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Abstract. The role and the importance of soil moisture for
meteorological, agricultural and hydrological applications is
widely known. Remote sensing offers the unique capability
to monitor soil moisture over large areas (catchment scale)
with, nowadays, a temporal resolution suitable for hydrolog-
ical purposes. However, the accuracy of the remotely sensed
soil moisture estimates has to be carefully checked. The val-
idation of these estimates with in-situ measurements is not
straightforward due the well-known problems related to the
spatial mismatch and the measurement accuracy. The analy-
sis of the effects deriving from assimilating remotely sensed
soil moisture data into hydrological or meteorological mod-
els could represent a more valuable method to test their re-
liability. In particular, the assimilation of satellite-derived
soil moisture estimates into rainfall-runoff models at differ-
ent scales and over different regions represents an important
scientific and operational issue.

In this study, the soil wetness index (SWI) product de-
rived from the Advanced SCATterometer (ASCAT) sensor
onboard of the Metop satellite was tested. The SWI was
firstly compared with the soil moisture temporal pattern de-
rived from a continuous rainfall-runoff model (MISDc) to
assess its relationship with modeled data. Then, by using a
simple data assimilation technique, the linearly rescaled SWI
that matches the range of variability of modelled data (de-
noted as SWI∗) was assimilated into MISDc and the model
performance on flood estimation was analyzed. Moreover,
three synthetic experiments considering errors on rainfall,
model parameters and initial soil wetness conditions were
carried out. These experiments allowed to further investi-
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gate the SWI potential when uncertain conditions take place.
The most significant flood events, which occurred in the pe-
riod 2000–2009 on five subcatchments of the Upper Tiber
River in central Italy, ranging in extension between 100 and
650 km2, were used as case studies. Results reveal that
the SWI derived from the ASCAT sensor can be conve-
niently adopted to improve runoff prediction in the study
area, mainly if the initial soil wetness conditions are un-
known.

1 Introduction

Soil moisture plays a fundamental role in the partitioning of
rainfall into runoff and infiltration inside a catchment. In
particular, for a given storm event, different values of ini-
tial soil moisture conditions can discriminate between minor
or catastrophic flooding effects (see e.g. Crow et al., 2005;
Brocca et al., 2008; Berthet et al., 2009; Merz and Bloschl,
2009). Therefore, the assimilation of soil moisture informa-
tion within rainfall-runoff models can provide, in theory, a
great improvement for both runoff prediction and forecast-
ing.

Several studies investigated the use of soil moisture ob-
servations within rainfall-runoff models by using, basically,
three different methodologies. Some authors directly used
these observations for the assessment of the antecedent wet-
ness conditions through in-situ (Meyles et al., 2003; Lon-
gobardi et al., 2003; Brocca et al., 2009b; Huang et al.,
2007; Pfister et al., 2003; Tramblay et al., 2010; Zehe et al.,
2010) and remotely sensed (Jacobs et al., 2003; Goodrich
et al., 1994; Brocca et al., 2009a; Beck et al., 2010) es-
timates. For instance, some studies (Brocca et al., 2009b;
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Tramblay et al., 2010; Beck et al., 2010) investigated the re-
lationship between soil moisture measurements (in-situ and
from satellite sensors) and the soil potential maximum re-
tention parameter of the Soil Conservation Service – Curve
Number method (Chow et al., 1988) that can be considered
a good indicator of the wetness conditions at the catchment
scale. Other applications employed soil moisture data for
the improvement of the calibration and testing of rainfall-
runoff models (Parajka et al., 2006, 2009; Wooldridge et
al., 2003; Koren et al., 2008) obtaining that, only in cer-
tain conditions, the insertion of soil moisture information can
help the model structure identification and parameterization.
Finally, sequential data assimilation techniques with in-situ
(Loumagne et al., 2001; Aubert et al., 2003; Anctil et al.,
2008) and remotely sensed (Crow et al., 2005; Pauwels et al.,
2001; 2002; Francois et al., 2003; Matgen et al., 2006; Crow
and Ryu, 2009) soil moisture observations were also ana-
lyzed. These latter studies showed that, after the assimilation
of soil moisture observations, the rainfall-runoff model per-
formance generally increased but, as previously, the enhance-
ment is not so evident (only for one flood event in Francois
et al., 2003 and only during high flow conditions in Aubert
et al., 2003). The explanation of the little improvements so
far obtained by assimilating soil moisture observations can
mainly be related to three aspects (see also Vereecken et al.,
2008; Crow and Ryu, 2009):

1. the spatial mismatch: the measurement extent is, usu-
ally, too low for in-situ data and too coarse for satellite
sensors when compared with model quantities;

2. the limited soil moisture data availability: only recently
in-situ soil moisture networks are being set up and
satellite data with daily, or lower temporal resolution
(required for hydrological applications) are becoming
available;

3. the layer depth: remote sensing sensors are able to in-
vestigate only a thin surface layer (2–5 cm) that does not
match the soil depth (1–2 m) usually simulated within
rainfall-runoff models.

