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Abstract. This study presents the analysis of predictive un-are necessary to compensate for our incomplete understand-
certainty of a conceptual type snowmelt runoff model. Theing of the real world. Unfortunately, the question of whether
method applied uses possibilistic rather than probabilisticor not these assumptions and approximations are justifiable
calculus for the evaluation of predictive uncertainty. Possi-can hardly be answered with absolute certitude, which im-
bility theory is an information theory meant to model uncer- plies that the reliability of the model is ultimately uncertain.
tainties caused by imprecise or incomplete knowledge aboutncertainties arising in engineering modelling can be classi-
a real system rather than by randomness. A snow dominatefiled into two groups (Ferson and Ginzburg, 1996; Ayyub and
catchment in the Chilean Andes is used as case study. Predi&lir, 2006): aleatory and epistemic uncertainties. Aleatory
tive uncertainty arising from parameter uncertainties of theuncertainties originate from the inherent variability of some
watershed model is assessed. Model performance is evalgpghenomena that are perceived as being governed by under-
ated according to several criteria, in order to define the possitying stochastic processes. The fact that this variability is
bility distribution of the parameter vector. The plausibility of treated as an inherent property of the real system implies
the simulated glacier mass balance and snow cover are usebat aleatory uncertainties cannot be reduced by improving
for further constraining the model representations. Possibilthe knowledge available to the modeller. Aleatory uncertain-
ity distributions of the discharge estimates and prediction unties can be dealt with using an objective (frequentist) proba-
certainty bounds are subsequently derived. The results of thbilistic approach. On the other hand, epistemic uncertainties
study indicate that the use of additional information allows aare those arising from the incompleteness of the information
reduction of predictive uncertainty. In particular, the assess-about the real system that is available to the modeller. Given
ment of the simulated glacier mass balance and snow covehat these uncertainties are related to the state of knowledge,
helps to reduce the width of the uncertainty bounds withoutthey can sometimes be reduced by improving it. Subjec-
a significant increment in the number of unbounded observative (Bayesian) probability approaches and non-probabilistic
tions. frameworks are suitable for analysing uncertainties that do
not have a stochastic nature.

Watershed models attempt to simulate the complex hydro-
logical processes that lead to the transformation of precipita-
tion into runoff. The sources contributing to the overall un-

Uncertainty can be defined as the lack of necessary inforcertainty in the discharge estimates provided by these mod-
mation to “quantitatively and qualitatively . .. describe, pre- €IS can be grouped in three categories, namely, data uncer-
scribe, or predict deterministically and numerically a system,tainty' model structure uncertainty and parameter uncertainty
its behaviour or other characteristica” (Zimmermann, 2001).(Bates and Townley, 1988; Lei and Shilling, 1996). Varia-
Even the most complex model of a real system necessaril{ions in natural phenomena (e.g. spatial and temporal vari-

involves a series of assumptions and approximations, whicration of rainfall), are usually treated as having an aleatory
nature. By contrast, other uncertainties affecting hydrolog-

) ical data (e.g. adequacy of the rainfall network distribution,
Correspondence toA. P. Jacquin validity of the flow rating curves, etc.), model structure un-
BY (alexandra.jacquin@ucv.cl) certainty and parameter uncertainty have an epistemic rather
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than a stochastic nature. It is widely recognized that, becausprocess, such as the possibility level at which uncertainty
of these uncertainties and their implications, choosing a sinbounds are derived and the criteria used for the evaluation
gle model representation (i.e. a combination of a model strucof model plausibility, have not been analysed.

ture and a parameter set) for simulating runoff generation in

a particular catchment is a common practice that is not neces-

sarily supported by evidence (see e.g. Beven, 2006; Wagener Possibility theory

et al., 2003). Most likely, there may be many acceptable

model representations whose rejection cannot be justified?-1 Introductory remarks

considering the always limited information available to the . . . : i
modeller. This non-uniqueness of the model representationéDOSSIbIIIty theory is an information theory that was first pro-
sometimes called equifinality in the hydrological literature posed as an gxtgnsmn of fuzzy sets theory for represgntmg
(Beven and Freer, 2001; Beven, 2006), is a problem that ha ague linguistic information (Zadeh, 1978, 1981). Since

. ' ' ’ en, possibility theory has been further developed into an

I((;reIg t;egencrﬁ(e:ggn|129eSdg|rlztgzeck?r;t:gt[;)ésllg:?rlz)gs;;aml\?et\t]:rct);g]dependent information theory. Possibility theory provides

less, reality outside the scientific context is that field prac-anthaggrgp.r:;?nf.rca?aiwrzrksfoghtgi ?hnoizsz.szu?fggaggg;
titioners rarely include an analysis of predictive uncertaintyWI P! ! ure, su ISINg

when applying watershed models in water resources studieé’.lrlli(;erta'g/y :‘Tﬁ paLameteirbiLIJi?c?rr]talr:tyr:n Wbateash(\e/d”mtﬁd-
Moreover, there is an important number of water researcher rdg. q € thoug I?OSt;Sn %’ eoigi” ‘;’}S ele Ia eilna ne
still unconvinced that uncertainty analysis should necessaril or decades, he appiication of possIbIISHC calcuius in u

: ertainty analysis is still very rare in hydrology. Examples of
280%6;” of the modelling process (Pappenberger and Beverfhis line of work include mappings of soil hydrological prop-

In spite of the reluctance of some scientists, hydrologistsert|es (Martin-Clouaire et al., 2000), soil moisture retrieval

have been very active in developing methods for uncertaint)ﬂom radar remote sensing data (verhoest et al., 2007), and

analysis. Extensive reviews on this topic have been presente odelling uncertamtlgs a_lffec_tlng General C.'rCUIat'OH MOO.I'
in the literature (e.g. Matott et al., 2009; Montanari et al. els and future scenarios in climate change impact evaluation

e . . ’ (Mujumdar and Ghosh, 2008).
2009). Probabilist h hydrol lude'
009). Probabilistic approaches used in hydrology include The word possibility can be interpreted as either feasibil-

variance propagation (e.g. Kuczera, 1988; Bates and Town:,

: : ty (i.e. degree of ease in a physical sense) or plausibility
ley, 1988), Monte Carlo sampling coupled with frequencyI ] . I
analysis (e.g. Bates and Townley, 1988; Yu et al., 2001_(Dub0|s and Prade, 1998). In this work, the word possibil-

