1 Supplementary material

- Table 1. Model (MAPSS) parameters used in the uncertainty analysis, classified by
- 3 model process, and the minimum and maximum values used to build their uniform
- 4 probability distribution function. For conceptual parameters minimum and maximum
- 5 values were estimated as ±30% from their default value (Zahele et al., 2005).

Vegetation				
processes	Parameter	Minimum	Maximum	Reference
Rainfall	Rainfall coefficient for			
interception	number of rain events			
	(RC)	0.7	1.3	±30%
	Potential			
	evapotranspiration (PET)			
	threshold (mm/month) for			
	determination of maximum number of events	25	75	. 200/
		25	75	±30%
	Maximum number of events at PET <= RC	3.5	6.5	1200/
	Maximum number of	3.3	6.5	±30%
	events at PET > RC	7	13	±30%
	Maximum precipitation	,	13	±30 /6
	interception per event			
	(mm)	2.1	3.9	±30%
Potential	Tropical trees PET factor	1.785	3.315	
Evapotranspiration	Tropical tall grass PET			
(PET)	factor	0.854	1.586	±30%
,	Full light attenuation leaf			
	area index (LAI) for			Hoffmann et
	Tropical Broad/Needleleaf	3.3	5	al., 2005
Stomatal	Tropical normal maximum			
conductance	stomatal conductance			Kelliher et
	(mm/s)	1.5	9.3	al., 1995
	Maximum conductance of			Kelliher et
	Broad/Needleleaf Tropical			al., 1995;
	Grass (mm/s)			Schulze et
				al., 1994;
				Jarvis 1976;
		4	40	Emanuel et
	Maximum conductors of	4	12	al., 2007
	Maximum conductance of			Kelliher et
	Broad/Needleleaf Tropical Tree (mm/s)			al., 1995; Schulze et
	1166 (11111/3)			al., 1994;
				Gao et al.,
		2.9	9.3	2000;
		0	0.0	_000,

	Maximum conductance of Broad/Needleleaf Tropical Shrub (mm/s) Minimum conductance of Broad/Needleleaf Tropical	1.5	7.5	Juhrbandt et al., 2004 Gao et al., 2000; Neilson, 1995 Neilson, 1995;
	Grass (mm/s) Minimum conductance of Broad/Needleleaf Tropical Tree (mm/s)	0	0.2	Schulze et al., 2005 Juhrbandt et al., 2004; Neilson, 1995; Kelliher et
	Minimum conductance of Broad/Needleleaf Tropical Shrub (mm/s)	0	1.5	al., 1995 Neilson, 1995; Hallgren and Pitman,
Actual transpiration (AT) and Leaf Area Index (LAI)	Maximum LAI:actual transpiration (AT) ratio Broad/Needleleaf Grass	0	0.8	2000
	(LAI/mm) Apply maximum LAI: actual transpiration (AT) ratio below this value of AT for Broad/Needleleaf	10.5	19.5	±30%
	Grass (mm) Maximum LAI:actual transpiration (AT) ratio for Broad/Needleleaf Tree	700	1300	±30%
	(LAI/mm) Apply maximum LAI:AT ratio below this value of AT for Broad/Needleleaf Tree	0.175	0.325	±30%
	(mm) Maximum LAI:actual transpiration (AT) ratio for Broad/Needleleaf Shrub	700	1300	±30%
	(LAI/mm) Apply maximum LAI:AT ratio below this value of AT for Broad/Needleleaf	7	13	±30%
	Shrub (mm)	175	325	±30%