Notwithstanding these drawbacks, nowadays remote sens-
ing represents the best possible choice for soil moisture mon-
itoring over large areas. In fact, the first satellite mission
specifically dedicated to soil moisture monitoring at global
scale was just launched on November 2009 (the Soil Mois-
ture and Ocean Salinity, SMOS, mission; Kerr et al., 2001)
and another one will be launched in 2015 (the Soil Moisture
Active and Passive mission, SMAP, Entekhabi et al., 2008).
Additionally, several non-dedicated satellite sensors for soil
moisture retrieval are now available (Brocca et al., 2010b).
Among them, the Advanced Scatterometer (ASCAT) on-
board of the Meteorological Operational (Metop) satellite
was found to accurately reproduce the temporal dynamics of
in-situ and ground modeled soil moisture observations across

different sites in Europe (Albergel et al., 2009; Brocca et
al., 2010b). In particular, Brocca et al. (2010b) highlighted
the reliability of the soil moisture product derived from the
ASCAT sensor when compared with in-situ measurements
collected in three experimental areas located in central Italy.
The ASCAT sensor, also based on the heritage of the ERS
scatterometer, provides an operational soil moisture product
on a global scale since January 2007 (Bartalis et al., 2007)
with coarse spatial resolution (25/50 km) and nearly daily
time scale. Indeed, Sinclair and Pegram (2010), for the South
Africa region, compared the soil moisture simulations pro-
duced by the rainfall-runoff TOPKAPI (TOPographic Kine-
matic APproximation and Integration) model to the exponen-
tially filtered time series of the ASCAT surface soil moisture
obtaining a good linear agreement in the dynamic behavior
of the two independent soil moisture estimates. The authors
inferred that the soil moisture fields obtained by the combi-
nation of ASCAT satellite data and land surface modeling
(TOPKAPI) will be valuable for flash flood guidance and
other applications in the region.

Based on the above insights, the main purpose of this
study is the assessment of the effects that can be obtained
by assimilating the ASCAT soil moisture product in rainfall-
runoff modelling. In particular, to our knowledge, this is the
first study where coarse resolution satellite data are assim-
ilated into a rainfall-runoff model by using a real data set.
In fact, previous studies with real data sets (Pauwels et al.,
2001; 2002; Francois et al., 2003; Matgen et al., 2006) con-
sidered the assimilation of high resolution SAR (Synthetic
Aperture Radar) images that, however, suffer of the well-
known problem of the low revisit time (∼30 days). On the
other hand, studies using coarse resolution sensors employed
satellite data only for rainfall-runoff model calibration (Para-
jka et al., 2006, 2009) or for the assessment of the reliability
of the modeled soil moisture (Sinclair and Pegram, 2010).
Moreover, unlike previous studies, the assessment of the ben-
efits (if any) of this assimilation was carried out consider-
ing an hourly time scale, which is the appropriate time reso-
lution for operational flood forecasting activities over small
to medium catchment sizes (<5000 km2). Specifically, five
subcatchments of the Upper Tiber River, ranging in extension
between 100 and 650 km2, are used as case studies consider-
ing the period January 2007–June 2009 for which ASCAT
data are available. A simple data assimilation technique is
implemented and the results on runoff prediction with and
without the use of ASCAT data are shown. Moreover, three
synthetic experiments are also carried out to investigate the
effects of the assimilation of ASCAT when errors on rainfall,
model parameters or initial conditions take place.

2 Methods

In the following, the rainfall-runoff model, the derivation
of the satellite soil moisture index and the data assimilation
technique are described. The soil moisture product derived
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from ASCAT is represented by a dimensionless index be-
tween 0 and 1 and, hence, to be consistent throughout the
paper, for it the more appropriate term “saturation degree” is
used hereafter, instead of “soil moisture”.

2.1 Rainfall-runoff model

The continuous rainfall-runoff model, MISDc (“Modello
Idrologico SemiDistribuito in continuo”), used in this study
was developed by Brocca et al. (2010a) for the simulation
of flood events in the Upper Tiber river region at the hourly
(or less) time scale. The model consists of two compo-
nents; the first one is a soil water balance (SWB) model
that simulates the saturation degree temporal pattern and sets
the initial conditions for the second component which is an
event-based rainfall-runoff model for flood hydrograph sim-
ulation. By coupling the two components through an ex-
perimentally derived relationship between the saturation de-
gree assessed by the SWB model at the start of a flood event
and the corresponding antecedent wetness conditions such
as expressed by the Soil Conservation Service (Brocca et
al., 2009b), the structure of a parsimonious and robust con-
tinuous rainfall-runoff model was derived. Specifically, in
the SWB model the processes are represented for infiltration
through the Green-Ampt equation, for percolation by a grav-
ity driven non-linear relationship and for actual evapotran-
spiration considering a linear relationship with the potential
one, based on a modified Blaney and Criddle approach. For
the event-based rainfall-runoff model, the Soil Conservation
Service – Curve Number method is employed for computing
abstraction from storm rainfall and the Geomorphological In-
stantaneous Unit Hydrograph for outlet response. It has to
be noted that this model structure was developed to simulate
discharge only during flood events (not throughout the year)
thus reducing the model parameterization and, consequently,
the prediction uncertainty.