Thorsen et al.. 2001: Zehe andiBEhl. 2004: Arnold et al ity is interpreted in the epistemic sense of plausibility, under-
2009) Bayes.i:';m anailysis eg Beven and ,Binley 1992 RoStood as the degree to which the occurrence of an event would
manowicz et al.. 1994- Thiemann et al.. 2001: Misirli et al. MOt be surprising. The potential surprise of an event reflects

2003; Engeland et al., 2005; Rojas et al., 2010; Renard et aIthe extent to which the evidence available is in contradiction
2010) and imprecise probabilities (Hall, 2006; Ghosh andWlth Its occurrence (Dl.JbO'S anq P'rade, 1998)' The remain-
Mujumdar, 2009; Nijssen et al., 2009). Non-probabilistic der of this section provides a brief |'ntr0duct|qn to p.OSSIbI|Ity
methods found in the hydrological literature include thosetheory'_ but more complete d|sc_u55|ons on this SUbJ_eCt can be
based on fuzzy sets theory (e.g. Dou et al., 1997; Seibertf,ound in the literature (e.g. Klir and Folger, 1992; Dubois
1997; Freissinet et al., 199@zelkan and Duckstein, 2001; and Prade, 1998; Wolkenhauer, 1998).

Bardossy et al., 2006; Zhang et al., 2009) and possibility the-, - .
ory (Martin-Clouaire et al., 2000; Verhoest et al., 2007; Mu- 2.2 Possibility and necessity measures

jumdar and Ghosh, 2008). , Possibility theory describes partial belief in terms of possi-
In this study, predictive uncertainty of a conceptual type jjir; and necessity measures, which are dual set functions

snowmelt runoff model is analysed using & methodology jefined on the power set (i.e. the collection of all possible

recently proposed in the context of watershed modellinggpsets) of the universe of discoutse Possibility and ne-

(Jacquin and Shamdeldin, 2007). This method, based ORggsity measures are special cases of plausibility and belief
possibility theory (Zadeh, 1978, 1981), explicitly accounts meaq res, respectively, as defined by the theory of evidence
for the problem of the non-uniqueness of model representag; Dempster-Shafer (Shafer, 1976: Dempster, 1967).

tions. So far, this possibilistic method has been tested invery 5 ,5rmal possibility measurél is a mapping from the
few cases, all of which correspond to watershed models with-

. ""power set ¢ to the interval [0,1], such that
out a snowmelt runoff component (Jacquin and Shamdeldin,

2007, 2009). The applicability of the method to other model 1 (¢) = 0, (1)
structures has not been explored. In particular, the present

study is the first attempt to investigate the applicability of the IT(U) = 1, and 2
method in snowmelt runoff modelling. Furthermore, the ef-

fect of several subjective choices made during the inferencdl (S U R) = max{II (S), IT (R)}, (©)
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whereS andR are subsets df . If the universe of discourse
U is infinite (e.g. an interval of the real line), the relation-

ship expressed in Eq. (3) must be extended to any family of

subsetss;, as expressed by

l‘l<uS,~> = supll (S;). (4)

i i

The possibility degredl (S) estimates the lack of contra-
diction between the evidence and the statemaéhte S”
(i.e. “X belongs toS”), where X is a variable or vector of
variables from the universe of discourSe and S is a sub-
set of U. Hence, the possibility degrde (S) indicates the
plausibility of the statementX e S”, given the knowledge
available abouX (Dubois and Prade, 1998). A possibility
degreell (S)=1 indicates thatX e S” is totally compat-
ible with the evidence (thus, fully possible), while a possi-
bility degreeIl (S)=0 indicates that X e S” is in total
contradiction with the knowledge available abatt(thus,
impossible). By contrast, the necessity degree of a subset
(denoted byN (S)) estimates the degree of certainty in that
“X e 8", as supported by the evidence. Representing com

plementary aspects of partial belief, dual possibility and ne-

cessity measures are related according to

N(S)=1-TI (59, (5)

where S° represents the complement of the sulf&efThus,
the necessity degre¥(S) represents the lack of plausibility
of S. A necessity degre&/(S)=1 indicates that there is
total certainty in that X € S”, while a necessity degree
N(S)=0 indicates there is no certainty in thak“e §”,
although this could still be possible wifh (S)>0.

2.3 Possibility distributions

A possibility distributionsr is a mapping from the universe
of discourseU to the interval [0,1]. The possibility value
7 (x) represents the plausibility th& takes the valueX
(i.e. X=x), given the knowledge available abaut For ex-
ample, Fig. 1 shows a possibility distribution of the variable
X, in which the possibility value ofiy is # (u1)=a1, the
possibility value ofus is & (u2)=ap, etc. A possibility dis-
tribution i is said to be normal if

sup 7 (x) =1,
xelU

(6)

as in the case of the possibility distribution depicted in Fig. 1.
In this situation, a possibility valug (x)=1 indicates that
X=x is totally compatible with the knowledge available
about X; a possibility valuer (x)=0 arises ifX=x is in
total contradiction with the evidence. Every possibility pos-
sibility distributionz induces a possibility measurg given

by

I (S) = sup 7 (x)

xeS

(7)
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Fig. 1. Example of a normal possibility distribution with two local
maxima.

for every subseS C U. In the example shown in Fig. 1,
the possibility degree of the subget=[/1, u1] isTI (R) =1,
because a valugy € [l1, u1] exists such thatr (xg) =1;
similarly, application of Eq. (5) yields the conclusion that
the necessity degree &=[l1, u1] is N(R)=1—oaj1.

