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Abstract. A multi basin analysis of runoff and erosion in was negligible and sediment export was dominated by chan-
the Blue Nile Basin, Ethiopia was conducted to elucidatenel processes and re-suspension of landscape sediment de-
sources of runoff and sediment. Erosion is arguably the mosposited early in the growing season. These results imply that
critical problem in the Blue Nile Basin, as it limits agricul- targeting small areas of the landscape where runoff is pro-
tural productivity in Ethiopia, degrades benthos in the Nile, duced can be the most effective at controlling erosion and
and results in sedimentation of dams in downstream counprotecting water resources. However, it is not clear what can
tries. A modified version of the Soil and Water Assessmentbe done to manage channel erosion, particularly in first order
Tool (SWAT) model was developed to predict runoff and sed-streams in the basin.

iment losses from the Ethiopian Blue Nile Basin. The model
simulates saturation excess runoff from the landscape using
a simple daily water balance coupled to a topographic wet-
ness index in ways that are consistent with observed runofft
processes in the basin. The spatial distribution of landscape . . -
erosion is thus simulated more correctly. The model WaSWatershed management strategies are critical to efficiently

parameterized in a nested design for flow at eight and segiutilize the natural resources base while maintaining environ-
renental quality. Of the many resources at risk in the Ethiopian

ment at three locations in the basin. Subbasins ranged in sizH. hland | and blv th itical
from 1.3 to 174000 krh and interestingly, the partitioning Ighiands soil an water. are arguably the mpst critica 85
nearly 80% of the population depends on subsistence agricul-

of runoff and infiltrating flow could be predicted by topo- ¢ o that threatens th b . i
graphic information. Model predictions showed reasonable ure. ©ne process that tnreatens the resource base 1S soll ero-

accuracy (Nash Sutcliffe Efficiencies ranged from 0.53—0.92)_5'()”' The_ Ethiopian H_igh_lands provide nearly 85% of flow
with measured data across all sites except Kessie, where tH8 the main stem .Of Nile n Egypt, and support 80% of the
water budget could not be closed; however, the timing of ﬂOWEth|op|an population (Swain, 1997). Thus It 1S critical to un-,
was well captured. Runoff losses increased with rainfall dur_derstand the processes and sources impacting water quantity,

ing the monsoonal season and were greatest from areas Wiﬁl\“f”mty and, mpst importantly erosive Ios'ses and sedlmgn-
shallow soils and large contributing areas. Analysis of model_tatlon mechanisms that threaten b O_th agrlcu_ltural productn_/-
results indicate that upland landscape erosion dominated sedy (Constable, 198.4) a_nd the_ considerable infrastructure in
iment delivery to the main stem of the Blue Nile in the early down;tre_am countries, including 5“‘?"’?‘” and Egypt.

part of the growing season when tillage occurs and before Ethiopia has abundantyetunderutilized water resource po-
the soil was wetted up and plant cover was established. Oncigntial, and 3.7 million hectare of potentially irrigable land

plant cover was established in mid August landscape erosioff!&t ¢&n be used to improve agricultural production and pro-
ductivity (Awulachew et al., 2007; MoWR, 2002). How-

ever, agricultural productivity in Ethiopia lags other, simi-
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(Grunwald and Norton, 2000). Therefore, understanding theReserve Program (SCRP) watersheds (Bayabil, 2009; Engda,
hydrological processes of different parts of the basin is cru-2009) show the probability of rainfall intensity exceeding the
cial to water and land resource management. Soil erosion byneasured soil infiltration rate to be very low, only 7.8% of
water represents a major threat to the long-term productivitystorm intensities exceeded the lowest measured infiltration
of agriculture in the Ethiopian Highlands where the estimatedrate. Of course defining sources of landscape erosion require
soil erosion rates range from as low as 16tha ! (Giza- knowledge of both where runoff is generated, and of how
wchew, 1995) to as much as 300tHa 1 (Hurni, 1993; the landscape is managed (e.g., tillage, livestock, vegetative
Herweg and Stillhardt, 1999). cover, etc.). Few models have been developed that can pre-
Ethiopia, often referred to as the water tower of Eastdict both the distributed runoff sources and the sedimentation
Africa, is dominated by mountainous topography, and thedynamics in the Blue Nile.
rainfall-runoff processes on the mountainous slopes are the Many of the commonly used watershed models employ
source of the surface water for much of Ethiopia (Derib, some form of the Soil Conservation Service Curve Number
2009), and thus, understanding the rainfall-runoff processe¢CN) to predict runoff, which links runoff response to sails,
is critical to controlling erosion and enhancing agricultural land use, and 5-day antecedent rainfall (AMC), and not the
productivity. The majority of the sedimentation of rivers in cumulative seasonal rainfall volume. The Soil and Water As-
the basin occurs during the early period of the rainy seasessment Tool (SWAT) model is a basin scale model where
son and peaks of sediment are consistently measured beforanoff is based on land use and soil type (Arnold et al., 1998),
peaks of discharge for a given rainy season (Steenhuis et aland not on topography, therefore, runoff and sediment trans-
2009). Thus, reservoir management in Sudan and Egypt caport on the landscape is only correctly predicted for infil-
be adjusted to allow the highest concentrations of sediment tération excess overland flow and not when saturation excess
pass, while still allowing adequate water to fill the reservoirs. overland flow from variable source areas (VSA) dominates.
Despite this, sedimentation originating from the Ethiopian Thus critical sediment source areas might not be explicitly
Highlands results in reduced capacity of reservoirs in down-recognized and unique source areas. SWAT determines an
stream Sudan and Egypt. The Roseires reservoir in Sudaappropriate CN for each simulated day by using this CN-
is reported to be almost 60 percent filled with sediment, andAMC distribution in conjunction with daily soil moisture val-
the Sennar reservoir, downstream of Roseires is equally imues determined by the model. This daily CN is then used to
paired (Garzanti et al., 2006). determine a theoretical storage capacitypf the watershed
Soil loss from a watershed can be estimated based ofor each day. While a theoretical storage capacity is assigned
an understanding of the underlying hydrological processesand adjusted for antecedent moisture for each land use/soil
climatic conditions, landforms, land management, and soilcombination, the storage is not used to directly determine the
factors. Assessing and mitigating soil erosion at the basirmamount of water allowed to enter the soil profile. Since this
level is complex both spatially and temporally. Hence, wa- storage is a function of the lands infiltration properties, as
tershed models that are capable of capturing these compleguantified by the CN-AMC, SWAT indirectly assumes that
processes in a dynamic manner can be used to provide aonly infiltration excess processes govern runoff generation.
enhanced understanding of the relationship between hydroPrior to any water infiltrating, the exact portion of the rainfall
logic processes, erosion/sedimentation, and management otixat will runoff is calculated via these infiltration properties.
tions. There are many models that can continuously simulat& his determination of runoff volume before soil water vol-
stream flow, erosion/sedimentation, or nutrient loss from aume is an inappropriate approach for all but the most intense
watershed. However, most were developed in temperate clirain events, particularly in monsoonal climates where rain-
mates and were never intended to be applied in monsoondall is commonly of low intensity and long duration and sat-
regions, like Ethiopia, with an extended dry period. In mon- uration processes generally govern runoff production. Sev-
soonal climates a given rainfall volume at the onset of theeral studies in the Blue Nile basin or nearby watersheds have
monsoon produces a drastically different runoff volume thansuggested that saturation excess processes control overland
the same rainfall volume at the end of the monsoon (Luiflow generation (Liu et al., 2008; Collick et al., 2008; Asha-
et al.,, 2008). Steenhuis et al. (2009) and Lui et al. (2008)gre, 2009; Engda, 2009; Tebebu, 2009; Tebebu et al., 2010;
showed that the ratio of discharge to precipitation — evap-White et al., 2010) and that infiltration-excess runoff is rare
otranspiration (Q/(P-ET)) increases with cumulative precip-(Liu et al., 2008; Engda, 2009).
itation and consequently the watersheds behave differently Based on the finding discussed above, White et al. (2010)
depending on how much moisture is stored in the watershedand Easton et al. (2010) recently modified SWAT to more
suggesting that saturation excess processes play an impoeffectively model hydrological processes in monsoonal cli-
tant role in the watershed runoff response. One characteristimates such as Ethiopia. This new version of SWAT, SWAT-
of Ethiopian Blue Nile hillslopes is that most have infiltra- Water Balance (SWAT-WB), calculates runoff volumes based
tion rates in excess of the rainfall intensity, thus most runoffon the available storage capacity of a soil and distributes
is produced when the soil saturates (Ashagre, 2009) or fronthe storages across the watershed using a soil topographic
degraded, shallow soils. Indeed, data from Soil Conservationwetness index (Easton et al., 2008), and can lead to more
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accurate simulation of where runoff occurs in watershedscipitation, temperature, and solar radiation. Model input data
dominated by saturation-excess processes (White et algnd parameters were initially parsed using the ARCSWAT
2010). White et al. (2010) compared the performance 0of9.2 interface. The interface combines SWAT with the AR-