The model requires, as input data, meteorological vari-
ables routinely measured (rainfall and air temperature) and
incorporates only 6 parameters to be estimated of which, four
parameters refer to the SWB model and the remaining 2 to
the event-based rainfall-runoff model. MISDc furnishes, as
output, the discharge at the catchment outlet and the satura-
tion degree,SD, at the catchment scale for the soil layer influ-
encing the rainfall-runoff transformation, denoted henceforth
as “modeled saturation degree”,SDmod(t). For a detailed
description of the model the reader is referred to Brocca et
al. (2010a, d).

2.2 Soil Wetness Index

The assimilation of remotely sensed saturation degree es-
timates, representative of a soil layer depth of 2 to 5 cm,
into rainfall-runoff models, simulating a layer depth usu-
ally greater than 1 m, can be conducted in two different
ways: (i) direct insertion of the surface satellite data into the

model that, however, should incorporate a surface layer ad
hoc implemented for the assimilation (Parajka et al., 2009);
(ii) assimilation of a profile soil wetness product obtained
by the surface one through the application of an appropriate
technique (Parajka et al., 2006; Sinclair and Pegram, 2010).
In this study, this latter option was selected and the semi-
empirical approach (also known as exponential filter) pro-
posed by Wagner et al. (1999a) was adopted for this pur-
pose both for its simplicity and for the request of a single
parameter. Briefly, this method assumes that the variation of
the average profile saturation degree is linearly related to the
difference between the surface and profile saturation degree.
For that, the profile saturation degree can be obtained by the
knowledge of the surface saturation degree and a parameter
T , named characteristic time length, representing the time
scale of saturation degree variation. The recursive formula-
tion of the method relies on (Albergel et al., 2009):

SWI(tn) = SWI(tn−1)+Kn

[
ms(tn)−SWI(tn−1)

]
(1)

wherems(tn) is the surface saturation degree observed by the
satellite sensor, SWItn is the Soil Wetness Index representing
the profile averaged saturation degree andtn is the acquisition
time of ms(tn). The gainKn at time tn is given by (in a
recursive form):

Kn =
Kn−1

Kn−1+e
−

(
tn−tn−1

T

) (2)

and it ranges between 0 and 1. For the initialization of this
filter, K1 and SWI1 were set to 1 andms(t1), respectively
(Albergel et al., 2009).

Prior to the assimilation of SWI(t) into the rainfall-runoff
model, a simple linear normalization was conducted through
the following equation:

SWI∗(t) =

{
SWI(t)−SWI(t)

σ [SWI(t)]

}
σ [SD mod (t)] +SD mod (t) (3)

wheret is time, SWI∗(t) is the linearly rescaled SWI(t), the
bar andσ are the mean and standard deviation operators
and SDmod(t) is the modeled saturation degree. The basis
of Eq. (3) is to surmise that SWI∗(t) andSDmod(t) have the
same mean and standard deviation. This transformation is
required because the exponential filter, Eq. (1), mainly for
largeT values, has the effect of smoothing the satellite-based
surface saturation degree time series. Consequently, the vari-
ability range of SWI is no more limited by 0 and 1 as the sat-
uration degree but varies in a narrower range. Moreover, to
assimilate the satellite data into the MISDc model, the range
of variability of SDmod and of the ASCAT data has to be the
same (Aubert et al., 2003).

2.3 Data assimilation technique

In this preliminary study, a very simple approach is employed
for the assimilation of the remotely sensed soil wetness index
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Fig. 1. – Morphology and hydrometeorological network of the
study area (Upper Tiber river basin). The five subcatchments an-
alyzed in the study along with the location of the ASCAT pixel cen-
troids are also shown.

into MISDc model. A nudging scheme was used to update
the modelled saturation degree,SDmod(t), when ASCAT ob-
servations becomes available:

SDass(t) = SD mod (t)+G
[
SWI∗(t)−SD mod (t)

]
(4)

wheret is time,SDass(t) is the updated modelled saturation
degree andG is a constant gain parameter. In practice,G de-
termines the relative weight of the uncertainties on the model
prediction against those of remotely sensed saturation degree
estimates. In fact,G can be written as (Maybeck, 1979):

G =
σ 2

SD mod

σ 2
SD mod

+σ 2
SWI∗

(5)

whereσ 2
SD mod

and σ 2
SWI∗ are the model and the SWI∗ er-

ror variance in the retrieval of saturation degree, respectively.
ForG=1 the observations are assumed right,σ 2

SWI∗=0, (direct
insertion), vice versa forG=0 the model is assumed perfect.
Although the nudging scheme employed in this study is not
optimal in a statistical sense, it is a computationally inexpen-
sive approach to address the issue on the usefulness of the
ASCAT observations to improve runoff prediction (Scipal et
al., 2008). In the remainder, for sake of simplicity, the time
dependence ofSDmod(t) and SWI∗(t) is omitted.

Table 1. – Main characteristics of the five investigated catchments.