In their classical interpretation, possibility distributions
are seen as being induced by fuzzy sets describing vaguely
defined concepts (Zadeh, 1978, 1981). More concretely, ev-
ery preposition of the formX is A”, where A is a fuzzy set
in U, induces a possibility distribution whose possibility
values are given by

T (x) = Py (x), (8)

where 1 is the membership function of the fuzzy setAn-
other interpretation of possibility distributions relates them
with likelihood functions of the type used in statistical infer-
ence. In particular. it has been suggested that maximum like-
lihood methods for hypothesis testing treat likelihood func-
tions as possibility distributions of the uncertain variables
(Dubois and Prade, 1993; Dubois et al., 1997).

2.4 a-cuts and stronga-cuts

The a-cut of a possibility distributionr is the set of all
x € U with possibility valuesr (x) greater than or equal
to «, that is

C*={x/7 (x) > a}, 9)

for everya e [0,1]. For example, thex;-cut of the pos-
sibility distribution shown in Fig. 1 is given by the interval
[{1, u1] and thexs-cut is given by the intervdls, u3s], while
the az-cut corresponds to the union of intervds, a] and
[b, us]. Similarly, the strongy-cut of a possibility distribu-
tion = corresponds to the set of all € U with possibility

valuesr (x) strictly greater thaw, that is
C" = {x/m (x) > a}, (10)

for everya € [0,1]. In the example shown in Fig. 1, the
stronga1-cutis is given by the intervdly, u1[ and the strong
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ag-cutis is given by the intervals, us[, while the strongro- Perhaps the most intuitive notion is that possibility de-
cut corresponds to the union of intervdls, a[ and]b, uzl. grees provide an upper bound for probability degrees, in the
Equations (9) and (10) imply that the possibility degree of sense that something must be possible before being probable
anya-cut or strongx-cut witha € [0,1] is always equal to  (Zadeh, 1978, 1981). Formally, this interpretation is justified
unity, because the valug) such thatr (xg)=1is necessarily by the fact that a possibility measure can be seen as the upper
inside thex-cut or strongx-cut (see e.g. Fig. 1). According envelope of a family of probability measures (see e.g. Dubois
to Eq. (5), the necessity degree of@tut or strongx-cut is and Prade, 1992, 1993; Baudrit and Dubois, 2005). Hence,
1—« foranya € [0,1]. a possibility measure provides a less specific representation
If a continuous possibility distribution defined on a uni-  of uncertainty than that encoded by a single probability mea-
verse of discourse that is an interval of the real line is uni-sure (Dubois and Prade, 1993). In addition to this, numerous
modal, then itsv-cuts and strong-cuts are intervals. If the studies have proposed methods for probability-possibility
possibility distributiorrr has several local maxima, as in the transformations (Civanlar and Trussel, 1986; Dubois and
example shown in Fig. 1, this property does not hold. In thisPrade, 1986, 1993, 1998; Dubois et al., 2004; Klir and Geer,
situation, only possibility levels that are higher than all local 1993). Finally, other studies have investigated the relation-
maxima different from the global maximum (e.g. the possi- ship between possibility distributions and confidence inter-
bility level «1 in Fig. 1), and possibility levels that are lower vals (Dubois et al., 2004; Baudrit and Dubois, 2006).
than all local minima (e.g. the possibility lewe in Fig. 1),
definea-cuts and strong-cuts that are intervals. In a pos- o ) o
sibility distribution with several local maxima, a possibility 3 Possibilistic method for uncertainty analysis in
level « that does not fulfil these requirements definesran watershed modelling
cut and a strong-cut that are given by the union of two or

more intervals (e.g. the possibility leve in Fig. 1). 3.1 Context

In recent years, a possibilistic uncertainty analysis method
originally inspired by the widely known Generalized Likeli-
The Extension Principle, first proposed in the context of 100d Uncertainty Estimation (GLUE) methodology (Beven

fuzzy sets theory (Zadeh, 1965), allows to determine the pos@nd Binley, 1992) was proposed (Jacquin and Shamseldin,
sibility distribution of a variabler having a functional rela-  2007). The difference between both methods is that GLUE

tion with a variable or vectoX (i.e. Y = f(X)) whose pos- follows a subjective probabilistic scheme, but the method ap-
sibility distribution 7 is known. By virtue of the Extension Plied herein uses possibilistic calculus in order to assess pre-
Principle, the possibility distribution df is given by (Zadeh, dictive uncertainty. More concretely, the derivation of un-

2.5 The Extension Principle

1981) certainty bounds within the GLUE methodology relies on
the calculation of prediction quantiles from the likelihood
- ;rga;x T (x) 1) weights of the model predictions at each time step, while the
T — x,f(x)=y s gt gt . . . .
vy 0.if f(x) & yforallx possibilistic method applies the Extension Principle (Zadeh,

1981) in order to estimate the possibility distribution of the
wherey is a possible value of the variable Equation (11) discharge predictions from the information on the possibility
shows that the possibility value assigned is the maximum  values of the model realizations in a sample. A discussion on
possibility value encountered among all the valwesuch  the advantages of the possibilistic method with respect to the
that y= f(x). If no valuex exists such thay= f(x), then  probabilistic approach of GLUE can be found in the paper

the possibility valuery (y) is equal to zero. where the possibilistic method was first presented (Jacquin
and Shamseldin, 2007). A brief description of the possibilis-
2.6 Relationship between possibility theory and tic method is given in what follows.

