1.0 and 0.8, respectively. This finding
points to the possibility that more complex nonlinear models
are needed. As the results of this study show, in addition to
GP, the ANNs and K-nn were relatively more successful in
the SMP and SMT case studies. However, it should be noted
that0-test relates well to the model performance with regard
to the squared error, but in cases where the criterion of per-
formance is theR statistic, the test may not be the optimum
tool; (v) the M-test indicates the number of data points that
is perhaps needed to achieve the accuracy indicated by the
V-ratio. It can be noticed from Table 18 that the size of the
datasets needed for developing nonlinear models for the peat
and till soil moisture are slightly more than what was used
in this study. For the other three case studies, the size of the
training datasets exceeded the M-test.

The 0-test may assist in the selection of the appropri-
ate modeling techniques by applying first multiple linear
regression models and evaluating the residuals against the
0-test values. Decision can be made regarding the need
for a complex nonlinear technique. If there is a need for
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Table 19.Accuracy results of ensemble prediction based on average output values of six techniques.

RMSE MARE BIAS Correlation (R) IPE
Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst Best Ave Worst

AET 42.246 43.694 47.848 0.519 0.738 1.037 0.170 0.570 9.296 0.89 0.88 0.86 0.28 0.31 0.37
SMP 0.040 0.042 0.044 0.076 0.080 0.087 0.000 0.002 0.004 0.71 0.67 0.61 0.57 0.60 0.64
SMT 0.013 0.014 0.015 0.036 0.038 0.042 0.000 0.000 0.001 0.71 0.63 0.51 0.46 0.50 0.56
P−R I 23.318 24.342 25.126 1.395 1.507 1.613 0.030 −1.498 −3.080 0.64 0.59 0.55 0.49 0.51 0.53
P−R II 5.201 6.204 9.475 0.108 0.135 0.310 −0.300 −0.531 −1.510 0.99 0.98 0.96 0.22 0.26 0.48

such technique, then ANNs and K-nn (in addition to GP, for
example) should be seriously considered. If it is concluded
that complex nonlinear techniques are not needed, then im-
provement of results can be sought using GP, EPR, and M5.
When complex nonlinear techniques are not needed, and the
predictability is low (i.e., high V-ratio) significant improve-
ment may not be at all possible.

6 Conclusions

Neural networks (ANNs) that have hidden nodes with non-
linear transfer functions may impose on the data a model
with complexity level that is higher than that needed by many
hydrological data. The results of the experiment conducted
in this research study show that ANNs were a sub-optimal
choice for the actual evapotranspiration (AET) and the two
rainfall-runoff case studies. In the nonlinear case studies
(peat and till soil moisture), ANN models were the most
successful ones. In general, genetic programming (GP) was
the most successful technique due to its ability to adapt the
model complexity to the modeled data. Evolutionary poly-
nomial regression (EPR) performance could be close to the
GP with datasets that are more linear than nonlinear. Support
vector machines (SVM) are sensitive to the kernel choice and
if appropriately selected, the performance of SVM can im-
prove. M5 model trees performs very well with linear and
semi linear data, which cover wide range of hydrological sit-
uations. In nonlinear case studies, ANNs, K-nearest neigh-
bors (K-nn), and GP could be more successful than other
modeling techniques. K-nn was also successful in linear situ-
ations, and it deserves more attention as a potential modeling
technique for hydrological applications.

The results of this study show that a winner modeling
technique cannot be easily declared. DDM techniques
should be applied in ensemble fashion. Multiple groups
(realizations) of each dataset should be randomly generated,
by sampling without replacement, and should be divided
into three split samples of training, cross-validation for
stopping the training phase, and testing for applying the
model once. Developing multiple non-dominated models
of each technique, based on the multiple realizations of
the dataset, allows for evaluating the predictive accuracy
and uncertainty in a comprehensive way. Multiple overall
average error measures, frequency distributions of model

residuals, and scatter plots of observed vs. predicted data
should be all used as one package to evaluate the predictive
capabilities of the modeling techniques. Gamma test can be
used as a guide to assist in the selection of the appropriate
modeling technique for a particular dataset. Further studies
can be built on the experiment presented in this research to
evaluate other data driven techniques and to study the impact
of input selection and input pre-processing on the relative
predictive capabilities of the techniques.

Edited by: R. Merz
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