Catchment
NIC ASS CHI TEV TIM

drainage area (km2) 137 165 100 658 549
mean catchment slope (%) 25.0 27.6 15.0 25.9 22.6
channel length (km) 16.4 25.2 20.1 31.0 50.9
N◦ raingauges 7 3 2 3 12

Hydrologic soil group – Soil Conservation Service (%)

High infiltration rate 3.5 9.2 7.8 8.6 43.8
Moderate infiltration rate 12.7 7.9 30.1 17.5 25.4
Low infiltration rate 83.9 81.5 51.8 71.8 28.9
Very low infiltration rate 0.0 1.4 10.3 2.1 1.9

Land Use (%)

Woods 65.0 41.8 34.0 59.8 37.1
Croplands 32.0 48.2 49.8 31.4 46.4
Grasslands 2.7 8.9 12.6 5.9 12.0
Urban areas 0.3 1.1 3.6 2.9 4.5

3 Study area and data set

The study area is the Upper Tiber river catchment that is
located in an inland region of Central Italy. In particular,
five subcatchments were used to test the assimilation of the
ASCAT saturation degree product: Niccone at Migianella
(NIC, 137 km2), Assino at Serrapartucci (ASS, 165 km2),
Chiani at Ponticelli (CHI, 100 km2), Tevere at S. Lucia (TEV,
658 km2) and Timia at Cantalupo (TIM, 549 km2). Figure 1
shows the framework of the study area along with the avail-
able hydrometeorological network and the centroids of the
ASCAT time series. Table 1 reports the main characteristics
of each catchment in terms of topography, soil type, land use
and hydrometeorological network density.

The climate is Mediterranean with mean annual rainfall of
∼950 mm and ranging over the region between 650 mm and
1600 mm (based on the period 1951–1999 and on a network
of more than 60 raingauges). Higher monthly rainfall val-
ues generally occur during the autumn-winter period when
floods occur. Mean annual air temperature (for the same pe-
riod 1951–1999) ranges between 3.5◦C and 14.0◦C, with
maximum in July and minimum in January. Accordingly, the
mean annual potential evapotranspiration computed with the
Thornthwaite formula is, on average, about 800 mm.

In the study area, a dense hydrometeorological monitor-
ing network (1 station every 150 km2) has been operating for
more than 25 years and the data are recorded with a time in-
terval of 30 min. The existing network consists of 84 rain
gauges, 36 thermometers and 43 hydrometric gauges. For
this study 10 years of rainfall and temperature data recorded
from January 2000 to December 2009 were employed.
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3.1 ASCAT data set

Succeeding the ERS-1 and ERS-2 scatterometers, ASCAT is
a real-aperture radar instrument measuring radar backscatter
at C-band in VV polarization. Because ASCAT operates with
two sub-swaths, more than twice of the ERS-1/2 scatterome-
ter coverage is provided. For Western Europe, measurements
are generally obtained twice a day, one in the morning (de-
scending orbit) and one in the evening (ascending orbit), be-
tween 08:00–11:00 and 17:00–21:00 UTC, respectively. Soil
moisture is retrieved from the ASCAT backscatter measure-
ments using a time series-based change detection approach
previously developed for the ERS-1/2 scatterometer by Wag-
ner et al. (1999a, b, c). In this approach soil moisture is
considered to have a linear relationship to backscatter in the
decibel space, while the noise sources include the instru-
ment noise, speckle and azimuthal anisotropies. The surface
roughness is assumed to have a constant contribution in time,
and therefore is not accounted for in the change detection
algorithm. By knowing the typical yearly vegetation cycle
and how it influences the backscatter-incidence angle rela-
tionship for each location on the Earth, the vegetation effects
can be removed (Wagner et al., 1999b), revealing the soil
moisture variations. As a last step, the historically lowest
and highest values of observed soil moisture are assigned to
the 0% (dry) and 100% (wet) references respectively, thereby
yielding time series of relative soil moisture percentage val-
ues for the first few centimeters of the soil.

The surface saturation degree data,ms, used for this study
were obtained by processing two years and half (January
2007–June 2009) of 25 km ASCAT backscatter measure-
ments using the algorithm described by Naeimi et al. (2009).
First validation studies of the ASCAT soil moisture product
assessed its reliability for estimating both in-situ and ground
modeled soil moisture observations across different region
in Europe (Albergel et al., 2009; Brocca et al., 2010b) and
South Africa (Sinclair and Pregram, 2010) both considering
ms and SWI.

4 Overall methodology and synthetic data assimilation
experiments

For each catchment, our overall approach is based on the
application of the MISDc model to simulate the most sig-
nificant flood events occurred before the period considered
for the assimilation of the ASCAT SWI data (i.e. the pe-
riod 2000–2007). Then the model is run for the period for
which ASCAT data are available (January 2008–June 2009)
andSDmod is compared with the SWI. Afterwards, the SWI
is rescaled to match the range of variability of the modeled
data through Eq. (3). Thus, the rescaled SWI, SWI∗, is as-
similated in the MISDc and the outcomes on flood prediction
are compared with those without assimilation.