probability theory
3.2 Generation of a sample of model realizations
Quantitative possibility theory provides a framework for rep-
resenting degrees of belief that is alternative to the subjecSimilar to the GLUE methodology, the possibilistic method
tive view of probability theory (Dubois et al., 2008). In this also allows the estimation of predictive uncertainty arising
context, possibility theory and probability theory should be from model structure and parameter uncertainties using a
seen as complementary rather than competitive, as they aigample of model realizations. However, the following dis-
intended to represent different levels of information (Klir and cussion assumes that a single model structure is being con-
Folger, 1992; Dubois and Prade, 1993; Ross et al., 2002)sidered and that only parameter uncertainty is being anal-
There are several manners to interpret the relationship beysed. In this case, the sample of model realizations is ob-
tween possibilities and probabilities (see e.g. Zadeh, 1978tained by generating a large sample of the parameter vector
Klir and Folger, 1992; Dubois and Prade, 1993, 1998). 0={01, 02,...6,}, where each component of this vector repre-
sents one of the model parameters arid the total number
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of parameters involved in the model structure. The initial the overall possibility distribution of the parameter vector is
possibility distribution of the parameter vectafyitial, IS de- given by
fined from the prior knowledge available about the regions of
. . agg-1,2,...,.N 0) (13)
the parameter space that are associated with good model re- D 0 0 0
alizations. The initial possibility values of the parameter vec-_ __Tinital (0) - 71 (8) - w2 (0) - ... - v (6) ,
tors in the samplerinisal (9), are subsequently calculated. MaxX{zinitial (0) - 71 (0) - 72 (0) - ... - 7y (6))
When the possibilistic method applled herein was f'rSt.pre'wherenl, 72, ...,y represent the possibility distributions
sented, the use of a random sampling strategy with uniform . .
N . .~~~ Induced by the measures of model performance included in
probability distributions was proposed in order to simplify ' . R
the calculations (Jacquin and Shamseldin, 2007) Acknowl-the analysis. The use of additional performance criteria is ex-
d ' ‘ ected to provide new knowledge about the goodness of the

edging the fact that other sampling strategies were also pos; odel realizations, thus reducing predictive uncertainty. Due

sible, the former authors also pointed out that the results o o . . .
. ..~ ."to the associativity of the normalized product conjunction,
the method do not directly depend on the probability distri- . . o I
. . . ._the order in which the individual possibility distributionsg,

bution that is used for generating the sample. Other samplin . ) X

. . . , ..., Ty are included in the analysis does not affect the
strategies, such as a systematic sampling scheme, can also S o

. . . overall implied possibility distributionragg 12, v, as seen

used. All that is required is a sample of the parameter vectogn Eq. (13) SR
that provides a sufficient exploration of the parameter space, It has been pointed out that a conjunctive combination rule

in order to empirically derive the possibility distribution of is only justifiable if all sources of information are seen as

the parameter_vegtor by evaluation of the goodness of fit 01!equally reliable (Dubois and Prade, 1994, 1998), as assumed
the model realizations.

in the paper where the possibilistic method was first pre-
sented (Jacquin and Shansledin, 2007) and also in the present
3.3 Possibility distribution of the parameter vector study. The normalized product operator is chosen because it
allows a reinforcement of possibility degrees and it is also
associative, which are advantages with respect to the nor-
The goodness of fit of the model realizations is further evalu-malized minimum operator (Dubois and Prade, 1994). It is
ated using a chosen measure of model performance togethejorth noting that a conjunctive combination rule would be
with a model rejection criterion. The values of this measureinapplicable if there was total conflict between the sources of
of model performance are used for deriving the possibility information being combined. However, if the model struc-
distribution of the parameter vector, Parameter vectors ture is indeed appropriate for modelling the runoff genera-
achieving possibility values (§)=1 are those associated tion process of the catchment, it is unlikely that a total con-
with the model realizations providing the best fit to the ob- flict exists between the few measures of model performance
servations, according to the chosen measure of model perfothat are used for the evaluation of model performance. In
mance. Parameter vectors associated with model realizationgis case, it is expected that several parameter vectors can
deemed inacceptable by the model rejection criterion are ashe found that are able to produce estimated discharge hy-
signed possibility values (§)=0. The possibility distri-  drographs that approximately fit the observations, obtaining
bution is combined with the initial possibility distribution  relatively good performance indices with respect to all the
minitial USING the normalized product conjunction rule. The measures of model performance being considered. It is pos-
aggregate possibility distribution of the parameter vector issible that adaptive combination rules (see e.g. Dubois and

thus given by Prade, 1994; Destercke et al., 2009), useful when there is a
level of conflict between sources of information, would also
Tagg (0) = Tinitial (0) - 7 (6) (12)  Pprovide an appropriate solution in this situation.

max{7initial () - 7 ()}
0 3.4 Derivation of prediction uncertainty bounds

where the normalization by omamnitial ©), 7 0)} Is in- The possibility distribution of the discharge predictions at

cluded in oder to ensure that the possibility distributiagg  each time step is empirically derived from the aggregate

has a maximum empirical value equal to one. possibility valuesragg (8) of the parameter vectors in the
The possibilistic method proposes the use of more tharsample. Given a particular model structure and input data,

one performance criteria, in order to evaluate different asthe model outpu; at time: is a deterministic function of

pects of the model's fitness. The normalized product conthe parameter vectdr. By virtue of the Extension Principle,

junction rule is repeatedly applied for combining the possi-the possibility distribution of the discharge estimai@s at

bility distribution rinitia and the possibility distributions as-  time stepr is given by

sociated with the different measures of model performance max  7agq ()

being considered. Supossing that a totaNodifferent mea- ) (.« { o @) = ¢* 209 (14)

sures of model performance are used, it can be shown that®9 0, if QF (0) # q*forall§

www.hydrol-earth-syst-sci.net/14/1681/2010/ Hydrol. Earth Syst. Sci., 14, 16852010
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whereg* is a possible value oD;. Equation (14) implies 200 250
that model realizations with possibility valueggg (6) equal
to zero are implicitly discarded from the sample, because ¢ |
only simulations with possibility valuesagg (#) strictly
greater than zero do effectively contribute in the derivation
of the uncertainty bounds.

The upper and lower bounds of the stramguts of the

possibility distributiomégg, i.e. the set of all valueg* with

possibility vaIueszr;fl’g)g (g*) strictly greater thaw, define the
a possibility bounds of the discharge predictions. Itis worth ~ “°
discussing the distinction between thgpossibility bounds

and the strong-cuts, because this may cause some confu- o

sion. As explained in Sect. 2.4, all the strapguts ofrigg

. . e . . . t) -
are open intervals if the possibility Q'St”bu“migg IS CON- Fig. 2. Seasonal evolution of monthly precipitation and monthly
tinuous and unimodal; hence, the interval of discharge e€Smean discharge in Maipo at El Manzano catchment.
timates enclosed by the possibility bounds is exactly the
same as the strong-cut ofnétg)g in this case. However, if the

possibility distributionne({g)g has several local maxima, the set formula locally adjusted for the Andes Mountains of Central

