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Abstract. Sediment, Total Organic Carbon (TOC) and to-
tal nitrogen (TN) accumulation during one overbank flood
(1.15 y return interval) were examined at one reach of the
Middle Ebro River (NE Spain) for elucidating spatial pat-
terns. To achieve this goal, four areas with different geo-
morphological features and located within the study reach
were examined by using artificial grass mats. Within each
area, 1 m2 study plots consisting of three pseudo-replicates
were placed in a semi-regular grid oriented perpendicular
to the main channel. TOC, TN and Particle-Size composi-
tion of deposited sediments were examined and accumula-
tion rates estimated. Generalized linear mixed-effects mod-
els were used to analyze sedimentation patterns in order to
handle clustered sampling units, specific-site effects and spa-
tial self-correlation between observations. Our results con-
firm the importance of channel-floodplain morphology and
site micro-topography in explaining sediment, TOC and TN
deposition patterns, although the importance of other factors
as vegetation pattern should be included in further studies
to explain small-scale variability. Generalized linear mixed-
effect models provide a good framework to deal with the high
spatial heterogeneity of this phenomenon at different spatial
scales, and should be further investigated in order to explore
its validity when examining the importance of factors such
as flood magnitude or suspended sediment concentration.

Correspondence to:A. Cabezas
(acabezas@ymail.com)

1 Introduction

Riverine floodplains can buffer the transport of sediment as
washload mobilised from the upstream parts of the catch-
ment. Such sediment deposition over floodplains is an im-
portant process in the storage and cycling of sediments, nu-
trients and contaminants in the river basins (Walling et al.,
1997; Steiger and Gurnell, 2003; Walling and Owens, 2003;
Noe and Hupp, 2009). Focussing on organic carbon (TOC)
and nitrogen (TN), deposition during overbank floods is an
important ecosystem function which provides important ben-
efits as water quality enhancement or mitigation of green-
house effect (Johnston, 1991; Day et al., 2004; Verhoeven
et al., 2006, IPCC, 2007). At the reach scale, TOC and TN
exchange between the main channel and its adjacent flood-
plain plays a key role in the ecological functioning (Junk,
1999; Robertson et al., 1999; Tockner et al., 1999; Tock-
ner at al., 2000; Thoms, 2003; Knosche, 2006; Preiner et
al., 2008). Previous research has shown how human-induced
changes at the basin and reach scale have decreased the po-
tential of riverine floodplains to act as sediment-associated
nutrient sinks (Noe and Hupp, 2005; Owens et al., 2005;
Pierce and King, 2008; Cabezas et al., 2009; Cabezas and
Comin, 2010). To accomplish knowledge-based manage-
ment and restoration strategies at specific river reaches, TOC
and TN deposition patterns must be properly understood.

The amounts and patterns of overbank sedimentation de-
pend on several factors, namely frequency and duration of
inundation, suspended sediment concentration in the main
channel, and the flow patterns and stream velocity during
floods. Regarding individual events, hydraulic connectiv-
ity determines the loading rate of material over floodplains.
Hydraulic connectivity, in turn, is controlled at the reach
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scale by channel-floodplain geomorphology, which promotes
spatial variability on sedimentation load and patterns for a
given river section during a specific flood event (Hupp, 2000;
Steiger and Gurnell, 2003; Noe and Hupp, 2005; Piégay et
al., 2008). At this scale, previous studies have indicated that
distance from the main channel exerts more influence on spa-
tial variability of overbank sedimentation than downstream
variation (Walling and He, 1998; Middelkoop and Asselman,
1998; Thonon et al., 2007). Such trends were also observed
at specific floodplain sections – site-scale – with uniform
relief. At more complex sites, however, heterogeneity was
strongly related with site micro-topography since it controls
flow hydraulics, and thus suspended sediment transport and
deposition (Nicholas and Walling, 1997; Hupp et al., 2009).
With regards to TOC and TN, the amount of sediment de-
posited and particle-size composition seem to determine the
TOC and TN deposited in situ during overbank floods (Assel-
man and Middelkoop, 1995; Walling and He, 1997; Steiger
and Gurnell, 2003).

In this context, different modelling approaches have been
employed to predict sedimentation processes and flood ef-
fects. Earlier numerical modelling research focussed on dif-
fusive sediment and grain-size deposition across channel and
floodplain sections (James, 1985; Pizzuto, 1987). By cou-
pling hydraulic and sediment deposition models, field-based
sedimentation rates and digital elevation models of the flood-
plain surface were incorporated to numerical modelling in
order to reflect the high spatial heterogeneity observed in
field-based investigations. Some of these models are based
on a discrete-element approach (Stewart et al., 1998; But-
tner et al., 2006), and other models on a finite-element ap-
proach (Nicholas and Walling, 1997; Nicholas and Walling,
1998; Middelkoop and Van der Perk, 1998). Those tech-
niques advanced the potential to predict sedimentation ef-
fects by simple, computationally efficient functions param-
eterised by distance from the main channel and floodplain
elevation. It also allows the inclusion of the effect of the
meso-scale topographic features as abandoned channels, lev-
ees or drainage ditches (Nicholas and Mitchell, 2003).