In addition, three synthetic experiments are conducted as
follows. Firstly, the rainfall temporal pattern is perturbed
through a multiplicative scaling factor sampled from a mean-
one log-normal distribution with a dimensionless standard
deviation of 0.4. Moreover, a possible bias in the rainfall
pattern is also analyzed considering a log-normal distribu-
tion with the mean value greater than one. Secondly, an error
in the model parameters was simulated with a multiplicative
scaling factor sampled from a mean-one normal distribution
with a dimensionless standard deviation of 0.2. Since within
MISDc the SWB model computes the saturation degree tem-
poral pattern, an error only in its parameters was considered,
too. In fact, these parameters are those more variable across
catchments and, hence, they are more difficult to be esti-
mated. In all investigated cases, the model was run 1-year
before to start with the SWI assimilation (i.e. for the period
January 2007–June 2009) so that the effects of the initial con-
ditions for the SWB component can be reduced. It’s worth of
noting that the selection of the error probability distributions
and, mainly, of their standard deviation to perturb the input
rainfall along with the model parameters is a critical point in
the set up of the synthetic experiments. For this study, we
followed the indication by Crow and Ryu (2009) for the se-
lection of the probability distribution, even though different
standard deviation values were used. In fact, in a preliminary
analysis (not shown here for sake of brevity), we observed
that low values of the standard deviation produced results
very similar to the real case (without adding errors), whereas
high values provided unrealistic results with poor model per-
formance. Therefore, a trade-off between the two extreme
conditions was selected for this study. Thirdly, an error in
the initial conditions was tackled on starting the model run
one month before the occurrence of the first flood event and
considering as initial soil wetness condition the whole range
of feasible values from zero to one. For all cases, as previ-
ously, the model results with and without assimilation were
compared and discussed.

To evaluate the efficiency of the assimilation procedure, an
efficiency index, Eff, was used (Aubert et al., 2003):

Eff = 100

1−

∑
t

(Qass(t)−Qobs(t))
2∑

t
(Qsim(t)−Qobs(t))

2

 (6)

where t is time, Qobs is the observed discharge,Qsim and
Qassare the simulated discharge without and with assimila-
tion, respectively. If Eff is greater than 0 then the assimila-
tion produces an improvement in the runoff simulation by the
model.

5 Results and discussion

In this section we show the MISDc model calibration, the
comparison between the modeled and ASCAT-derived satu-
ration degree and finally the data assimilation results.
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Table 2. – MISDc model performance in flood prediction with modeled, sim., and assimilated, ass., soil moisture and for different runs
(R: rainfall, PAR: parameters, IC: initial conditions,NS: Nash-Sutcliffe efficiency index,|εQp|: absolute error on peak discharge,|εRd |:
absolute error on runoff volume, Eff: efficiency index for the assimilation). For the rainfall error a multiplicative factor with mean equal to 1
(unbiased) and 1.1 (biased) is considered. For the analysis with the observed data, the efficiency indices or the differences in the performance
indicators with and without assimilation statistically different from zero (at a significance level less than 5%) are reported in bold.

Synthetic experiment

Basin Index Observed data R error R error PAR PAR IC
(%) (mean=1)* (mean=1.1)* error* error*1 error**

sim. ass. sim. ass. sim. ass. sim. ass. sim. ass. sim. ass.

NIC NS 75 84 50 69 −22 61 37 65 17 68 36 83
|εQp| 39 24 42 35 60 34 49 34 49 32 43 18
|εRd | 44 21 44 27 79 41 57 34 67 35 59 24
Eff / 39 / 28 / 66 / 32 / 47 / 62

ASS NS 62 76 53 68 −4 50 46 66 63 76 58 76
|εQp| 28 29 35 34 47 34 34 31 29 30 33 30
|εRd | 33 22 35 26 52 29 37 26 33 23 34 22
Eff / 36 / 24 / 50 / 24 / 33 / 40

CHI NS 55 72 38 59 −16 40 43 63 50 69 42 71
|εQp| 28 20 38 34 54 38 34 28 31 24 38 22
|εRd | 33 26 38 34 66 47 40 32 34 29 44 27
Eff / 44 / 32 / 48 / 29 / 33 / 49

TEV NS 76 78 69 73 75 74 68 71 67 72 71 77
|εQp| 42 39 43 40 25 28 40 38 44 41 39 35
|εRd | 19 24 23 25 31 40 28 29 28 27 31 32
Eff / 5 / 7 / −3 / 6 / 12 / 12

TIM NS 60 63 55 57 32 44 34 43 42 53 27 62
|εQp| 48 48 52 48 38 39 46 43 49 47 52 50
|εRd | 18 13 24 21 31 26 33 26 31 25 48 15
Eff / 8 / 4 / 11 / 7 / 7 / 41

∗ mean values for 100 simulations
∗∗ mean values for all simulations varying IC from 0 to 1
1 the error was added only for the parameters of the soil water balance model

5.1 MISDc model calibration

The rainfall-runoff model MISDc was calibrated for the five
investigated catchments considering more than 100 flood
events that occurred in the period 2000–2007. In fact, it has
to be noticed that the model is able to simulate only flood
events (not the continuous discharge time series) because it
was developed for this purpose in order to reduce the num-
ber of involved parameters as much as possible. Therefore,
all the results are shown only for flood events. To investi-
gate the reliability of the MISDc model on flood prediction,
different criteria were adopted: the error on peak discharge,
εQp, and on runoff volume,εRd , and the Nash-Sutcliffe effi-
ciency index,NS. The model results (not shown for sake of
brevity) were found to be in good agreement with observed
data with medianNShigher than 75% and median absolute
error on peak discharge,|εQp|, and runoff volume,|εRd |, less
than 30%. Then, the model was run for the period for which