of discharge estimates enclosed by ¢hpossibility bounds  Chile (Espldora, 1968) and albedo values are obtained from
and the discharge estimates inside the str@ermut are not  empirical curves (Amorocho and Efgfora, 1966). In the
the same at all possibility levels. In this situation, only pos- case of the fifth elevation zone, glaciers are seen as an inex-
sibility levels that that are higher than all local maxima dif- haustible source of water that melts when the snow cover is
ferent from the global maximum, and possibility levels that depleted. An individual surface-soil moisture balance is per-
are lower than all local minima define stroagcuts that are  formed within each elevation zone, in order to generate its
intervals; other possibility levels define stromguts that are  contribution to direct runoff and groundwater recharge. With
given by the union of two or more intervals, implying that the the aim of simulating the diffusion and attenuation effects
a possibility bounds enclose a range of discharge estimatesf the catchment, routing elements are incorporated to the
whose possibility values are not all greater thanin any ~ model. Direct runoff components from the individual eleva-
case, whether or not the range of discharge predictions erntion zones are routed through separate linear reservoirs; the
closed by thex possibility bounds coincide with the strong catchment'’s total direct runoff is finally obtained by sumation
a-cuts, Eqg. (5) implies that the necessity degree of the interof the routed direct runoff contributions from the individ-
val of discharge predictions inside thepossibility bounds  ual elevation zones. Groundwater recharge at the catchment
is equal to le. level is calculated as the sum of groundwater recharge from
the individual elevation zones and further routed through a
single linear reservoir, in order to obtain the total generated
4 Case study groundwater runoff. Total estimated discharge corresponds
to the sum of total surface and total groundwater runoff.

- 200

N
o
[
o

discharge [m?%s]

®
=]
L
o
o

precipitation [mm/month]

——Precipitation

—Discharge - 50

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

4.1 Snowmelt runoff model
4.2 Catchment and data

The model analyzed is a conceptual type snowmelt runoff
model that is widely used in water resources studies forThe study area is located in the Andean region of Central
the mining industry in Chile (e.g. Water Management Ltda., Chile. Maipo River at El Manzano is a snow dominated
2001; Arcadis Gedéfcnica, 2007). The version of the model catchment with a surface of 4968 [Kin where approxi-
used here (Kamann, 1998) operates at a monthly time stepnately 8% was covered by glaciers at the time when the data
The hydrometeorological information required includes pre-used in this study were collected (Valdivia, 1984). Elevation
cipitation, number of rain days, evaporation, temperature, airanges from 890 [ma.s.l.] to 6570 [ma.s.l.], with a median
humidity, wind speed and cloud cover. The model output isaltitude of 3200[ma.s.l.]. Glacier areas are located above
given by the monthly discharge at the catchment’s outlet. In3500 [m a.s.l.] (Valdivia, 1984).
the manner computationally implemented in this study, the Precipitation is mostly produced by cold fronts that ar-
model has a total of 16 independent parameters. rive in the area during winter. Accordingly, as shown in

The model divides the catchment into five elevation zonesFig. 2, most precipitation occurs between May and August,
where the fifth zone corresponds to the catchment glacierswhile precipitation amounts during the rest of the year are
Snowmelt is calculated using an energy balance methodielatively low. The observed snowline in the area is lo-
where incident solar radiation is estimated with an empiricalcated about 2100[ma.s.l.] during May—September, which
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implies that most precipitation corresponds to snowfall. Ex-of all the parameter vectors in the sample, whose elements
cept for snow and glacier zones in the higher areas, snovare necessarily inside the corresponding feasible ranges, are
cover in the catchment is lost by the end of the melting pe-assigned an initial possibility value of unity. This definition
riod. As seen in Fig. 2, monthly mean discharge is minimalis consistent with the fact that, even though there is prior
in May—August, but it increments during the melting seasonknowledge on the ranges where the optimal parameter val-
September—March; monthly discharge reaches its maximunues are usually found when the model is calibrated, a lot of
value in December or January. Human intervention in thedispersion exists between catchments. Accordingly, it is not
catchment’s hydrological regime at the time when the dataknown a priori what regions of the parameter space are more
used in this study were collected was not significant. Glacietlikely to be associated with good model performance in the
mass balance studies in the area are scarce. However, it haatchment case study.

been estimated that glaciers in Central Chile experienced an

average mass |08/ meq= 0.45-0.95 [m/year] of equivalent 5.2 Evaluation of model performance

water depth in the period 1945-1996 (Rivera et al., 2002).

This mass loss does not occur in a systematic manner akhe possibility distributions of the parameter vector are sub-

negative mass balances alternate with positive mass balanc&§duently obtained through evaluation of the goodness of fit
in EI Nifio years. of the estimated discharge hydrographs. Model performance

In this study, the hydrological year is defined from is first evaluated according to the mean squared error of the
1 May (coinciding with the minimum monthly mean dis- 50X COX transformed discharge (M&E) as seen in previ-

charge and also the beginning of heavy precipitation) to®US Studies (Thiemann et al., 2001; Misirli et al., 2003),
30 April. Data available for the study consists of monthly which reduces the effect of heteroscedasticity and empha-

time series during the hydrological years 1962/1963_s,izes the importance of the model performance during low

1990/1992. The available data were divided into a calibra-ﬂOW periods. The associated possibility distribution is de-
tion period (1962/1963-1982/1983) and a verification period/ined bY

(1983/1984-1990/1991) for split sampling tests. The first Vac — MSBsc ) MSEgc (8) < Vac
year of calibration is used as a warming-up period. 71 (0) = | Vec — miniMSEsc 0} - , (16)
0, otherwise

where Vgc is the variance of the Box-Cox transformed
observed discharge during the calibration period, and

5.1 Sample of model realizations and initial possibility ~ MiN{MSEgc (6)} represents the lowest MSE (¢) value

values found among all the model realizations in the sample. The
chosen model rejection criterion specifies that model real-