SWAT-WB and the standard SWAT model in the Gumera wa- CGIS platform to assimilate the soil input map, digital eleva-

tershed in the Lake Tana Basin, Ethiopia, and found that eveion model and land use coverage.

following an unconstrained calibration of the CN, the SWAT

model the results were between 17 and 23% worse than thé-2 SWAT-WB saturation excess model overview

SWAT-WB model.
. . The modified SWAT model (SWAT-WB, White et al., 2010)
We briefly present how the SWAT-WB model calculates uses a water balance in place of the CN for each HRU to pre-

the hydrologic response of the basin and then apply the

SWAT-WB model to the Ethiopian portion of the Blue Nile dict runoff I(.)SS.eS' _Based on this water balance, rl.mOﬁ’ In-
. . . - . . terflow and infiltration volumes are calculated. While these
Basin that drains via the main stem of the river at El Diem

on the border with Sudan (the Rahad and Dinder subbasin"élssumptions simplify the processes that govern water move-
that drain the Northeast region of Ethiopia were not consig-ment through porous media (in particular, partly-saturated re-

ered). We show that incorporating a redefinition how hydro-g;]oor\];?]’ Igrbit?;”i;n?jril’ trlvftstr)stﬁl\?;;?e?Ogr?ish?xentlj%eenr-
logic response units (HRUs) are delineated combined WithOus African watershpeds (Guswa et al 2002) For Ethiopia
a water balance to predict runoff can improve our analysis ” : pia,
of when and where runoff and erosion occur in a watershedwater balance models outperform models that are developed

The SWAT-WB model is initialized for eight subbasins rang- In temperate regions (Liu et al., 2008; Collick et al., 2009;

ing in size from 1.3krA to 174000km. We calibrate the Steenhuis et al., 2009; White et al., 2010). Fo.r the com-
; _ . . plete model description see (Easton et al., 2010; and White
model for flow using a priori topographic information and

validated with an independent time series of flows. For sedi-et al,, 2010). In its most basic form the water balance de-

ment, since there is little data to splitinto calibration and val- €S & threshold maisture content over which the soil profile

idation data sets, we employ leave-one-out cross-validatiog2" neither store nor infiltrate more precipitation, thus addi-
(McCuen, 2005) (e.g., model is calibrated with one n-1 datat'r?gile\:(\{{astiirl ?ae c(;)rr(;e ;lther runoff, interflow or percolates to
points to predict the withheld point and repeated until each Yerde.i)-

data point has been withheld from the calibration and pre-

dicted using the corresponding n-1 calibrated model). Wegg,; = 1)
show that the tested methodology captures the observed hyt 9.y — (@, ,)d; + P, — Et, for: P, > (6, —6; ,)d; — Et,
drologic and erosive processes quite well across multiple] g ’ for: P, < (6, —6; ;)di —Et,

scales, while significantly reducing the calibration data re-

quirements. The reduced data requirements for model inihere 65 (cn®cm™3) is the soil moisture content above
tialization have implications for model applicability to other Which storm runoff is generated and, (cm®cm3) is the
data scares regions. Finally, we discuss the implications ofurrent soil moisture contens; (mm) is the depth of the

watershed management with respect to the model results. SOil profile, P, (mm) is the precipitation anBt; (mm) is the
evapotranspiration. We recognize that in SWAT, there is no

lateral routing of interflow among watershed units, and thus

2 Materials and methods no means to distribute watershed moisture, thus Eq. (1) will
result in the same excess moisture volume everywhere in the
2.1 Summarized SWAT model description watershed given similar soil profiles.

To account for the differences in runoff generation in dif-
The Soil and Water Assessment Tool (SWAT) model is a riverferent areas of the landscape, White et al. (2010) proposed
basin model created to run with readily available input datathe following threshold function for storm runoff that varies
so that general initialization of the modeling system does notcross the watershed as a function of topography:
require overly complex data gathering, or calibration. SWAT , _ (0i0s — 6i 1) 2
was originally intended to model long-term runoff and nu- o
trient losses from rural watersheds, particularly those domWheres; is a number between 0 and 1 that redute® ac-
inated by agriculture (Arnold et al., 1998). SWAT requires cpunt for water that should drgln down-slope, and.ls a func-
soils data, land use/management information, and elevatiofi®n Of the topography (as defined by a topographic wetness
data to drive flows and direct sub-basin routing. While these"d€x &), €.g., Beven and Kirkby, 1979). Note that Eq. 2 ap-
data may be spatially explicit, SWAT lumps the parametersp“es only to fche first soil layer. Once the s_0|l profile has_been
into hydrologic response units (HRUs), effectively ignoring adequately filled Eq. 2 can be used to write an expression for
the underlying spatial distribution. Traditionally, HRUs are the depth of runoffgr ;.(mm) from a wetness index;
defined by the coincidence of soil type slope and land use. P, —t;d; for P, > 1;d;
Simulations require meteorological input data including pre-7®.i = { 0 for P, < 1;d; ®)

www.hydrol-earth-syst-sci.net/14/1827/2010/ Hydrol. Earth Syst. Sci., 14, 18272010