However, empirical studies on contemporary sediment de-
position are still needed to gain insight into the key vari-
ables that determine spatial heterogeneity (Walling et al.,
2004). Despite the complexity of floodplain sedimentation,
individual studies rarely incorporate a multi-scale approach
when analysing data, although variability at different spatial
scales is described and the factors promoting such variability
identified. Previous studies have reported high heterogene-
ity on floodplain sedimentation (reach scale) when compar-
ing sites located within the same study reach (Middlekoop
and Asselman, 1998; Walling and He, 1997; Steiger and
Gurnell, 2003). Within each site, self-correlation between
observation points was observed (site scale). Moreover,
self-correlation patterns greatly differed between study sites
within the same reach (Middlekoop and Asselman, 1998;
Nicholas and Walling, 2003). With regards to smaller scales,

the plot scale variability (∼1 m2) is normally taken into ac-
count during the experimental design although not often in-
cluded in statistical analyses or spatial interpolation (Mid-
delkoop and Asselman, 1998; Steiger and Gurnell, 2003;
Steiger et al, 2003).

In the current paper, we aimed to investigate sediment,
TOC and TN deposition patterns during one individual flood
by considering variability at the reach, site and plot scales.
To fulfil our goal, generalized linear mixed-effect models
(GLME) represent a potentially useful tool. GLME combine
the properties of two statistical frameworks (Bolker et al.,
2009): (a) Linear mixed models, which incorporate the ef-
fect of random effects; (b) Generalized linear models, which
handle nonnormal data by using link functions and the expo-
nential family (Poisson, normal, binomial) distributions. By
using GLME, hierarchical-data analysis can be performed.
GLME represent a class of regression models which do not
assume that all observations are independent from each other,
and so can be used to analyze data from clustered experimen-
tal designs where observed subjects are nested within larger
units. By doing so, cluster-specific random effects and cor-
related residual structures are included in the analyses (Pin-
heiro and Bates, 2000; Heegaard and Nilsen, 2007). Thus,
GLME are able to account for differences between flood-
plain sections when evaluating floodplain sedimentation in
a given reach (reach scale). Self-correlation between obser-
vation points lying within the same section (site scale) can be
also taken into account by using GLME (Witherington et al.,
2009), whereas the small-scale variability (plot scale) is con-
sidered without averaging the data. The validity of GLME as
a tool to investigate spatial variability in floodplain sedimen-
tation studies is also discussed.

2 Materials and methods

2.1 Study reach

The study reach (Fig. 1) is located in the Middle Ebro River
(NE Spain), which is the largest river in Spain – water-
shed area = 85 362 km2; river length = 910 km; average
discharge to the Mediterranean Sea = 14 442×106 m3 y−1

(1927–2007). Within this section, the average floodplain
width is about 5 km (Ollero, 1995). The main channel has
a wandering morphology – sinuosity = 1.39; mean chan-
nel slope = 0.050%; mean channel width = 110.31± 36.3 m
– with elongated meanders and scarcity of in-channel is-
lands. Within the reach studied, the daily average discharge
is 228.24 m3/s – 1927–2007 – and the elevation ranges be-
tween 175 m a.s.l. in the river channel to 185 m a.s.l. at
the base of the scarp. At the Zaragoza city gauging station
– A011 atwww.chebro.es, 12 km upstream the study reach
– the potential storage capacity is 163 719 hm3, impound-
ing about 50% of the mean annual runoff. Regarding to
landscape composition, agricultural fields have increasingly
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Fig. 1. Location of study plots along the four sites selected within the study reach, which are represented by a detailed Digital Elevation
Model. Black arrows indicate the direction of the Ebro River flow. White circles represent the location of the study plots, reflecting an
incremental distance to main channel along a perpendicular gradient. White solid lines at each site represent the area where surface water
inputs the site, which has been the reference to calculate distances along a longitudinal gradient (see methods).

Table 1. Description of sites where study plots were set.

Site Geomorphological Planform setting Surface Dominant
feature of channel bank connectivity land-cover

(m3/s)

MP Point Bar convex 350 Gravel and shrubs
MD Side Channel concave, natural levee 400 Water, grass and trees
SF Side Channel convex, natural levee 800 Water, grass and trees
RF Bench convex 600 Grass and shrubs

dominated over natural patch types since 1957, and lateral
migration of the main channel has not occurred since 1981
(Cabezas et al., 2009).