Wilting point	Wilting point for Needle/Broadleaf Tropical Grass (MPa)			Schulze et al., 2005; Hoffmann et al., 2005; Engelbrecht
	Wilting point for	-3	-0.7	and Kursar, 2003
	Wilting point for Needle/Broadleaf Tropical Tree (MPa) Wilting point for Needle/Broadleaf Tropical Shrub (MPa)	-3	-0.7	Schulze et al., 2005 Schulze et al., 2005; Neilson,
		-6	-0.7	1995
Transpiration coefficients	Transpiration coefficient Needle/Broadleaf Grass Transpiration coefficient	0.07	0.13	±30%
	Needle/Broadleaf Tree Transpiration coefficient	-0.962	-0.518	±30%
Actual transpiration (AT)	Needle/Broadleaf Shrub Coefficient of model of transpiration ratio for	-1.04	-0.56	±30%
rate	Tropical Needleleaf Grass Coefficient of model of transpiration ratio for	2.975	5.525	±30%
	Tropical Broadleaf Grass Coefficient of model of transpiration ratio for	2.345	4.355	±30%
	Tropical Needleleaf Tree Coefficient of model of transpiration ratio for	2.45	4.55	±30%
	Tropical Broadleaf Tree Coefficient of model of transpiration ratio for	2.66	4.94	±30%
	Tropical Needleleaf Shrub Coefficient of model of transpiration ratio for	5.075	9.425	±30%
Potential Evapotranspiration (PET) and Stomatal	Tropical Broadleaf Shrub Parameter controlling the sensitivity of stomatal conductance to PET for Tropical Broad/Needleleaf	5.075	9.425	±30%
Conductance	Grass Parameter controlling the sensitivity of stomatal	0.0014	0.0026	±30%
	conductance to PET for	0.07	0.13	±30%

	Tropical Broad/Needleleaf Tree Parameter controlling the			
	sensitivity of stomatal conductance to PET for			
Runoff	Tropical Broad/Needleleaf Shrub Coefficient of surface	0.021	0.039	±30%
Potential Evapotranspiration	runoff Tropical Grass/Shrub/Tree measurement height for	1.19	2.21	±30%
(PET) model	winds (m) Tropical Mid- and short grass roughness length	7	13	±30%
	(cm) Tropical Tree roughness	3.5	6.5	±30%
	length (cm) Tropical Shrub and Tall Grass roughness length	140	260	±30%
Soil water	(cm) Parameter	7	13	±30%
processes Soil layers thickness	Surface soil layer thickness (cm)	Min	Max	Reference Canadell et al., 1996; Neilson,
	Intermediate soil layer	500	2700	1995
	thickness (cm) Deep soil layer thickness (cm)	700	1300	±30% Schenk and Jackson,
Soil saturated	Soil saturated water	1800	3900	2002
water holding capacity (SWHC)	holding capacity (SWHC) as percentage of volume at saturation for surface, intermediate and deep			Saxton and Rawls, 2006; Neilson,
Soil field water capacity	layers (%) Soils field water capacity (as fraction of SWHC) for	42	52	1995
Soil Water Potential Model	surface, intermediate and deep layers Coefficient 1 of soil water potential model for	0.22	0.84	Saxton and Rawls, 2006
	surface, intermediate and deep layers Coefficient 2 of soil water	43026.788 3.0513	79906.892 5.6667	±30% ±30%

	potential model for surface, intermediate and deep layers Coefficient 3 of soil water potential model for			
Percolation	surface, intermediate and deep layers Coefficient for infiltration, surface runoff and	33.39	62.01	±30%
	saturated percolation for surface soil layer Coefficient for infiltration	0.7	1.3	±30%
	and saturated percolation for intermediate soil layer Coefficient for infiltration and saturated percolation	1.75	3.25	±30%
	for deep soil layer Coefficient for infiltration, surface runoff and	7	13	±30%
	unsaturated percolation for surface soil layer Coefficient for infiltration and unsaturated	1.75	3.25	±30%
	percolation for intermediate soil layer Coefficient for infiltration and unsaturated	2.1	3.9	±30%
Drainage	layer Coefficient for infiltration, surface runoff and	7	13	±30%
	saturated drainage for surface soil layer Coefficient for infiltration and saturated drainage for	0.35	0.65	±30%
	intermediate soil layer Coefficient for infiltration and saturated drainage for	0.56	1.04	±30%
	deep soil layer Coefficient for infiltration, surface runoff and	0.56	1.04	±30%
	unsaturated drainage for surface soil layer Coefficient for infiltration	0.56	1.04	±30%
	and unsaturated drainage for intermediate soil layer	0.35	0.65	±30%