1830 Z. M. Easton et al.: Multi basin SWAT model analysis

While the approach outlined above captures the spatial
patterns of VSAs and the distribution of runoff and infiltrat-
ing fractions in the watersheds, Easton et al. (2010) noted
that the need to maintain more water in the wettest wetness
index classes for evapotranspiration (ET), and proposed ad:

Reach
®  Subbasin Outlet
E] Watershed Boundary
o Meteorological Station

justing the available water content (AWC) of the soil layers E'e"azizoé‘l m
below the first soil layer (recall, the top soil layer is used to

establish our runoff threshold, Eq. 2) so that higher topo- - 477m
graphic wetness index classes retain water longer, i.e., have N
AWCadjusted higher, and the lower classes dry quicker, i.e., @ A

AWC s adjust lower by normalizing by the mean value 200 ki

(e.g., similar to Easton et al., 2008).

Note, since this model generates runoff when the soil
is above saturation, total rainfall determines the amount ofrig. 1. Digital Elevation Model (DEM), reaches, subbasins and sub-
runoff. When results are presented on daily basis rainfall in-basin outlets initialized in the Blue Nile Basin SWAT model. Also
tensity is assumed to be inconsequential. We recognize thatisplayed is the distribution of meteorological station used in the
under high intensity storms (e.g., storms with rainfall intensi- model.
ties greater than the infiltration capacity of the soil) we might
under predict the amount of runoff generated, but this is the
exception rather than the rule (Liu et al., 2008; Engda, 2009).

2.3 Watershed description

The Blue Nile Basin covers approximately 312 000kim
Ethiopia and Sudan. The Upper Blue Nile Basin in Ethiopia
that drains via the main stem of the Blue Nile River cov-

Wetness Index

ers 174000 krh(Fig. 1) (9.86 N 37.69 E basin centroid) is Land Cover P Ope
. g . . . . I Mixed Agriculture N

typified by mountainous terrain with steep hill slopes and rel- I Row Crop A

atively flatter highlands. The elevations range from 477 m at i H Ten

the border with Sudan to 4261 m in the central region of the . Water

basin. Temperatures and precipitation levels vary greatly in

the basin. Temperatures in the basin show large elevation (6E!9: 2. Landuse/landcove®) in the Blue Nile Basin (source EN-

25°C) and diurnal variation but small seasonal changes, with! RO): and the Wetness Indé&) used in the SWAT-WB Blue Nile

an annual average of 2& (Conway, 2000). The climate of Model.

the basin is tropical highland monsoonal with the majority

of the rain falling between June and October. Annual rain- Tphe specific subbasins that were utilized were Anjeni,

fall amounts decrease from the south-wes2QO0mm) to  Gymera, Ribb, North Marawi, Angar, Jemma, Kessie, and

the north-east (1000 mm), with approximately 80% occur-the Ethiopian Abbay Blue Nile Basin (BNB) at EI Diem. A

ring between June and October. The average annual preshort description of each follows.

cipitation from 1994-2005 was 1470 mm (measured at 37 The Anjeni watershed covers an area of 113.4 ha. The wa-

gauges data courtesy of the Ethiopian Ministry of Water Re-tershed is oriented North-South and flanked on three sides by

sources), with average potential evapotranspiration losses Qfjateau ridges. It is located at3317E and 1040N and lies

1220 mm. . . _370km NW of Addis Ababa to the south of the Choke Moun-
Predominant soils are generally characterized as vertisolsgins. The mean annual rainfall is 1690 mm with a low vari-

luvisols, and leptosols (FAO-AGL, 2003). Soil profiles in ability of 10% with mean daily temperature ranges froA€9

the highlands are characterized by permeable soils, undeg, 230c. Agriculture is the dominant landuse. See SCRP

lain by bedrock at depth. Soils are generally deeper in the(2000) for additional data on the Anjeni watershed.

lower reaches of the basin while soil depth is less on the The Gumera, Ribb, and North Marawi watersheds are lo-

steeper slopes. The basin is predominantly agricultural incaeq in the Lake Tana Basin, Ethiopia and range in size from

the Highland portion, consisting of pasture and crops (64%)approximately 1200 to 1600 K All are heavily (95%)

and .forested (34%) in the western regions where elevatior‘ﬁultivated, with elevations ranging from 1700 to 4000 m

decline and slopes are steep. Water and wetland comprisgnoye sea level and predominant soils are generally charac-

(2%), (Fig. 2). Impervious surfaces or urban areas 0CCUPMerized as chromic and haplic luvisols (FAO-AGL, 2003).

<1% of the watershed and were thus excluded from consid- Tha jemma subbasin is located on the eastern edge of the

eration in the model. Abbay Blue Nile Basin, and is characterized by relatively low
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rainfall (less than 1000 mnmy). Agriculture dominates the ter Resources for 37 stations distributed throughout the basin
landuse (90%), and elevations range from 1300 to 3800 m(Fig. 1). Daily solar radiation, wind speed and humidity data
Dominate soil types are eutric vertisols and eutric leptosols. were obtained from the United States National Climatic Data

The Angar subbasin is located in the southern region ofCenter. Daily potential evapotranspiration rates were calcu-
the BNB. Elevations range from 860 to 3210m. The arealated in the SWAT model using the Penmen-Monteith method
has some of the highest rainfall in the entire basin (betweerand default values were used for all unavailable parameters.
1200 and 2000 mm). Unlike other subbasins, Angar is pre-
dominately forested, with some pastoral land (Fig. 2). The . .
dominant soils in the basin are alisols, acrisols, nitosols anc? Model calibration
leptosols.