2.2 Sediment sampling and analyses

Sediment traps were used to collect the sediment deposited
by a 27 days-duration flood on March 2007 (Fig. 2), which

reached 162 m3/s – 1.15 y return interval, 1927–2003; 2.73 y
return interval, 1981–2003 – at the Zaragoza gauge station
– A011 in www.chebro.es; 12 km upstream from the study
area. The sediment traps were placed in four sites with differ-
ent geomorphological traits and channel-floodplain connec-
tivity – Fig. 1, Table 1: Mejana de Pastriz (MP) and Margen
Derecha (MD), with higher channel-floodplain connectivity
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Fig. 2. Ebro River daily average discharge at the Zaragoza city
gauge station during the examined flood. Dot grey line indicates
the surface connectivity threshold for MP and MD. Dash grey line
indicates the surface connectivity threshold RF. Solid grey line in-
dicates the surface connectivity threshold for SF.

than Soto del Francés (SF) and Rinćon Falso (RF). Each area
was completely inundated during the examined flood. At
each area, 1 m2 plots – p=15 at MP, MD and SF; p=22 at RF –
were placed in a semi-regular grid, consisting of several tran-
sects – t=3 at MP, MD and SF; t=5 at RF – that were oriented
perpendicular to the main stream (Fig. 3). The shape and
size of each area directed the space between transects and be-
tween plots. Study plots were marked by burying a metallic
stick, which was geo-referenced using a differential GPS de-
vice – Top-Com,± 2 cm. In each plot, three 25×25 cm sedi-
ment traps – pseudo-replicates – made of artificial grass mats
– i = 201 – which had been previously weighed, were af-
fixed to the surface using 14 cm steel pins. Pseudo-replicates
were placed at 30 cm on the left, right and opposite-to-the-
river side of the metallic sticks. Sediment traps were set dur-
ing the second and third week of February 2006. For each
pseudo-replicate, three geographical variables were consid-
ered: (i) elevation above sea level (m), extracted from the
GPS device measurements; (ii) perpendicular distance (m)
to the main channel; and (iii) longitudinal distance, calcu-
lated as the distance to the zone where superficial inputs en-
ters during overbank floods (Fig. 1), which is located at the
upstream part of each site (j = 4) and was previously iden-
tified from field-based knowledge. Both perpendicular and
longitudinal distances were estimated using ArcGIS 9.2

A few days after the flood event, when all of the mats had
re-emerged, they were taken to the lab and air-dried at lab
temperature during three weeks. Only 3.99% of the artifi-
cial grass mats were flushed away by the river. Sedimen-
tation rates were calculated as sediment dry mass per area
unit (kg/m2) after re-weighing each sediment trap, which had
been weighed prior installation. Afterwards, a sediment sam-
ple was removed from each trap by hand using a brush with
metallic bristles. To ensure homogeneity, mats were brushed

from the centre to the edge covering one quarter. After that,
samples were gently mixed by hand. At plots presenting low
sedimentation, mats presented great heterogeneity. In these
cases, the entire mat was brushed to ensure homogeneity and
get enough sediment for further analyses. All sediment sam-
ples were finer than 2 mm, so sieving was necessary. Coarse
particulate organic matter (> 2 mm) was very rare and re-
moved when present. An aliquot was separated for particle-
size analysis with a laser-diffraction instrument (Coulter LS
230, Beckman Coulter). The <4 µm, <63 µm, <125 µm,
<250 µm and<500 µm particle-size separates were consid-
ered for further analyses. These fractions cumulatively repre-
sent the clay, silt, and very fine sand, fine sand and medium
sand fractions according to Weinthwork (1922). The sed-
iment samples were ground with a mortar and pestle prior
to measure Total Organic Carbon (TOC) and Total Nitro-
gen (TN) using elemental analysis (Leco SC-144DR and El-
ementar Variomax CN, respectively). Details on TOC de-
termination can be found in Cabezas et al. (2009b). TOC
(g C m−2) and TN (g N m−2) accretion rates were calculated
multiplying by sedimentation rates.

2.3 Spatial heterogeneity at the reach scale

To describe spatial variability at the reach scale, inter-site
(j = 4) differences on TOC (%, g C m−2), TN (%, g N m−2),
particle size-class separates (%< 4, 63, 125, 250, 500 µm)
and sedimentation rates (kg m−2) were explored. After en-
suring that data met the assumption of normality (including
transformations where appropriate), a one-way ANOVA was
performed using SPSS 14.0. Depending on the homogeneity
of the variance, either SNK or Tahmane Tests were used in
post-hoc comparisons.