ASCAT data are available. This period can consequently be
considered as a validation period. Obviously, a limited num-
ber of flood events were available for this short period (∼4
events for each catchment) and, hence, the obtained results
have to be considered as preliminary. These results are re-
ported in Table 2 showing a slightly lower accuracy than that
obtained during the calibration period (as expected). This is
mainly due to the limited magnitude of the flood events ob-
served in the last 2 years and half. More detailed information
on the model behaviour and performance in the study area
can be also found in Brocca et al. (2010a, c, d).

5.2 Modeled versus ASCAT-derived saturation degree

Based on the model results for the period 2008–2009, the sat-
uration degree simulated by the model,SDmod, was used for
the assessment of the ASCAT SWI reliability. In particular,
for each catchment, the correspondingSDmod was compared
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Fig. 2. – ASCAT Soil Wetness Index, SWI, versus simulated saturation degree for(a) TEV, (b) ASS,(c) NIC, and(d) TIM catchments.

with the SWI index derived from the ASCAT pixel closest
to the centroids of the catchment itself. The comparison
between the SWI andSDmod is shown in Fig. 2 for four of
the investigated catchments.

As it can be inferred from Eq. (1), the computation of SWI
requires the calibration of theT parameter, which was car-
ried out by maximizing the determination coefficient,R2,
between theSDmod. and SWI time series. According to pre-
vious studies (Brocca et al., 2009a; Lacava et al., 2010),T

was found ranging between 30 (TEV) and 90 days (TIM).
In a physically consistent way, lowest values were obtained
for the fast reacting catchments characterized by a thin ac-
tive soil layer. Accordingly, the soil layer depth used in the
rainfall-runoff model was equal to 70, 80, 120, and 270 cm
for the TEV, ASS, NIC and TIM catchments, respectively.

As it can be seen in Fig. 2, there is a very good agree-
ment between the temporal pattern ofSDmod and SWI, with
R2 higher than 0.90 with a maximum of 0.95 for the NIC
catchment. The best performance obtained for NIC catch-
ment might be mainly explained by the dense raingauge net-
work covering it (1 station per∼20 km2, see Table 1) and,
hence the high reliability ofSDmod. Moreover, one of its
sub-catchment was used to develop and test the SWB model
component of MISDc. Therefore, further investigations in-
volving a larger number of catchments with different soil and
land use characteristics are needed for validating the pro-
cedure. Moreover, the Root Mean Square Error computed
betweenSDmod and the rescaled SWI, SWI∗, was less than
0.046. Assuming for the soil a porosity equal to 0.30, this
corresponds to an error of less than 0.014 m3/m3 in volu-
metric terms. When compared to previous results reported
in the scientific literature (e.g. Ceballos et al., 2005; Prigent
et al., 2005; Rudiger et al., 2009; Gruhier et al., 2010) for
other satellite sensors, the reliability of the ASCAT SWI to

estimate the saturation degree temporal pattern can be con-
sidered outstanding. The high temporal resolution of the AS-
CAT sensor could be one important reason for these findings
(Pellarin et al., 2006; De Lange et al., 2008; Brocca et al.,
2010b). Finally, it has to be noted that when considering a
constantT value of 50 days,R2 remained greater than 0.83
for all catchments and so, this value might be adequate for
ungauged catchments in the study area.

5.3 Data assimilation

The rescaled SWI, SWI∗, derived through Eq. (3), was di-
rectly incorporated into the MISDc by using Eq. (4). For
this step, theG parameter was made to vary between 0 (per-
fect model) and 1 (perfect observation). Fig. 3a shows the
value of the Nash-Sutcliffe efficiency index,NS, versus the
G parameter for all the investigated catchments. Overall , it
is evident that the assimilation of remotely sensed saturation
degree estimates can only improve the model performance
as can be already inferred forG > 0.2 for NIC, ASS and
CHI catchments; whereas for TEV and TIM the assimila-
tion did not make worse the model performance. However,
by inspecting in depth Fig. 3a, an optimalG value (i.e. max-
imizing the NS index) can be found, on average, equal to
0.2; while ranging between 0.01 (TEV) and 0.40 (CHI), with
higher values when the added-value of the saturation degree
observations was more substantial. According to Eq. (5),
a gain parameter equal to 0.2 means that the model error,
σSD mod , is half of the satellite one. Similar results were ob-
tained by attempting to reproduce saturation degree observa-
tions with a satellite and soil water balance model (Pellarin
et al., 2006; Rudiger et al., 2009) applied to the region of
the present study (Brocca et al., 2008, 2009a), giving also a
physical explanation to the obtainedG values.
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Fig. 3. – Nash-Sutcliffe efficiency index, NS, versus the Gain parameter, G, for all the investigated catchments:(a) observed data,(b)
unbiased rainfall error,(c) MISDc parameters error, and(d) initial conditions error.