Kessie (Fig. 1) drains an area of approximately
65,000 knf, and integrates the Gumera, Ribb, North Marawi, The water balance methodology requires very little direct
and Jemma subbasin. The Kessie station is located on thgalibration, as most parameters can be determined a priori.
main stem of the Blue Nile. Landuse above Kessie is pre-Soijl storage was calculated as the product of soil porosity
dominately agriculture, and elevations range from 1000 toand soil depth from the soils data. Soil storage values were

3.1 Hydrology

nearly 4300 m. distributed via the. described above, and the effective depth
coefficient p;, varies from 0 to 1) was adjusted along a gra-
2.4 Input data dientin values. We assume that the distributioppf/alues

is inversely proportional ta; (averaged across each wetness

Spatial Data: Required landscape data includes tabular andngex class or HRU) and that the lowsst(.,) corresponds
spatial soil data, tabular and spatial land use information, angy the highesp; (p,) (Easton et al., 2010):
elevation data. The spatial extent of upper Blue Nile Basin
soils were taken from the FAO soil data base (FAO-AGL, o = ﬁ(p ) @)
2003) (Fig. 2). Soil properties used in the SWAT model were™ ~— A;
pbtamed frpm several sources. Several soil properties are In this manner, the; distribution (Fig. 3) requires infor-
imbedded in the FAO soils data base, however, many proper-__ .. .
. i X : mation on the topography (and perhaps soil) and the upper
ties needed by SWAT are not included in the FAO soil, thus . . k

. h . . bound effective depth coefficient,, for the driest wetness
a review studies in the region, and literature search for spe:

o . . . . index class; without any additional information about the wa-
cific soil type properties was conducted. Arithmetic means : . o
. : . tershed, we assumg, =1. Equation (4) gives us an initial
were used for all soils properties for which a range of val-

ues were found. We created a soil topographic indix—( ((eriUm;;()a of the distribution gf;-values with no calibration
soil hybrid map for each subbasin and used it in place of the 9- L . " . .
To constrain or “calibratep,,, we recognize that, since the

standard soils input map (as per Easton et al., 2008). The S oS
associated soils properties for thesoils hybrid map were p-value controls how much precipitation is routed as runoff,

extracted from the FAO database and look up tables Werét also controls how much precipitation water can enter the

linked to the map using the ARCSWAT 9.2 interface. We soil for a given yvetness index class. Thu;, a larger f_ractlon

. . of the precipitation that falls on an area with a laggewill
lumped the watershed’s into 10 equal area intervals rang- otentially recharge the ground water than in an area with a
ing from 1 to 10, with index class 1 covering the 10% of P y 9 g

the watershed area with the lowest(i.e. lowest propen- sren:IIS gte?jir?eﬂr:ttioacr))f r?ggg:\t,:;?ért?sgﬁ we atsszmjc;z
sity to saturate) and index class 10 containing the 10% otb q 9 1935,

the watershed with the highest(i.e. highest propensity to cess precipitatioan,,-, i.e., precipitation falling on wetness
. : . _classi that eventually reaches the watershed outlet:

saturate) (Fig. 2). These wetness index classes were inter-
sected with the land use to create 962 HRUs in 16 subbasins _ ¢,
(Fig. 2). A digital elevation model (DEM) of the basin was o= a
obtained from the International Water Management Institute )
(IWMI) with 76 mx 76 m horizontal and 1 m vertical resolu- ~ H€reé we assume that the area-weighted surp; ahust
tions. Land use/land cover maps containing 19 land coveffdua! the watershed baseflow indek:

classifications were obtained from the Eastern Nile Techni- 05

cal Regional Office (ENTRO), and reclassified into five dom- 11z = 0r (6)
inant land use/land covers (Fig. 2). E

®)

whereQ g, (mm) andQ g, (mm) are the basin average excess
2.4.1 Required meteorological data precipitation (stream flow) and baseflow, respectively. Base-

flow is determined directly from digital signal filter baseflow
Daily precipitation and minimum and maximum tempera- separation technique of several years of daily streamflow hy-
ture data were obtained from the Ethiopian Ministry of Wa- drographs (Arnold et al., 1995; Hewlett and Hibbert, 1967).

www.hydrol-earth-syst-sci.net/14/1827/2010/ Hydrol. Earth Syst. Sci., 14, 18272010
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1.6 - The primary difference between the CN based SWAT and
1a . A -B-Border  —4=lemma the water balance based SWAT is that runoff is explicitly at-
—#—Gumera  --@--Anjeni tributable to source areas according to a wetness index distri-
1.2 4 == Kessie =©= Angar . [ . .
e N. Mirawi bution, rather than by land use and soil infiltration properties
1.0 1 as in original SWAT (Easton et al., 2008). Soil properties that
a 0.8 - control saturation-excess runoff generation (saturated con-
0.6 - ductivity, soil depth) affect runoff distribution in SWAT-WB
0.4 . since they are included in the wetness index via Eq. (4). Flow
calibration was validated against an independent time series
0.2 1 -0 that consisted of at least one half of the observed data. To in-
0.0 w w w sure good calibration, we also made sure that our result max-
0 5 10 15 imized the coefficient of determination?) and the Nash-
1.2 A Suttcliffe efficiency (NSE) (Nash and Suttcliffe, 1970). Ta-
10 . B o ble 1 summarizes the calibrated values for each wetness
’ e X index class and Table 2 summarizes the calibration statistics.
0.8 - Since flow data at some of the available gauge locations was
available at the monthly time step (Angar, Kessie, Jemma),
a 0.6 and daily at others (Anjeni, Gumera, Ribb, North Marawi, El
04 4 Diem), the model was run for both time steps, and the results
’ presented accordingly.
0.2 -
3.2 Sediment
0.0
o 5 10 15 Sediment export from the Blue Nile Basin was calibrated to
A measured daily sediment discharge at the EI Diem station on

the Sudan/Ethiopia border during 2003 and 2004 (Ahmed,
Fig. 3. Distribution of the effective depth coefficienp) values  2003), and in the Anjeni micro-watershed in 1995-1996 and
defined by Eq. (4fa) and Eq. (8)b) for the various sub-basins. 2000. Since limited calibration data precludes the use of

more traditional calibration and validation data sets sediment

parameters were calibrated using a leave-one-out cross vali-

The p,-parameter (Eq. 4) can be constrained by the aréayation time series (McCuen, 2005) to ensure the model sta-
weighted average qf;, using Eq. 4 ag; and rearranging 0 ity For the leave-one-out cross validation one observation

solve forp,: point is successively omitted in a series of steps. The model
T A; is calibrated with one data point withheld and the resultant

Po = m () calibration, based on n-1 data points, is used to predict the
(A_i i) withheld point. This process is repeated until each data point

has successively been withheld from the calibration and pre-
dicted using the corresponding n-1 calibrated model. The
predicted data points are then combined into a leave-one-
out cross validation time series that can be compared to the
data to derive goodness of fit statistics, referred to as a leave-
one-out cross validation statistics. Since each point in the
leave-one-out cross validation time series is predicted by a
model that was calibrated with the corresponding data point
excluded, it represents a model prediction that is independent
{ 1 for g < A < A* of the model calibration. A small amount of sediment data
0i =

whereA; is the area of the wetness index classp/f> 1,
we setp, =1 and adjust the distribution @f; iteratively until
the sum of the spatially averagedequalllg. To do this we
assume that for all wetness classes with A* , p; =1 and
belowA* the adjustedy; linearly approach the initial distri-
bution such that the adjusted and initigl values are equal
at the maximumk Ay, (Fig. 1). Letp.* be the value of the
unadjusteg; atA* and the adjusteg; are calculated as:

(8) was available during 1995-1996 in the Ribb subbasin, which
was used as a check of the calibration.