The existence of spatial self-correlation was tested for
the three variables by finding the most appropriate semi-
variogram models to fit the empirical semi-variograms com-
puted from the samples. The R statistical analysis system
– function variogram in the spatial library – (R Develop-
ment Core Team, 2008) was used in the calculations. Spa-
tial self-correlation was assumed isotropic, since it is one of
the main assumptions when including spatial correlation in
the GLME models (Pinheiro and Bates, 2000). The Akaike
Information Criterion (AIC – Sakamoto, Ishiguro and Kita-
gawa, 1986) was used for finding the best semi-variogram
model. A Gaussian semi-variogram model was choosen
for the sedimentation rate, whereas an Exponential semi-
variogram model was applied to TOC and TN deposition.

2.4 Spatial heterogeneity at decreasing spatial scale:
site, transect, row and plot

For each study site, ranges of values (maximum – minimum)
of TOC (%, g C m−2), TN (%, g N m−2) and sedimentation
rates (kg m−2) were calculated for the plot, transect, row and
site scales in order to describe spatial variability within study
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FIGURE 3 

Fig. 3. Representation of the different spatial scales considered in
one of the examined areas (MP, see Fig. 1). The biggest one, the
study site scale, encounters the area containing all study plots within
a site. The solid rectangle is an example of the area encountered by
transects spatial scale, which represents the gradient perpendicular
to the main channel. The dashed rectangle is an example of the area
encountered by the row spatial scale, which represents the gradi-
ent parallel to the main channel. The displayed picture shows the
composition of one study plot (solid circle).

sites (Fig. 3). The plot scale represented 1 m2 portions of
each study site (3 pseudo-replicates). The transect and row
scales (Fig. 3) were selected to assess the spatial variation
of sediment deposition in the direction parallel and perpen-
dicular to the river. As first pointed by Burrough (1996),
this anisotropy on spatial variability is often encountered on
river systems. The site scale showed spatial variability within
sites –j = 4 – with different geomorphological traits. Ar-
eas represented by each transect, row and site were identi-
fied in the field according to geomorphological traits. Af-
terwards, the areas were delimitated over 2003 ortho-images
using ArcMap 9.2with a fixed scale of 1:3000, and calculated
using the XTools application. Ranges of values at each scale
were calculated taking into account sediment traps enclosed
at each of the different spatial scales.

Moreover, two different aspects on the relationship be-
tween quantity and composition of deposited sediment were
evaluated for each site: (i) influence of particle-size sepa-
rates over TOC (%) and TN (%) concentrations; (ii) Influ-
ence of particle-size separates over sediment (kg m−2), TOC
(g C m−2) and TN (g N m−2) deposition rates. To accomplish
that, Pearson correlations were performed using SPSS.

2.5 Evaluation of the spatial variability at the reach
scale using GLME modelling

Spatial variability of sediment rate, TOC and TN was as-
sessed at the reach scale using generalized linear mixed-
effects (GLME) models. Unlike standard linear models,
mixed-effects models allow incorporating both fixed-effects
and random-effects in the regression analysis (Pinheiro and
Bates, 2000). The fixed-effects in a model describe the val-

ues of the response variables in terms of explanatory vari-
ables that are considered to be non-random, whereas the
random-effects are treated as arising from random causes.
Random effects can be associated with the individual ex-
perimental units sampled from the population, hence mixed-
effects models are particularly suited to experimental settings
where measurements are made on groups of related exper-
imental units. If the classification factor is ignored when
modelling grouped data, the random (group) effects are in-
corporated in the residuals, leading to an inflated estimate of
the within-site variability.

In our case, relationships were explored between the re-
sponse variables – Sedrate, TOC and TN – and the covari-
ates – longitudinal and transverse distance to the main chan-
nel and percentages of deposited particle size – on a data set
grouped according to one classification factor with four lev-
els – the four sampling sites: MP, MD, RF and SF . Hence,
the mixed-effects model allows for the identification of rela-
tionships between the response variables and the covariates
that are general to the four sites, irrespective of the local dif-
ferences between the sites, which are considered a random
effect.

The mixed-effects model combines a random-effects anal-
ysis of variance model with a linear regression model. The
mathematical formulation takes the form:

yji = β1+bj +β2xji +εjij = 1,...,4;i = 1,...,201 (1)

Whereyji is the ith observation in the jth group of data and
xji is the corresponding value of the covariate, an analysis
of covariance with a random effect for the intercept;β1 is
the mean variable value across the population being sampled,
bj is a random variable representing the deviation from the
population mean of the mean variable value for the jth inter-
site study area, and
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of correlation function used to model spatial dependence for
Sedrate, TOC and TN corresponds with the best adjustment
achieved when modelling their semi-variogram.