0.14

0.26 ±30%

6

7

References

- 8 Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., and Schulze,
- 9 E. D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108,
- 10 583-595, 1996.
- Emanuel, R. E., D'Odorico, P., and Epstein, H. E.: A dynamic soil water threshold for
- vegetation water stress derived from stomatal conductance models, Water Resour.
- 13 Res., 43, 10.1029/2005wr004831, 2007.
- Engelbrecht, B., and Kursar, T.: Comparative drought-resistance of seedlings of 28
- species of co-occurring tropical woody plants, Oecologia, 136, 383-393, 2003.
- Gao, Q., Yu, M., Wang, J., Jia, H., and Wang, K.: Relationships between regional
- primary production and vegetation patterns, Ecological Modelling, 172, 1-12, 2004.
- Hallgren, W. S., and Pitman, A. J.: The uncertainty in simulations by a Global Biome
- Model (BIOME3) to alternative parameter values, Global Change Biology, 6, 483-495,
- 20 2000.
- Hoffmann, W., da Silva, E., Machado, G., Bucci, S., Scholz, F., Goldstein, G., and
- Meinzer, F.: Seasonal leaf dynamics across a tree density gradient in a Brazilian
- 23 savanna, Oecologia, 145, 306-315, 2005.
- Jarvis, P. G.: The Interpretation of the Variations in Leaf Water Potential and Stomatal
- 25 Conductance Found in Canopies in the Field, Philosophical Transactions of the Royal
- Society of London. B, Biological Sciences, 273, 593-610, 10.1098/rstb.1976.0035,
- 27 1976.
- Juhrbandt, J., Leuschner, C., and Hölscher, D.: The relationship between maximal
- stomatal conductance and leaf traits in eight Southeast Asian early successional tree
- species, Forest Ecology and Management, 202, 245-256, 2004.
- Kelliher, F. M., Leuning, R., Raupach, M. R., and Schulze, E. D.: Maximum
- conductances for evaporation from global vegetation types, Agricultural and Forest
- 33 Meteorology, 73, 1-16, 1995.
- Neilson, R. P.: A model for predicting continental-scale vegetation distribution and water
- 35 balance, Ecological Applications, 5, 362–385, doi:10.2307/1942028, 1995.

- Saxton, K. E., and Rawls, W. J.: Soil Water Characteristic Estimates by Texture and
- Organic Matter for Hydrologic Solutions, Soil Sci Soc Am J, 70, 1569-1578,
- 39 10.2136/sssaj2005.0117, 2006.
- Schenk, H. J., and Jackson, R. B.: Rooting depths, lateral root spreads and below-
- ground/above-ground allometries of plants in water-limited ecosystems, Journal of
- 42 Ecology, 90, 480-494, 2002.
- Schulze, E., Kelliher, F. M., Korner, C., Lloyd, J., and Leuning, R.: Relationships among
- 44 Maximum Stomatal Conductance, Ecosystem Surface Conductance, Carbon
- 45 Assimilation Rate, and Plant Nitrogen Nutrition: A Global Ecology Scaling Exercise,
- 46 Annual Review of Ecology and Systematics, 25, 629-662,
- 47 doi:10.1146/annurev.es.25.110194.003213, 1994.
- Schulze, E-D., Beck, E., Müller-Hohenstein, K.: Plant Ecology, Springer, Germany,
- 49 2005.
- Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Effects of parameter uncertainties on
- the modeling of terrestrial biosphere dynamics, Global Biogeochem. Cycles, 19,
- 52 10.1029/2004gb002395, 2005.