Based on SCRP watershed data we assumed that approx-
imately 25% of the steeply sloped agricultural land utilized
terraces or bunding to reduce erosion (Werner, 1986). To in-
A= Aei + (i — A0) 9) clude this management practice in the model the HRU slope

(HRU_SLP) was reduced by 37.5% and the slope length
where 1.; is the value ofs where the unadjusted; =1  (SLSUBBASIN) was reduced by 50% for areas with slope
(Fig. 3) (See Easton et al., 2010 for complete details). greater than 5%. Ashagre (2009) working in the Anjeni

1_ *
(k*_ﬁx)(kiAM)ere,- forA* <A <Ay

While Eq. (8) can be solved iteratively by adjustihy,
we found the following approximation for* worked well.
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Table 1. Effective depth coefficients() for each wetness index class and watershed in the Blue Nile Basin model from Eq. (8).gTike
determined from baseflow separated runoff of the streamflow hydrograph and distributed.

Wetness Index Class p; (Border) p; (Kessie) p; (Jemma) p; (Angar) p; (Gumera) p; (Ribb) p; (N. Marawi) p; (Anjeni)

10 (Most Saturated)  0.22 0.20 0.16 0.15 0.26 0.24 0.24 0.15
9 0.58 0.51 0.24 0.22 0.31 0.41 0.43 0.25
8 0.75 0.68 0.31 0.26 0.40 0.51 0.53 0.30
7 0.87 0.78 0.35 0.30 0.47 0.59 0.62 0.32
6 0.97 0.87 0.37 0.34 0.61 0.66 0.69 0.36
5 1.00 0.94 0.43 0.38 0.75 0.72 0.75 0.44
4 1.00 1.00 0.57 0.42 0.89 0.80 0.83 0.46
3 1.00 1.00 0.64 0.47 1.00 0.88 0.91 0.57
2 1.00 1.00 0.74 0.52 1.00 0.99 1.00 0.86
1 (Least saturated) 1.00 1.00 1.00 0.63 1.00 1.00 1.00 1.00
*Tp 0.84 0.80 0.48 0.37 0.67 0.68 0.70 0.47

* 1 partitions moisture in above saturation to runoff and infiltration.

Table 2. Calibrated subbasins (Fig. 1), drainage area, model fit statistics (coefficient of determintion] Nash-Sutcliffe Efficiency,
NSE), and observed and predicted flows.

Subbasin Area (kl%) r2 NSE Observed Mean Observed Predicted Predicted
Annual Normalized Direct Ground
Discharge Discharge Runoff Water
(Mm?3) (mmyr-1) (mmyr 1) (mmyr-1)3
Anjenit 1.3 0.76 0.84 0.40 563 44 453
Gumera 1286 0.83 0.81 501 390 22 316
Ribb* 1295 0.74 077 495 382 25 306
North Marawd 1658 0.78 0.75 646 390 17 274
Jemma& 5429 091 0.92 1142 210 19 177
Angar 4674 0.87 0.79 1779 381 34 341
Kessi& 65385 0.73 053 19237 294 19 259
Border (El Diem} 174000 0.92 0.87 56021 322 13 272

1 statistics are calculated on daily time step
2 statistics are calculated on monthly time step
3 Includes both base and interflow.

SCRP watershed and Engda (2009) working the Andit Tiddelivery ratio is incorporated into the equation and does not
SCRP watershed showed that steeper slopes resulted in lesged to be specified separately.
runoff and lower erosion rates thus, we adjusted the overland . . L

The most sensitive parameters controlling erosion in the

Mannings-n (OVN) values as a function of slope steepness. . .
. L L . watershed were those used for calculating the maximum
Since SWAT is incapable of realistically modeling gully ero- . . ;
. ) ) . amount of sediment that can be entrained during channel
sion, and gully formation can be an important erosion mech-"" " . -
T - : : - routing. The channel properties, Manning’s-n (GHi value
anism in the Ethiopian highlands the soil erodibility fac- : . .
. e ; . for tributary channels affects the time of concentration and
tor (USLEK) in the Modified Universal Soil Loss Equa- indirectly the peak discharge in the channel. Factors like
tion (MUSLE) (Williams, 1975) equation was increased by y P g i

25% to reflect this. This might result in specific field based the channel cover (CKEOV) and the channel erodibility

erosion estimates being over-predict to correctly predict sub-(CH’EROD) !mearly.mﬂuence the soil loss _fr_om channels.
hannel sediment yield was also very sensitive to the effec-

basin scale erosion. Landscape erosion in SWAT is compute Ive hydraulic conductivity (CHK) of the main channel allu-

using the MUSLE, which determines sediment yield using a_. . ; .
: vium. Table 3 gives the calibrated channel sediment param-
runoff factor that estimates the energy that governs the trans-

ort of eroded sediment in surface flow. Thus the sedimenFters for the three sites with measured data (Anjeni, Ribb,
P ' and EIl Diem) against which to calibrate. We determined
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Table 3. Parameters affecting channel degradation and deposition of sediment calibrated using leave one out cross validation for Anjeni,
Ribb, and El Diem.

Anjeni Ribbl  El Dien?

Parameter Upper Bound Lower Bound Calibrated Values
SPCON 0.01 0.001 0.004
SPEXP 2 1 1.34

Channel Erodability Factor (CHEROD)* 1 0 0.734 0.589 0.38
Channel Cover Factor (CIEOV)* 1 0 0.893 0.741 0.62
Channel Manning’s N (CEN)* 0.15 0.025 0.067 0.076 0.095
Channel Saturated Hydraulic Conductivity (G8* >100 0 134 26.7 6.4

* Varies by reach
1 parameters calibrated for the Ribb subbbasin were transferred to Gumera, North Marawi, and the remaining land area in the Lake Tana Basin.
2 parameters calibrated at the El Diem station were transferred to all subbasins upstream except for Anjeni, and those in the Lake Tana Basin.

the respective amounts of landscape and channel sedimeat Anjeni. For the basin as a whole, approximately 25% of
by comparing the sediment yield from each HRU summedprecipitation exits the BNB at EI Diem.
within a subbasin to the channel sediment yield, which, when  Taple 1 shows the adjusteg parameter values (e.g. Eq. 8)
summed, equal the subbasin sediment export. The HRU Sedpy the various subbasin in the BNB, and that the parameter
iment yield is an estimate of sediment delivery from an HRU ya1yes are scalable, and can be determined from topograph-
into the main channel during the time step, while the channeica| information (i.e., thep; values in vary by subbasin, but
sediment yield is any sediment eroded or re-entrained frompe gistribution is similar, Fig. 3). The SWAT-WB model
the channel. Thus, sediment export from a subbasin includegas able to accurately reproduce the various watershed re-
both the sediment yield from the HRUs and any sedimenisponses across the range of scales. Notice for instance that
eroded or entrained from the channel. the hydrographs at the Border (174 000%rtFig. 4), Jemma
(5400 kn?) (Fig. 5), Gumera (1200 kA) (Fig. 6), and An-
jeni, (1.13kn?) (Fig. 7), reasonably capture the observed dy-