A sample of the parameter vector is generated by varyingzations with MSEc (0) values greater thaigc are as-
all 16 parameters simultaneously and independently. Th&jgned possibility values equal to zero. The choice of this
sample of model parameters is generated by assuming thgfehavioural threshold is based on the interpretation that a
each parameter has a uniform probability distribution within MSEgc (0) value greater thalac indicates that the model is
its feasible range, implying that the parameter vectors in theoutperformed by a rige model whose Box-Cox transformed
sample are uniformly distributed in the parameter space. Th%utput is always equal to the mean Box-Cox transformed ob-
feasible ranges for the model parameters are defined so thakped discharge during the calibration period.
they are wider than the ranges of optimal parameter values The second possibility distribution used for constraining
found in previous applications of the model in other catch-the model representations is based on the volumetric error

ments. Preliminary experiments with varying sample sizes(jacquin and Shamseldin, 2007). This possibility distribution
were performed, with the aim of establishing what samplejs defined as

size is appropriate for the model and the catchment case 1_ |REVF (0)]
study. The chosen sample size is 80,000, because it was | T= mn(REVF @1]" 0 < |REVF(@®)| =1

5 Methodology

observe_d that further increases in the ngm_b_er of paramett_ajf2 ) = 0. otherwise - (A7)
vectors in the sample does not produce significant changes in
the possibility distributions of discharge estimates. where REVF @) represents the relative error of the volumet-
Initial possibility values of the parameter vectors in the ric fit of the model realization, given by
sample are calculated according to )
) REVF () =1 — M (18)
NI LU (15) 20
Tinitial (9)=1 0 otherwise’

The quantity r(pimREVF ()|} corresponds to the smallest

where is the feasible space of the parameter vector. EquaiREVF (8)| value found in the sample of model realizations.
tion (15) implies that the initial possibility valuesitia () The model rejection criterion implicit in Eq. (17) consists in
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the removal of the model realizations with absolute volumet-5.3  Aggregate possibility distributions of the parameter
ric errors greater than 100% during the calibration period. vector
The last possibility distribution used in this study is in-
tended to asses the ability of the models to estimate the disOnce the possibility valuesinitial (), 71 (6), 72 () and
charge peaks. The value of this possibility distribution is cal-73 (#) have been obtained, aggregate possibility values are

culated according to derived using the combination rule of Eq. (13). The first ag-
L _ REP(®) gregate possibility distribution definetlagg 1, uses only the

T-mnrep@ 0 < REP@) =1 information provided by the mean squared error of the Box-

73 () = 0 otﬁerwise ’ (19 Coxtransformed discharge for constraining the model repre-

sentations. Accordingly, the possibility valuegyg 1 (6) are
where REP ) represents the average relative error to theobtained after substitution of the valuegitiai (6) and the

peak of the model realization. This statistic is given by valuesr1 (9) in Eq. (13). The aggregate possibility distri-
bution magg 1,2 further includes the information on the vol-
Al ]th — Op} (0)] umetric fit of the model realizations provided by the possi-
REP®) =) T Neop (20) pility distribution 2. The possibility valuesragg 1 > () are
i=1 thus obtained by substitutinginitiai (0), 71 (9) andm, ()
where Np is the number of selected flow peak@p; repre-  in Eq. (13). Finally, the information on the ability of the

sents a peak in the observed hydrograph, @pdl (9) is the  models to estimate the discharge peaks, provided by the pos-
model estimated discharge for the same time ste@as sibility distribution 3, is used for further constraining the
The quantity r‘pir{REP(a)} in Eq. (19) represents the small- model representations. Hence, the values of the aggregate

est REP ¢) value among all the model realizations in the POSSibility distributionragg 1,2.3 are calculated by substitut-

sample. The model rejection criterion specified by Eq. (19)IN9 Tinital (0), 71 (8), 72 (9) andrs (9) in Eq. (13).
consists in the removal of the realizations whose R&P (
values are greater than 100% during the calibration period.

The normalization  factors VBC_”},i”{MSEBC )}, As explained in Sect. 3.4, the possibility distribution of the
1-min{|REVF (#)|} and I-min{REP(#)} in Egs. (16), discharge predictions is empirically derived from the infor-
o 0 mation provided by the aggregate possibility values of the

5.4 Derivation of prediction uncertainty bounds

(17) and (19), respectively, are introduced in order to obtain . -
possibility values with a maximum empirical value of unity. Parameter vectors in the sample. The possibility values
The rationale of this choice is that the simulation providing 7ags- (). Tagg12 (8) andagg123 (6) are substituted
the most plausible representation of the real system, a§l Ed. (14) for obtaining the possibility valueé;)grl (g*),
indicated by the measure of model performance used in eac};a(lg 1 (¢*) and 7,;0 123 (¢%), respectively. Possibility
case, is assigned a possibility value equal to unity. Modelhounds of these possibility distributions are derived at several
rejection criteria more restrictive than those specified bypossibility levelsy, in order to evaluate the effect of the pos-

Egs. (16), (17) and (19) are not considered necessary withigibility level on the characteristics of the uncertainty bounds.
the possibilistic framework, as model realizations with low

possibility values do not affect the uncertainty bounds at5.5 Alternative definition of the initial possibility
high possibility levels. distribution
The possibility distributionz; gives an indication of the
goodness of fit of the estimated discharge hydrograph in a”o\n alternative definition of the initial pOSSlblIlty distribution

flow ranges. For this reason, this possibility distribution is Of the model parameters is also tested. This initial possibility
seen as a primary source of information on model perfor-distribution, which evaluates the likelihood of the simulated

mance in this study. The possibility distribution evalu-  glacier mass balance and snow cover at the end of the cali-

ates the average error of the discharge predictions, but it dogration period, is given by
not indicate how close the estimated discharge hydrograph i;sTO ®) 1)
to the individual observations. Similarly, the possibility dis-
tribution 3 highlights the goodness of the model estimated =
discharge peaks, but it does not provide information on the
performance of the model in other flow ranges. Therefore,The variable glacbal in Eq. (21) represents the accumulated
the possibility distributionsr, andxr3 are not used alone for  surface mass balance between precipitation, evapotranspi-
constraining the model representations. In this study, the inration and melt in the glacier zone, from the end of the
formation supplied by these possibility distributions is usedwarming-up period until the end of the calibration period.
as a complement to that provided by the possibiliy distribu- ycal is the number of years of the calibration period. Ac-
tion 7. cumulated glacier mass losses exceeding 2 times the aver-
age values reported in the literature for the study area (see

1, if (@ € ) and(glacbal—2[m/yeal-N cal) and(snowae=0)
0, otherwise
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Sect. 4.2) are considered unrealistic and the possibility values o'

o () of these model realizations are set to zero. The vari- -
able snowac in Eq. (21) represents the snow water equivalen | ----nfgggjz i
accumulated in the elevations zones below tR€ Zsother- — Tage 123
mal line by the end of the calibration period, which should - |
be null according to what was discussed in Sect. 4.2. Model 5
realizations yielding snow accumulations that do not fulfill
this requirement are also assigned possibility valug$6)
equal to zero.