The within-group variance-covariance structure –

units sampled from the population, hence mixed-effects models are particularly suited to 198 

experimental settings where measurements are made on groups of related experimental units. If the 199 

classification factor is ignored when modelling grouped data, the random (group) effects are 200 

incorporated in the residuals, leading to an inflated estimate of the within-site variability. 201 

 202 

In our case, relationships were explored between the response variables—Sedrate, TOC and TN—203 

and the covariates—longitudinal and transverse distance to the main channel and percentages of 204 

deposited particle size—on a data set grouped according to one classification factor with four 205 

levels—the four sampling sites: MP, MD, RF andSF . Hence, the mixed-effects model allows 206 

finding relationships between the response variables and the covariates that are general to the four 207 

sites, irrespective of the local differences between the sites, which are considered a random effect. 208 

 209 

The mixed-effects model combines a random-effects analysis of variance model with a linear 210 

regression model. The mathematical formulation takes the form: 211 

 212 

jijijji xby εββ +++= 21  j = 1, …, 4;   i = 1, …, 201 213 

 214 

Where yji is the ith observation in the jth group of data and xji is the corresponding value of the 215 

covariate, an analysis of covariance with a random effect for the intercept; β1 is the mean variable 216 

value across the population being sampled, bj is a random variable representing the deviation from 217 

the population mean of the mean variable value for the jth inter-site study area, and Єji is a random 218 

variable representing the deviation in the mean variable value for observation i on j from the mean 219 

variable value for j on i. 220 

 221 

To complete the statistical model, we must specify the distribution of the random variables bj, j= 222 

1,…,4 and Єji, j = 1, …,4; i = 1, …, 201. We begin by modelling both of these as independent, 223 

normally distributed random variables with mean zero and constant variance. The variances are 224 

denoted σ2
b bj, or between site variability, and σ2 for the Єji, or within-site variability. This is 225 

expressed as: 226 

 227 

bj, ~N(0, σ2
b), Єji ~N(0, σ2)  228 

 229 

Generalized linear mixed-effects (GLME) models allow including a correlation structure to model 230 

the spatial dependence between observations. The inclusion of spatial correlation can be achieved 231 

by decomposing the within-group variance-covariance structure—Єji—into a product of simpler 232 

ji – in
any model can be assumed to have a homoscedastic within-
group error structure, which mean that all within-groups er-
rors assume the same variance. A more general model al-
lows for different variances between study areas and between
plots within a study area (heterocedasticity). Heterocedas-
ticity can be included in GLME models by means of a vari-
ance function. Heteroscesdasticity was evaluated for all three
variables – Sedrate, TOC and TN. Several methods exist for
fitting GLME models, including maximum likelihood (ML)
and restricted maximum likelihood (REML). The R statisti-
cal analysis package – function lme from the library nlme –
(R Development Core Team, 2008) was used for the gener-
alized linear mixed-effectsmodelling. Minimization of the
Akaike’s Information Criterion was used for selecting the
significant covariates (provided by the function stepAIC of
R), as well as for comparing homocedastic and heterocedas-
tic models, and choosing between REML and ML fits.

3 Results

3.1 Spatial heterogeneity at the reach scale

Sediment, TOC and TN deposition, as well as related vari-
ables (TOC and TN concentration, particle-size separates)
showed a high inter-site –j = 4 – heterogeneity (Table 2).
MP presented the highest sediment deposition rate. In turn,
the remaining sites presented higher TOC and TN concentra-
tions. Inter-site differences in TOC and TN deposition rates
sites diminished when compared with sediment deposition,
being the TOC and TN deposition the lowest at RF. With
regard to particle-size separates, all fractions<125 µm pre-
sented similar inter-site differences than those observed for
TOC and TN concentrations, with MP presenting the coars-
est deposited sediment. However, particle-size composition
did not significantly differ between examined sites regarding
the< 250 and< 500 µm particle-size fractions.

The amount of deposited sediment was related with grain
size only at RF (Table 3). At this site, particle-size sepa-
rates<125 µm were negatively correlated with the amount of
sediment deposited. In turn, those separates>125 µm were
negatively correlated with the amount of TOC and TN de-
posited. Secondly, particle-size exerted a different influence
over TOC and TN concentrations depending on the study
site. At MP and RF, TOC and TN concentrations were pos-
itively correlated with particle-size separates<125 µm. In
turn, TOC and TN concentrations were negatively correlated
with the <500 µm particle-size separate at MD, and posi-
tively with the<4 µm particle-size separate. At SF, the< 250
and<500 µm particle-size separate was negatively correlated
with TOC and TN content.