4 Results namics (i.e., both the rising and receding limbs and the peak
flows are well represented). There was a slight tendency for
4.1 Hydrology the model to bottom out during baseflow, likely due to over

estimated ET, but the error is relatively minor. More impor-

Runoff and subsurface flow from the watershed weretantly the model captures peak flows, which are critical to
summed at the watershed outlet to predict streamflow. Th&orrectly predict to asses sediment transport and erosion.
graphical comparison of the modeled and measured daily Runoff and streamflow are highly variable both temporally
streamflow at the El Diem station at the Sudan border (e.g.(over the course of a year) (Fig, 4) and spatially (across the
integrates all subbasins above) is shown in Fig. 4. The modeEthiopian Blue Nile Basin) (Table 2). Daily watershed outlet
was able to capture the dynamics of the basin response wetlischarge during the monsoonal season at Gumera is four to
(NSE=0.87, r2 =0.92) (Table 2, Fig. 4). Both baseflow eight times larger than at the border (after normalizing flow
and storm flow were correctly predicted with a slight over by the contributing area) (Figs. 4 and 6). Anjeni, the smallest
prediction of peak flows and a slight under prediction of watershed had the largest normalized discharge, often over
low flows (Table 2), however, all statistical evaluation cri- 20 mmd-1 during the rainy season (Fig. 7). Discharges (in
terion indicted the model predicted well. In fact all cali- Mm3y~1) intuitively increase with drainage area, but pre-
brated subbasins predicted streamflow at the outlet reasortipitation also has a large impact on overall subbasin dis-
ably well (e.g. Table 2). Model predictions showed good charge. Both Jemma and Angar are approximately the same
accuracy (NSE ranged from 0.53-0.92) with measured dataize (Jemma is actually slightly bigger) yet discharge from
across all sites except Kessie, where the water budget couldngar is nearly 40% higher, a result of the higher precipi-
not be closed; however, the timing of flow was well captured.tation in the south-western region of the basin. Temporally,
The error at Kessie appears to be due to under estimated preutlet discharges typically peak in August for the small and
cipitation at the nearby gauges, as measured flow was nearljmedium sized basins and slightly later for Kessie and the
15% higher than precipitation-evapotranspiration. Never theborder, a result of the lag time for lateral flows to travel the
less, the prediction is within 25% of the measured data. Ob-greater distances. Due to the monsoonal nature of the basin,
served normalized discharge (Table 2) across the subbasinbkere is a very low level of baseflow in all tributaries, and in
shows a large gradient, from 210 mm at Jemma to 563 mnfact some dry up completely during the dry season, which the
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Fig. 4. Daily observed and predicted discharge, runoff, and baseflow at the Sudan border.

model reliably predicts, which is important when considering basins. For instance there are more classes (areas) in Anjeni
the impacts of intervention measures to augment flow. and Angar that are prone to saturate, and would thus have
Runoff losses predicted by the model varied across theéd comparatively lower available storage than the other sub-
basin as well, and were generally well corroborated by runoffbasins. This is relatively clear in looking at the streamflow
estimates from baseflow separation of the streamflow hydrohydrographs (Figs. 4-7) where the smaller watersheds tend
graph. Predicted runoff losses (averaged across the enti® generate substantially more surface runoff. Conversely,
subbasin) varied from as low as 13 mmiyfor the BNB as  as basin size increases (Kessie, Border) the saturated frac-
a whole subbasin to as high as 44 mntyin Anjeni. Of tion of the watershed decreases, more of the rainfall infil-
course, small areas of the individual subbasins produce sigtrates, resulting in greater baseflow, as reflected in the higher
nificantly higher runoff losses and others significantly less.I1z, or in terms of runoff the smaller upland watersheds have
These differences are well reflected in the average basefloligher runoff losses than the larger basins. This is not unex-
coefficient (1) for the subbasins (Table 1). Notice that the pected, as the magnitude of the subsurface flow paths have
I for Anjeni (smallest watershed, highest runoff losses) isbeen shown to increase with the size of the watershed, be-
significantly lower than for Gumera and the Border (Table 1).cause as watershed size increases more and more deep flow
A lower I reflects less average available storage in the wapaths become activated in transport (Steenhuis et al., 2009).
tershed, (i.e. more rainfall ends up as runoff). THig value The ability to predict the spatial distribution of runoff
is determined from the baseflow separation of the streamsource areas has important implications for watershed in-
flow hydrograph (Hewlett and Hibbert, 1967), and can thustervention, where information on the location and extent of
be considered a measured parameter. It is also interesting ®ource areas is critical to effectively managing the landscape.
note how the distribution of the individug} differs between  For instance, the inset of Fig. 8 shows the predicted spatial
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- from the various subbasins was controlled by channel erosion
£ :z A — Observed and re-entrainment/re-suspension of landscape sediment de-
£ s / \\ """ pal . posited in the reaches in the early part of the growing season.
5 ® / 1\ This sediment was subsequently mobilized during the higher
3 iz | N VA flows that typically peak after the sediment peak is observed
S s AN e ZAN S— [e.g., the sediment peak occurs approximately two weeks (in

o ‘ ‘ S ‘ : —— July) before the flow peak (in August)] (compare Figs. 4 and

Mar-96 Jun-96 Sep-96 Dec-96 Mar-97 Jun-97 Sep-97 Dec-97

9). Figure 10 shows significant hysteresis between the rising
Fig. 5. Monthly observed and predicted discharge at the Jemmaand receding limbs of the sediment Conce.mration hydrogra}ph
subbasin. (natural log transformed data). The sediment concentration
on the rising limb of the hydrograph has a lower slope, and
higher intercept than the receding limb. While we do not
distribution of average runoff losses for the Gumera water-know the mechanisms behind this difference it seems logi-
shed for an October 1997 event. As is evident from Fig. 8,cal that there are different processes controlling the sediment
runoff losses vary quite dramatically across the landscapedynamics during different parts of the year (e.g., as illus-
some HRUs are expected to produce no runoff, while oth-trated by the hysteresis). This, of course, has implications
ers produced more than 90 mm of runoff. When averagedor reservoir management in downstream countries, in that
spatially at the outlet, runoff losses were 22 mm (Table 2).much of the high sediment flow can pass through the reser-
Other subbasins responded in a similar manner. These rexoir during the rising limb, and the relatively cleaner flows
sults are consistent with data collected in the Anjeni SCRPstored during the receding limb. Never the less, the sheer
watershed (SCRP, 2000; Ashagre, 2009), which showed thatolume of sediment exported from the Ethiopian highlands

runoff losses roughly correlate with topography. threatens many downstream structures regardless of their op-
eration and clearly impacts agricultural productivity in the
4.2 Sediment highlands.