In analogy to what was described in Sect. 5.3, aggregate®s
possibility distributions of the parameter vector are defined 2|
using g as initial possibility distribution instead ofinitia) - g
The aggregate possibility distributions thus defined are de- ;|
noted Tagg.0,1) Tagg0,1,2 and Tagg0,1,2,3- Finally, the ag-
gregate possibility valuesaggo1 (0), maggo,1,2 (#) and g
Tagg0,1,2,3 (#) are substituted in Eq. (14) for empirically
deriving possibility distributions of the discharge estimates
(namednéggo, 1 ”;390,1,2 andnéggo, 1.2.3 respectively) and
prediction uncertainty bounds.

2l

simulations ret:

3
T

Fig. 3. Total number of simulations retained above different possi-
bility levels o of the possibility distributionsz,ge 1, 7agg 1,2 and
Tagg.1,2,3:

6 Results

6.2 Performance of the simulations retained according
6.1 Number of simulations retained according to to different criteria

different criteria
. . . . Figure 4 shows ranges of model efficien Nash and
Firstly, it was observed that the effective sample size notanySStC"f_fe 1970) RE%/F and REP valuengb(tained during
reduces when the possibility distributieg is used as initial the verh:ication ’period by the simulations retained above

possibility distribution of the parameter vector. In particu- yitcerent possibility levelsx of the possibility distributions
lar, only 28 859 simulations among 80 000 in the sample ob- P 4 P y

. > - T , and . Figure 4 demonstrates that
t"’."”e‘?' mmal pQSS'b'“ty valueso (0). or eat.er than zero. Th'.s R%ggllREjzilg?;rid REJIZ’a?/%IlL’JZéBS of sgome of the simulations re-
situation is mainly due to the restriction imposed on the SiM-4-ined about the possibility level= 0 are quite poor (i.e. low
ulated snow cover, which was only fulfilled by 28 902 model R2 values, high|REVF| and high REP values). Includ-
realizatiqns. By contrast, the res_triction imposed on the_ masghg more information in the model selection criterion does
b_alance in the glaciers was achieved by most of the simulag, help to remove these underperforming simulations, un-
tions (75043). . . . less the possibility levek is increased. At possibility lev-

Figure 3 shows the total number of simulations retamedelSOl>0 the lower bound of the efficiency value® ob-

a}b ove different possibility levets of thg pqssibility distribu- served during the verification period can normally be raised
tioNS 7agg 1, Tagg 1.2 ANd7Tagg 1.2.3. This figure reveals that by moving from the possibility distributiomagg 1 t0 7agg 1.2;
the rejection criterion specified by the possibility distribution a further increase in this lower bound is normally achieved if
71 IS quite restrictive, as the number of simulations havingn : . .. :

S : agg.1,2,3 IS used instead ofagq 1 2. Similarly, replacing the
possibility valuesragg 1 (#) greater than zero is about 40% possibility distributionTagg 1 bY 7agg 1.2 Usually produces a

the total number of model realizations in the sample. Fig'significant decrease in the highdREVF| and REP values

ure 3 also demons‘Frates that' t.h.e total number of Slmul"’monfbbserved during the verification period at possibility levels
retained above a given possibility leveldecreases as more «>0; in general, a further improvement jREVF and REP

m_formatlon is used for defining thg aggregate possibility d's'values is observed ifagq 1 2.3 is used instead ofagy 1 2.
tribution of the model representations. The most notable re- _. - . i
Figure 5 shows ranges of model efficien®?, REVF

ductions are seen when the information on the peak errors : X ) .
is included in the definition of the aggregate possibility dis- and REP values obtained during the verification period by

tribution of the parameter vector (i.e. when USingyg 123 the simulations retained above different possibility levels

instead ofragq 1.2). The conclusions drawn from the analysis of the pc'):,r?ltl)llltiy d]:sg'bu;'crmvgra?@?ﬁ’tfﬁggo’lr’z a||’:d .
of the number of simulations retained above different possi-*29¢-0.1.2.3- ANAYSIS 0IFIg. 5 TEVEAIS that these resu'ts are

bility levels of the possibility distributionSagg 0,1, agg0.1.2 analogous to those observed in the case of the possibility dis-

. 4 ributions and . In particular, in-
andragg 0.1,2,3 are analogous to those discused with respectt UONS 7Tagg 1, agg 12 N0 7agg1,2.3- 1N P P
e cluding more information in the definition of the possibility
t0 7Tagg 1, Tagg 1,2 @N0mTagg 1.2 3.

distribution of the model realizations does not help to remove
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Fig. 4. Ranges of model performance statistics during the verifica-Fi9- 5. Ranges of model performance statistics during the ver-

tion period of the simulations retained above given possibility levelsification period of the simulations retained above given possibil-

« of the possibility distributionsragg 1, 7agg 1.2 ad7agg 1.2.3- ity levelsa of the possibility distributionsragg 0,1, 7agg0,1,2 and
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observed discharge and selected possibility bounds. 2100
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However, the performance of the simulations retained above

possibility levelsa >0 generally improves when moving Fig. 7. pPrecipitation history, observed discharge and selected pos-
from mwagg 0,1 t0 agg 0,12, @and frommragg 0,1,2 t0 7agg 0,1,2,3- sibility bounds derived from the aggregate possibility distribution
Comparison of Figs. 4 and 5 further reveals that using the ini-r4q 1 for the hydrological year 1983/1984.