The results of the data assimilation procedure in terms
of model performance, using the optimalT value for each
catchment, are shown in Table 2; Fig. 4 shows, by way of ex-
ample, the simulated saturation degree for the NIC and ASS
catchments (with and without SWI∗ assimilation) along with
the observed and simulated discharge for the flood events
which occurred in the study period. For these two catch-
ments satisfactory results were derived with the assimilation;
theNScoefficient increased from 75 and 62% to 84 and 76%
for the NIC and ASS catchments, respectively. In addition,
|εRd | was reduced by 50 and 33% for the two catchments,
respectively, corroborating the added-value of ASCAT as-
similation. In fact, since the assimilation modifies the initial
wetness conditions, a major effect on total runoff instead of
runoff peak estimation was expected. In addition, a classical
bootstrap procedure (Wang et al., 2008) was applied to as-
sess if the efficiency indices and the differences in the perfor-
mance indicators (NS, |εRd |, |εQp|) with and without assim-
ilation are statistically different from zero at a significance
level less than 5%. Specifically, 5000 re-sampling of the effi-
ciency indices and of the differences in the performance indi-
cators, each one obtained by random sampling with replace-
ment from the original dataset, were derived and from the
corresponding samples the confidence intervals were com-
puted. As shown in Table 2, the efficiency index is differ-
ent from zero at the 5% significance level for all catchments,
whereas the differences inNSand|εRd | are significant only
for NIC, ASS and CHI catchments. These results are clearly
tied to the low number of flood events investigated in this
study, of course an analysis for a longer period should pro-
vide more general findings. It has to be noted that the boot-
strap analysis was not carried out for the synthetic experi-
ments for which more than one simulation were done.

To better visualize the effects of the assimilation of AS-
CAT on the model simulation, Fig. 5 shows the cumulated
runoff for the observed and the simulated data with and with-
out SWI∗ assimilation for all investigated catchments. As it
can be seen, for the three smaller catchments (<150 km2)

the improvements related to SWI∗ assimilation are evident
whereas results are quite similar for the other two catchments
(TEV and TIM). The same figures can be derived looking at
the values of the efficiency index, Eff, that range between 36
and 44% for the three smallest catchments and are less than
8% for the two largest ones.

5.4 Synthetic experiments

In order to better analyze the counterintuitive results previ-
ously obtained (better results for small catchments assimilat-
ing coarse resolution satellite data), three synthetic experi-
ments were conducted. The target is to check if the remotely
sensed SWI∗ assimilation can counterbalance a wrong esti-
mation of saturation degree due to errors on rainfall, model
parameters or initial soil wetness conditions.

For the synthetic experiments, both the re-computation of
SWI∗ and of theG parameter should be carried out. How-
ever, in the study, it is assumed that the parameters used for
the SWI∗ computation were obtained by a previous analy-
sis (for “non perturbed” conditions) and that the errors occur
only after the calibration period when SWI∗ was assimilated.
For that, only the variations of theG parameter is considered
here. It’s worth of noting that the synthetic experiments are
aimed at analyzing the SWI∗ potential for ”perturbed” oper-
ational conditions that might occur as, for instance, rainfall
errors due to a temporary malfunctioning of the monitoring
network or wrong model parameterization for a calibration
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Fig. 4. – Results with and without ASCAT SWI∗ assimilation for the NIC(a, b) and ASS(c, d) catchment in the period Janary 2007–June
2009: (a, c) observed rainfall and simulated saturation degree; (b, d) observed versus simulated discharge for the sequence of the most
significant flood events occurred in the period.

Fig. 5. – Cumulated runoff for the observed and simulated data
with and without ASCAT SWI∗ assimilation for:(a) NIC, (b) ASS,
(c) CHI, (d) TEV and(e)TIM catchments.

period not representative of the full range of possible condi-
tions, e.g. dry period. Specifically, Fig. 3b–d show theNS
values versus theG parameter for all the investigated catch-
ments and for all the synthetic experiments; Table 2 shows
only the corresponding results by using a fixedG value equal
to that obtained for the analysis with the observed data.

For the first two synthetic experiments, as previously de-
scribed, a random multiplicative error on rainfall and MISDc
parameters was considered. For each catchment, 100 sim-

ulations were carried out in order to minimize the effects
related to randomisation. For both experiments, the in-
crease in model performance due to the SWI∗ assimilation
was reduced (see Table 2). On average, the Eff index de-
creased from 25.6% to 17.2% and 18.8% when rainfall and
model parameter errors were considered, respectively. Sim-
ilar findings were obtained analyzing the other performance
indices. It is clear that the error on rainfall and model pa-
rameters affected the results significantly. This fact can ex-
plain the lower advantages of SWI∗ assimilation observed
for the two larger catchments, where higher uncertainties on
model structure suitability (lumped model parameterization)
and rainfall pattern identification arise. However, further and
more detailed analyses should be carried out to validate this
hypothesis. Figure 6 shows the results for these two synthetic
experiments applied to the CHI catchment. The three flood
events for which a higher added-value was obtained with
SWI∗ assimilation are highlighted (square box). In particu-
lar, these events occurred in the transition period between the
dry (summer) and wet (winter) saturation degree conditions
for which the SWI∗ assimilation proved to be more valuable.
This aspect has to be emphasized because the differences
in runoff response for a given rainfall event can be remark-
able, in particular for Mediterranean catchments where the
seasonal soil moisture temporal pattern is highly pronounced
(see e.g. Latron et al., 2009). Moreover, during intermediate
wetness conditions, runoff predictability is strongly reduced
(Zehe and Bloschl, 2004) and, hence, the improvement de-
riving from the assimilation of ASCAT data can be highly
significant.