Spatial correlation was significant at distances lower than
0.94 m, 1.30 m, and 1.32 m for Sediment, TOC and TN de-
position, respectively. These results evidenced the need of a
1 m2 sample grid, at least, as the best structure capturing the
spatial heterogeneity in the sediment deposition.

3.2 Spatial heterogeneity at the reach, transect, row and
plot scales

Within the study reach, variability on sediment, TOC and TN
deposition was unevenly distributed, as were for TOC and
TN concentrations in the deposited sediment (Fig. 4). More-
over, variability of these variables (range) increased as their
values (magnitude) increase. For Sediment, TOC and TN
deposition, heterogeneity was in some cases (MP; MD) as
high at the plot scale (1 m2) as it was for the row and transect
scales. In turn, heterogeneity on TOC and TN concentration
increased when increased sampling area. Within the exam-
ined areas, spatial heterogeneity on all examined variables
was as high for the longitudinal gradient as it was for the
perpendicular gradient (Fig. 4). Moreover, the study areas,
the location of either a plot, transect or row determines its
variability on depositional rates, as well as for TOC and TN
concentrations. MP presented for depositional rates the high-
est site-scale variability for all the study sites. However, all
other sites had the highest TOC and TN concentration vari-
ability.

3.3 Generalized linear mixed-effects modelling

Along the study reach, sediment deposited over the flood-
plain decreased with distance perpendicular to the main
channel and distance to surface water inputs during the ex-
amined flood (Table 4). The random effects were large, as
reflected by significant differences in the intercept parameter
between sampling sites (Table 4). The GLME model for sed-
iment accumulation was the most complex, and included het-
eroscesdasticity in the model errors, i.e., when grouping the
data by the sampling site, resulting in differences in the resid-
uals between sampling sites (Table 4). Fitting was obtained
by maximum likelihood (ML). No significant relationship of
particle-size composition over the quantity of deposited sed-
iment was found. In addition, elevation did not present a
significant relationship.

Longitudinal and perpendicular distances were signifi-
cantly correlated with TOC and TN deposition rates. The
< 250 and<500 µm particle size-classes were also signifi-
cantly correlated, presenting negative coefficients. In turn,
the<4 and<125 µm fractions were significantly correlated
but presenting positive coefficients. The random effects were
smaller for TOC and TN deposition than for the sediment
deposition, which was reflected by a smaller variance of
between-sites model intercepts (Table 4). According to the
AIC, homocedastic models (i.e. the magnitude of the residu-
als did not change between sampling sites) were better than
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Table 2. One-way ANOVA summary results for deposited sediment variables, grouped by study site. All variables presented significant
differences except the<250 µm particle-size. Superscript letters (a,b,c) within a row indicate the sub-groups formed after the applied post-
hoc comparisons (SNK or Tahmane Test,p < 0.05).

Mean± standar error

MP (n = 41) MD (n = 44) SF (n = 44) RF (n = 63)

Sedrate (Kg m−2) 13.49± 2.19a 5.51± 0.53b 4.18± 0.27b 4.15± 0.38b

TOC (%) 0.83± 0.05a 1.51± 0.09b 1.96± 0.07c 1.59± 0.07b

TN (%) 0.10± 0.01a 0.18± 0.01b 0.22± 0.01c 0.18± 0.01b

TOC (g C m−2) 112.49± 19.52a 77.26± 7.91b 78.93± 4.08b 56.13± 4.36b

TN (g N m−2) 11.56± 1.67a 8.79± 0.83b 9.10± 0.46b 6.36± 0.44c

<4 µm (%) 2.83± 0.16a 4.27± 0.22b 5.53± 0.26c 4.19± 0.22b

<63 µm (%) 24.01± 1.43a 32.67± 1.43b 40.44± 1.39c 31.11± 1.24b

<125 µm (%) 43.75± 2.20a 50.37± 1.78b 57.62± 1.45c 48.85± 1.30b

<250 µm (%) 74.49± 1.84 71.46± 1.86 74.57± 1.39 71.34± 1.03
<500 µm (%) 92.88± 0.69a 88.90± 1.27b 88.96± 0.90b 88.56± 0.76b

Table 3. Bivariate correlation between sediment particle-size, carbon and nitrogen concentration and deposition rates (sediment, TOC and
TN). Data has been separated by study site: (a) RF, MP; (b) SF, MD. For an easier interpretation, correlations not related to the investigated
aspects (see methods) are not displayed.