tial possibility distributionrg instead ofrinitia results in an

improvement in the performance of the simulations retained

at low-medium possibility levels, although this positive fea-

. - . - only discharge estimates with possibility values greater than
ture is not so evident at high possibility levels.

a, as discussed earlier in Sect. 3.4. The 0 possibility bounds
in Fig. 6 are obtained by including the discharge estimates
6.3 Possibility bounds of the discharge estimates from of all the simulations with possibility valueggg 1 (8)
strictly greater than zero, that is, not rejected according to
Figure 6 shows an example of the empirical derivation of thethe criterion specified by Eq. (16). Hence, the interval of
possibility distribution of the discharge estimates. In particu-discharge predictions within these possibility bounds has a
lar, Fig. 6 shows the possibility distribution of the discharge necessity degree of unity, as explained in Sect. 3.4. Simi-
estimates on December 1983 derived from the possibilitylarly, the necessity degrees of the intervals of discharge pre-
valuesmagg 1 (9); the observed monthly discharge and the dictions inside the uncertainty bounds at the possibility lev-
uncertainty bounds at the possibility levelss0, « =0.50, els«=0.50,0=0.75 andx =0.90 are 0.50, 0.25 and 0.10,
«=0.75 andx = 0.90 are also indicated for reference. Each respectively.
cross in this plot represents the combination of a model es- Figure 7 shows selected possibility boundsQ,« =0.75
timated discharg®; (#') and the corresponding possibility ande =0.90) for the hydrological year 1983/1984; this fig-
valueagg1 (8'), whereé' represents the parameter vector ure corresponds to the case where the aggregate possibility
with which that particular discharge estimate was obtaineddistribution of the parameter vector is given byyq1. The
The empirical possibility d|str|but|on(t) 1 Is given by the  concurrent time series of rainfall amounts and observed dis-
envelope of these sample points, obtamed by partitioning theharges are also shown. Similarly, Fig. 8 shows selected
range of discharge estimates (at the corresponding time stegossibility bounds derived from the aggregate possibility
into several intervals. As reported in previous applicationsdistribution,,, 1.2 3 for the hydrological year 1983/1984.
of the method (Jacquin and Shamseldin, 2007, 2009), thé&lot surprisingly, Figs. 7 and 8 demonstrate that increas-
empirical possibility distributions of the discharge estimatesing the possibility levelkr reduces the width of the predic-
have minor oscillations, i.e. they have several local max-tion intervals within the possibility bounds (see also Fig. 6).
ima (see Fig. 6). Although this feature may be due to theMore interestingly, it can be observed that the uncertainty in
fact that the envelopes are obtained from a sample of finitehe predictions of the model is generally large with respect
size, it is also possible that this is an intrinsic characteristicto the magnitude of the concurrent discharge observations.
of the possibility distributions. Hence, it is not guaranteed Moreover, the distance between the uncertainty bounds tends
that the possibility bounds at all possibility levelenclose  to increase with the magnitude of the observed discharge,
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anf ' _' ' ' ' ' T Table 1. Fraction of observations not enclosed by the possibility
sl - Srb:SENEd discharge | bounds at selected possibility levelsiuring the verification period.
£ a=075
s 300 | — a=080 | Initial possibility ~ Aggregate possibility a level
E 2501 ] distribution distribution 0 075 0.90
o 200 Tinitial Tagg1 0.00 0.02 0.07
E L Tagg1,2,3 0.02 0.03 0.14
© 70 Tage 0.1 001 0.02 0.10
al+ Tagg0,1,2 0.01 0.02 0.11
Tagg0,1,2,3 0.01 0.04 0.15
Fig. 8. Observed discharge and selected possibility bounds derived
from the aggregate possibility distributiangg 1 » 3 for the hydro- = L
logical year 1983/1984. 075 inge 1
o =090, Tagg 1 | |
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Fig. 10. Prediction width at the possibility levelg =0.75 and
«=0.90 for the aggregate possibility distributionggg1 and
Taggo,1 during the verification period.
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Fig. 9. Prediction width at the possibility level =0.90 for the

aggregate possibility distributiontagg 1, Tagg1,2 aNd7agg1,23 possibility distribution of the parameter vector has a nar-
during the verification period.

rowing effect in the width of the possibility bounds. Con-
sequently, the number of observations not bracketed by the
possibility bounds generally increases. This situation is also

which indicates an increase in predictive uncertainty. How- gpserved when comparing the fraction of outliers obtained

ever, incorporating more information in the calculation of i the initial possibility distributionro and that obtained
the aggregate possibility distribution of the parameter VeCtor, ih the Tinitial, Which are generally slightly lower. Table 1

generally has a narrowing effect in the possibility bounds, g ey reveals that the possibility bounds at the possibility
which reduces predictive uncertainty. For example, Fig. 96|54 = 0 andw = 0.75 enclose the majority of the observa-
shows the prediction width at the possibility leveF0.90  yjons- the effect of increasing the possibility levekte: 0.90

for the aggregate possibility distributionggg 1, 7agg1.28nd g that the possibility bounds fail to enclose a larger fraction

Tagg1.2.3: Similarly, girt'eduction qf .p'redictior'\ \'A(idth.ge'ner- of the observations, although this situation is still unfrequent.
ally occurs if the definition of the initial possibility distribu-

tion changes fromriyitia to g, as seen in Fig. 10.

As seen in previous studies (e.g. Montanari, 2005; Jacquiry  Conclusions
and Shamseldin, 2007), the performance of the uncertainty
bounds is assessed in terms of their ability to enclose the disthis study has presented the application of a recently pro-
charge observations. Table 1 shows the fraction of the obseposed method (Jacquin and Shanseldin, 2007) to the analy-
vations outside selected possibility bounds=Q, « =0.75  sis of predictive uncertainty of a conceptual type snowmelt
anda =0.90) of different aggregate possibility distributions runoff model. This method uses possibilistic rather than
during the verification period. As discussed above, incorpo-probabilistic calculus for the evaluation of predictive uncer-
rating more information in the calculation of the aggregatetainty in watershed modelling. A snow dominated catchment
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