It has to be noted that when a bias error was exploited to
perturb the rainfall time series (as it can occur when satellite
or radar rainfall estimates were adopted), the improvement
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Fig. 6. – Sequence of the simulated flood events with and with-
out ASCAT SWI∗ assimilation for the CHI catchment in the period
January 2007–June 2009 and considering an unbiased error on:(a)
rainfall, and(b) model parameters. The simulated and assimilated
discharge represents the average of 100 model runs.

due to SWI∗ assimilation is more evident. For instance, con-
sidering a multiplicative scaling factor with mean equal to
1.1, the Eff score for the NIC catchment increased up to 66%.
This is also because MISDc tends to overestimate discharge
for this particular catchment (see Fig. 5). Similar results were
obtained also for the other two catchments, where an overes-
timation of discharge by MISDc was observed (see Table 2).
On average, the efficiency index was found equal to 55% for
these three catchments (NIC, ASS and CHI) and only 4%
for the remaining two (even a negative efficiency value was
found for TEV catchment). As far as the error in model pa-
rameters is concerned, if only those included in the SWB
model are considered, results become more similar to the
ones of the normal data assimilation run (see Table 2) with
average Eff equal to 26%. All the results obtained through
these two synthetic experiments highlight the importance of
knowing what could be the source of error when data assim-
ilation findings have to be evaluated. In fact, to understand
the results of the data assimilation even for other rainfall-
runoff models, satellite sensors or climatic regions, a clear
separation of the different error sources has to be investi-
gated. Finally, looking at the influence of theG parameter
on the assimilation performances for these two experiments
(Fig. 3b–c), results are quite similar to those obtained with
the observed data with an obvious decrease in the model per-
formance. In particular, forG values between 0.25 and 0.50,
a significant increase in runoff prediction accuracy was ob-
served for all catchments if compared to the results without
assimilation (G = 0).

Fig. 7. – Sequence of the simulated flood events for the NIC catch-
ment in the period November 2008–June 2009 assuming unknown
initial soil wetness conditions, IC:(a) without, and(b) with ASCAT
SWI∗ assimilation.

More of interest from the practical and operational point
of view is the third synthetic experiment that assumes uncer-
tainties on the model initial conditions. This situation fre-
quently occurs in practice when a continuous time series of
the forcing data (rainfall and temperature) is not available
because of, for instance, sensor failures, interruptions in the
data transmission or errors in real-time data. As expected, in
this case the data assimilation furnished a decisive improve-
ment in model performance for all investigated catchments
(see Table 2), even though a non-optimalG value was used
(Fig. 3d). For instance, Fig. 5 shows the results obtained for
the NIC catchment when SWI∗ was assimilated. MISDc sim-
ulations are very similar to those obtained without uncertain
initial conditions. Obviously, these results depend on a series
of factors including the time in which the initial conditions
are set (summer, winter, transition period) and the length and
the climatic conditions of the period between the start of the
model run and the first flood event. However, these findings
are very encouraging for an efficient use of satellite informa-
tion within operational systems of real-time flood forecasting
which frequently rely on event-based rainfall-runoff models
and require a strict and accurate estimation of the soil mois-
ture initial conditions (Berthet et al., 2009).

6 Conclusions

A first investigation of the potential of the ASCAT derived
saturation degree product for hydrological applications was
conducted. Two main outcomes can be derived from the per-
formed analyses:
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1. SWI, the soil wetness index derived from ASCAT, was
found strongly correlated with the simulated saturation
degree, with determination coefficients (R2) higher than
0.90 and RMSE values less than 0.014 m3/m3.

2. The assimilation of the rescaled SWI (denoted SWI∗)
into the MISDc rainfall-runoff model furnished an evi-
dent improvement of the model performance, especially
when initial soil wetness conditions were unknown.

These results support the introduction of the ASCAT-
derived saturation degree estimates into an operational sys-
tem for real-time flood forecasting (Brocca et al., 2010c).
However, further and more detailed analysis is needed to
confirm these results. A more comprehensive data assimila-
tion technique (e.g. ensemble Kalman filter or particle filter),
a longer time period and a larger number of catchments have
to be used for a more robust test of the proposed procedure.
Moreover, a different structure for the rainfall-runoff model
should be investigated as well. In particular, the introduction
of a thin surface layer might allow to directly assimilate the
surface soil moisture values retrieved by using remote sens-
ing, without needing of a method which provides profile soil
moisture values (such as the exponential filter used in this
study).
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