RF

SEDrate TOC TN TOCrate TNrate 4 µm 63 µm 125 µm 250 µm 500 µm

M
P

SEDrate (Kg m−2) – – – – −0,45∗∗
−0,49∗∗

−0,43∗∗
−0,24 −0,23

TOC (%) – – – – 0,53∗∗ 0,43∗∗ 0,25∗ −0,11 −0,30∗

TN (%) − − − − 0,61∗∗ 0,52∗∗ 0,34∗∗
−0,02 −0,20

TOCrate (g C m-2) − − − − −0,15 −0,22 −0,25∗ −0,35∗∗
−0,52∗∗

TNrate (g N m−2) – – – – −0,15 −0,21 −0,23 −0,31∗ −0,47∗∗

% <4 µm −0,13 0,57∗∗ 0,52∗∗ 0,04 0,05 – – – –
% <63 µm −0,16 0,55∗∗ 0,48∗∗ 0,01 0,02 – – –
% <125 µm −0,13 0,55∗∗ 0,43∗∗ 0,04 0,05 – – – –
% <250 µm 0,15 0,45∗∗ 0,16 0,25 0,27 – – – –
% <500 µm 0,27 0,21 −0,04 0,23 0,27 – – – –

SF

SEDrate TOC TN TOCrate TNrate 4 µm 63 µm 125 µm 250 µm 500 µm

M
D

SEDrate (Kg m−2) − − − − −0,07 −0,01 0,10 0,23 0,25
TOC (%) − − − − −0,07 −0,24 −0,38∗ −0,54∗∗

−0,63∗∗

TN (%) − − − − 0,21 0,01 −0,19 −0,39∗∗
−0,48∗∗

TOCrate (g C m−2) − − − − −0,03 −0,09 −0,09 −0,06 −0,09
TNrate (g N m−2) − − − − 0,11 0,06 0,05 0,06 0,06
% <4 µm −0,05 0,33∗ 0,31∗ 0,17 0,22 − − − −

% <63 µm −0,06 0,24 0,25 0,13 0,19 − − − −

% <125 µm 0,06 0,07 0,07 0,17 0,23 − − − −

% <250 µm 0,13 −0,19 −0,19 0,11 0,17 − − − −

% <500 µm 0,13 −0,38∗ −0,37∗ 0,00 0,06 − − − −

∗ = Correlation is significant at the 0.05 level (2-tailed).
∗∗ = Correlation is significant at the 0.01 level (2-tailed).
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Fig. 4. TOC (%, g C m−2), TN (%, g N m−2) and sedimentation rates (kg/m2) ranges for different spatial scales (plot, transect, row and site).
See methods for details on area calculations.

heterocedastic models for TOC and TN deposition. AIC also
indicated that RMLE was the best method to fit the TOC
and TN heterocedastic models by using the AIC. Neither the
<63 µm nor the elevation were estimated as significant and
therefore not included in the model.

Coefficients to generate maps of predicted sediment rate,
TOC and TN (Fig. 5) were obtained from the GLME mod-
els. As expected from the previous description, these maps
reflect a high degree of spatial heterogeneity at the reach and
site scales. As the fixed effects showed, the highest values
of deposited sediment, TOC and TN in each sampling site
were found close to the main channel and at the upstream

end of the site. Differences between sites in the average sed-
iment rate were large, the highest amounts occurring at MP
and MD sites whereas lower values were predicted at SF and
RF sites. For all sites, the predicted values reflect how sedi-
ment deposition decreases whit increasing distance from the
main channel and upstream inputs, both of which are sedi-
ment sources.

Regarding TOC and TN deposition, the spatial patterns
were similar for the sediment rate, although the perpendic-
ular distance to the river had a stronger influence, according
with the relation observed (Fig. 5). Also, the spatial mod-
els were a bit more complex than those of the sediment rate,
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Table 4. Summary of the results of the generalized linear mixed-effects models for sedimentation rate (SEDrate), Total Organic Carbon
(TOCrate) and Total Nitrogen (TNrate): Goodness of fit statistic value (AIC); Fitting method: Maximum Likelihood (ML) or Restricted
Maximum Likelihood (REML); Correlation parameters; Random effects for sampling site and model corresponding to the intercept and, in
the case of heterocedasticity, in the residuals; Coefficients of the fixed effects: Coeff., Beta Coeff. (standarized coefficients) and p-values for
the sedimentation rate (SEDrate), Total Organic Carbon (TOCrate) and Total Nitrogen (TNrate) models. Long. Dis. = Longitudinal distance;
Perp. Dis. = Perpendicular distance (see methods for details).