SWAT predicts that the sediment later in the growing sea-

Based on SCRP data from several of the micro watershedon is channel based (either from landscape sources de-
sites (Anjeni, Andit Tid) that shows sediment losses to be in-posited during lower velocity flows or directly from the chan-
versely related to slope position (e.g., steeper slopes produaeel itself), However, there is significant gully erosion in many
less erosion) it appears that the hydrologic underpinning ofareas of the highlands, that, in fact become active at approx-
the SWAT-WB model (e.qg. less runoff is generated on steepeimately the same time as the flow peak occurs and SWAT
slopes) provides a conceptually correct platform to asses ergaredicts channel processes to be the source. Gully activa-
sive processes. Figure 9 shows the SWAT model predictedion occurs once the soil has wet up and lost its cohesive na-
and observed sediment export at El Diem. The daily NSE forture. Soil wets up from the interflow from upslope areas, and
the simulation period was 0.74, indicating acceptable modethus it does not always occur simultaneously with landscape
performance. Nearly 128 million tons per year were deliv- sources of erosion (Tebebu, 2009; Zegeye, 2009). In actual-
ered during the 2 years of measurements (Ahmed, 2003)ity, the receding limb of the sediment hydrograph (Fig. 10) is
with a measured daily average during the rainy season ofikely a combination of both channel re-suspension of land-
1.22 million tons. The model predicted 121 million tons scape sources, channel erosion, and gully erosion. However,
over the 2 yrs, with a rainy season daily average of 1.16 mil-it should be noted that much of the main stem of the Blue
lion tons. The average sediment concentration at El DiemNile cuts through a rocked canyon composed of basalt lavas,
was 3.751 g £, while the model predicted a slightly higher granites, and sandstones, and thus direct channel and bank
concentration of 4.123 gt!. The higher concentration was erosion is likely a small contributor. Smaller reaches where
somewhat counter balanced by the slightly under predictedlow velocities are high likely do contribute sediment from
flow (Fig. 4). Despite this, model performance appears to beboth channel and bank sources.
adequate. While the model was only calibrated to the sediment

Interestingly the model predicted that landscape based erazoncentrations and export at El Diem, and at the micro-
sion from agricultural areas, particularly tilled fields dom- watershed scale, both predicted similar phenomena. At both
inated sediment delivery to the reaches during the earlythe basin and Anjeni scales the model predicted landscape
part of the growing season (approximately mid-end August),sediment to be the dominant source until approximately mid
after which landscape based erosion was predicted to deAugust, after which there was a shift to (what the model pre-
crease. The reduction in landscape borne sediment reflectiicts) channel erosion. Perhaps not surprisingly, the sedi-
the growth stage of plants in the highlands, which in mid- ment hydrographs for Anjeni and El Diem were quite differ-
late August are reasonably mature, or at least have deveknt. In Anjeni, the sediment hydrograph (Fig. 11) mimicked
oped a canopy and root system that effectively reduces rilthe flashy nature of the streamflow hydrograph, while at El
and sheet erosion (Zegeye, 2009). After that sediment expoiDiem sediment export was much less flashy (Fig. 9). Table 4
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Indeed, based on the surfical geology and assuming the
predicted runoff source areas reasonably reflect the actual
hydrology, it seems reasonable to assume the predicted dis-
tribution of sediment sources are accurate, if not in exact lo-
cation, than in magnitude. Certainly more information and

) i 5w e, Runoff data are needed to better parameterize the model and to en-
[ Watershed 0mm sure accurate calibration. Figure 12 displays the predicted
Reach . sediment distribution in the Gumera subbasin. Although it is
Discharge 100 mm hard to discern in Fig. 12, there is a huge variation in sed-

P 490 . . . . . .
" iment yield, ranging from areas with essentially no erosion

to areas producing significant sediment losses. Indeed, these
high sediment source areas are also high runoff source areas.
Fig. 8. Predicted average yearly spatial distribution of discharge inClearly some areas of the basin are predicted to be compar-
the Blue Nile Basin (main) and predicted runoff distribution in the atively larger sources of sediment than others. For instance,
Gumera sub watershed for an October 1997 event (inset). the Lake Tana subbasin is predicted to have some of the high-

est sediment yields in the basin, as high as 200t hasult-

ing from cultivation on the steep slopes, and the relatively
shows the measured and predicted sediment export for thgigh runoff losses that prevail in the region. The Jemma
Border, Ribb and Anjeni. While the total sediment export in- subbasin also shows high predicted sediment losses, mainly
tuitively increases with basin size, the normalized sedimenty result of the surfical geology (e.g., leptosols and vertisols
export (tknf) was inversely proportional to the basin size overlaying a basalt formation), high agricultural activity, and
(Table 4) This is a direct result of the difference in the base-steep S|0pes_ A third area that has re|a‘[ive|y h|gh sediment
flow coefficients [15) among the various sized basins, (e.g., yield is located in the Upper Didessa subbasin (where Angar
0.47 for Anjeni to 0.84 for the Border). is located) where there are some of the highest rainfall and

B 322 mm
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Table 4. Model fit statistics (coefficient of determinatior? and Nash-Sutcliffe Efficiency, NSE), and sediment export for the Anjeni, Ribb,
and Border (El Diem) Subbasins during the rainy season.

Subbasin r2 NSE Measured Sediment Export Modeled Sediment Export  Modeled Sediment Export
| tondt | tonknPd~1

Anjeni 0.80 0.74 239 227 201.2

Ribb* 0.74 0.71 30,657 29456 22.7

Border (El Diem) 0.67 0.64 1229821 1232468 7.1

* Consists of four measurements.

Table 5. Annual predicted sediment yield for each wetness index class (basin average) and for the pasture, crop, and forest land covers.
Wetness Index one produces the lowest runoff; wetness class ten produces the most runoff.

Landcover Wetness Index Class Sediment Yield (ton h&)yr

One Two Three Four Five Six Seven Eight Nine Ten
Pasture 12 36 34 3.6 39 56 838 10.1 125 143
Crop 21 23 34 35 46 59 107 9.9 142 156
Forest 03 05 0.9 15 17 16 28 3.1 3.7 4.1

runoff levels in the basin. The Fincha region, in the south-eas that produce virtually no runoff or erosion, and areas that
ern area of the basin, was not specifically a subbasin in thgroduce very high levels of both runoff and erosion. Much
model, but the area was also predicted to have high sedimerdf the erosion in the Anjeni catchment was generated from
yields. Conversely, sediment yields are considerably lowera large gully in the low-lying area (Ashagre, 2009). While
(on average) in subbasins along the along the main stem ahe SWAT model cannot predict the formation of gullies, the
the Blue Nile (Fig. 12), mainly a result of the lower slopes, SWAT-WB model can indicate where the formation of gul-
and more forested areas, particularly in the north-western relies is probable. In most cases gullies form where the soil
gion. However, the model still predicts some large sourcess saturated either from a large contributing area for water
of sediment in these areas, specifically, agricultural land orto accumulate or where slopes flatten and the effective hy-
steep, or saturated soils. draulic conductivity is reduced (Tebebu et al., 2010). These
The predicted gradient in sediment yield within subbasinsareas tend to occur at the bottom of long slopes in the wetter
is illustrated in Fig. 12. Inset, where the Gumera watershedvalley bottom areas, which, not surprisingly also support in-
in the Lake Tana subbasin is shown. The model predicts onlyensive animal agriculture. Indeed, Table 5 shows these areas
a relatively small portion of the watershed to contribute the (higher wetness index classes, or areas with highadues)
bulk of the sediment (75% of the sediment yield originatesto produce substantially higher sediment yields than other ar-
from 10% of the area, while much of the area contributeseas, inevitable, since these areas produce higher runoff losses
low sediment yield. The high sediment yield areas are genas well. This seems to agree with what has been observed in
erally predicted to occur at the bottom of steep agriculturalthe basin (e.g., Tebebu, 2009), and points towards the need
slopes, where subsurface flow accumulates, and the stabilitio develop management strategies that incorporate landscape
of the slope is reduced from tillage and or excessive livestoclkposition into the decision making process. Interestingly, both
traffic. Note also that these are the areas that gully formatiorpasture and crop land in the higher wetness classes had ap-
is likely (Tebebu, 2009; Tebebu et al., 2010). proximately equivalent sediment losses, while forest in these
same areas had substantially lower erosive losses, likely due

) ] to the more consistent ground cover and better root system.
5 Discussion
The use of the modified SWAT-WB model that more cor-

Flows in the Blue Nile Basin in Ethiopia show large variabil- rectly predicts the spatial location of runoff source areas
ity across scales and locations. Sediment and water yields a critical step in improving the ability to manage land-
from areas of the basin range more than an order of magscapes, such as the Blue Nile, to provide clean water sup-
nitude. Smaller basins showed both higher runoff and sediplies, enhance agricultural productivity, and reduce the loss
ment losses per unit area. Furthermore, even within smalleof valuable top soil. Obviously, the erosion routines (USLE,
watersheds such as the Anjeni micro-catchment there are aRUSLE, MUSLE, sediment rating curves) in many of the
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10 the receding limb of the sediment hydrograph, sediment ex-
y=D510x+5613 o & _ , port is dominated by channel processes. However, as noted
FoR204 ¢ earlier, gully erosion is also a large sediment source later in
s DO the season, as interflow causes the soil to saturate and in-
/05@/00%0 creases the hydrostatic pressure in the gully (e.g., a water

In(Conc) (mg L)

w B~ 1 N o ©
§§> |
o |

2 y=1.212x+0.569 table forms above the gully bottom) (Tebebu et al., 2010).
S REg it 2=0.711 Bz_ise_:d on watershed outflow mea_surem_ents, we cr_:mnot dis-
5 Receding imb criminate between_ these mechanisms since both ;lgnals ap-
| pear at the same time. However, the gully explanation seems
3 4 5 6 7 to be reasonable since during the rainy season high sedi-
In(Flow) (Mm3 d%) ment concentrations are observed in the basin and relatively

sediment free water is observed after the surface runoff has
Fig. 10. Natural log of the sediment concentration vs natural log of ended, and interflow continues.
the flow at EI Diem gauge for the rising and receding limb of the  The next logical work with these basin scale models
discharge hydrograph. should explore incorporating more realistic processes con-
trolling erosion. Models such as the Water Erosion Predic-
tion Project (WEPP) model incorporate mechanistic process
large scale watershed models are crude, at best, and do nghsed erosion modeling capabilities, but are applicable only
incorporate the appropriate mechanistic processes to reliably, the hillslope or small watershed scale. There is an addi-
predict when and where erosion occurs, at least at the scalgynal need to increase the parsimony of the basin scale mod-
needed to manage complex Iandscapes_. For instan(_:e, thés. The modification made to SWAT (SWAT-WB) provides
MULSE routine in SWAT does not predict gully erosion, g good first step towards more correctly capturing distributed
which is a large component of the sediment budget in thenygrologic responses while significantly reducing calibration
Blue Nile. To correctly capture the integrated watershedpeeds. This provides a useful platform on which to base sed-
wide export of sediment the original SWAT predicts ero- jment predictions, but still does not overcome the inherent
sion to occur more or less equally across the various landyeakness of empirical erosion routines such as those used in
covers (e.g., crop land produces approximately equal erosive\yaT. Models that utilize USLE and its derivates often re-
losses, pasture produces approximately equal erosive losseg)ire (excessive) calibration, and there exist very few data
provided they have similar soils and land management pracgets that can reliably provide both the integrated and dis-
tices throughout the basin. The modified version of SWAT yipyted data to calibrate against. Translating these capabil-
used here recognizes that different areas of a basin (or landyies to basin scale models will be challenging, but are crit-
scape) produce differing runoff losses and thus differing sedscg) to the future of land and water resource management,
iment losses (Table 5). However, all crop or pasture with inparticularly in regions where there is little measured data to
a wetness index class in the modified SWAT produces the.gjiprate these models to.
same erosive losses, and is rill or sheet erosion (as predict by
MUSLE), not gully erosion. Thus, rill and sheet erosion are
likely over predicted to obtain the correct sediment exporte Conclusions
from the basin.

It is interesting to note that the model can predict that theA modified version of the SWAT model appropriate for mon-
sediment load peaks before the flow, and that it predicts thesoonal climates is presented as a tool to quantify the hydro-
cause to be the result of relating the sediment concentratiofogic and sediment fluxes in the Blue Nile Basin, Ethiopia.
to the time when the watershed becomes covered by vegeFhe model requires very little direct calibration to obtain
tation. The model indicates that later in the rainy season orgood hydrologic predictions. All parameters needed to
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Fig. 11. Measured and SWAT predicted sediment export from the Anjeni micro-watershed.

Sediment Yield An analysis of sedimentation and erosion in the Blue Nile
O (tha’) Basin was conducted to determine the relative sources of sed-
iment. The model showed good fit to observed sediment load
at the El Diem station. The model predicted several areas
of the watershed to be relatively large sediment contribu-
o _ab tors, however, more work should be done to corroborate the

subbasin and intra-watershed predicted sediment yields. The
= processes governing the erosion and sedimentation dynamics

—— L 84 (tha?)

= \“«; N are not fully understood in the Blue Nile, thus the sediment
Sedi } A dhan predictions should be considered tentative until more testing
ediment 3 \ r) - .
Export > A A is done.
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initialize the model to predict runoff are obtained from base-
flow separation of the hydrographlig), and from topo-
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