Response variables
SEDrate TOCrate TNrate

AIC 947.21 −488.72 −1424.18

Fitting method ML REML REML

Correlation parameters
Range 1.183 0.897 0.898
Nugget 0.222 2.87E−10 8.29E−09

Random effects (per sampling site)
Intercept
MP 13.645 0.322 0.028
MD 11.295 0.296 0.027
RF 8.110 0.285 0.026
SF 7.224 0.260 0.023
Residual
MP 42.776
MD 12.714 0.064 0.006
RF 4.260
SF 3.991

Fixed effects
Coeff. Beta Coeff. p−value Coeff. Beta Coeff. p−value Coeff. Beta Coeff. p−value

Long. Dis. −0.01722 −1.7184 0.0000∗ −0.00016 −0.01622 0.0223∗ −0.00002 −0.00184 0.0041∗

Perp. Dis. −0.05512 −1.1337 0.0000∗ −0.00084 −0.01722 0.0185∗ −0.00007 −0.00146 0.0264∗

% < 4 µm − − − 0.01310 0.02420 0.0152∗ 0.00108 0.00200 0.0251∗

% <125 µm − − − −0.00387 −0.04833 0.0065∗ −0.00031 −0.00393 0.0135∗

% <250 µm − − − 0.00547 0.05634 0.0037∗ 0.00048 0.00500 0.0041∗

% <500 µm − − − −0.00467 −0.03104 0.0100∗ −0.00040 −0.00269 0.0129∗

due to the existence in the model of covariates other than the
distance to the river. Differences in the mean TOC and TN
concentrations between were significantly lower than differ-
ences in sediment rate between sites.

4 Discussion

4.1 Spatial heterogeneity at different scales

Spatial heterogeneity at the reach scale (10 000–100 000 m2)

influenced site-scale heterogeneity (1000–10 000 m2) by
limiting the variation range at the examined sites (Fig. 4).
It occurred for the amount of sediment, TOC and TN de-
posited, as well as for TOC and TN concentrations. However,
limitation of spatial heterogeneity at the plot scale (1 m2) by
the site scale heterogeneity (1000–10 000 m2) was not clear.
Regarding the amount of sediment, TOC and TN deposited,
the plot scale heterogeneity can be as high as it was for big-
ger spatial scales as row or transect. Regarding TOC and

TN concentrations, variability increase along with the spatial
scale, and so with the extent of the examined area.

The relationship between the amount of sediment de-
posited and its particle-size composition varied when consid-
ering different spatial scales. Sediment deposition was neg-
atively correlated at the reach scale with the proportion of
the finest sediment fractions (%<4, 63, 125 µm;p < 0.01,
n = 201), whereas positively correlated with the %<500 µm
particle-size separate (p < 0.01,n = 201). This is similar to
the reach-scale results of Steiger and Gurnell (2003). How-
ever, when analyzing the data at the site scale, we noted that
this negative relationship at the reach scale was only found
to exist at the RF site (Table 3), in agreement with results
from Walling and He (1998) who found also no relation-
ship between sediment deposition and grain size at the site
scale. They highlighted the need to recognise that the sus-
pended sediment transported by a river is commonly trans-
ported as aggregates rather than individual particles. In ad-
dition, convective transport processes could explain these
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trends (Asselman and Midlekoop, 1995). In turn, the reach-
scale relationships between TOC and TN concentrations on
deposited sediments and particle size composition remained
relatively stable when down-scaling to the site-scale. TOC
and TN concentrations were positively correlated (Table 3)
with the proportion of the finest sediment fraction at the reach
scale (%<4, 63, 125 µm;p < 0.01, n = 201), whereas they
were negatively correlated with the medium sand size frac-
tion (% <500 µm; p < 0.01, n = 201). At the site scale,
the importance of each fraction varied depending on the
site. Positive relationships with the percentage of<63 µm
particle-size separate have been previously reported (Walling
and He, 1997; Steiger and Gurnell, 2003), although are pro-
vided for the remainder fractions in these papers.

At the reach scale, channel-floodplain geomorphology
promoted heterogeneity on the amount and composition of
sediment retained during the examined flood (Table 2). This
trend has been previously observed in other studies deal-
ing with contemporary sedimentation rates (Middlekoop and
Van der Perk, 1998; Nicholas and Walling, 1998; Thonon et
al., 2007). River-floodplain connectivity governs hydraulic
patterns of overbank flows, and thus sedimentation patterns.
Flooding took place later and was shorter at sites with the
lower superficial connectivity thresholds (SF and RF in Ta-
bles 1 and 2), where sedimentation rates were the lowest.
Moreover, a decrease on the amount of suspended sedi-
ment during the flood (Asselman and Middlekoop, 1998;
Baborowski et al., 2007), which is higher at initial stages,
could decrease the amount of sediment deposited at these
sites. In turn, the proportion of the finest particle-size sep-
arates, i.e.<125 µm (fine sand) increased at those sites.
Assuming homogeneity of suspended sediment composition
within the study reach, it would result from a drastic decrease
of flow velocity at main channel margins. As a result, the
coarsest particles, which are normally transported by diffu-
sive processes (Asselman and Middlekoop, 1995; Walling
and He, 1998), are released before water enters the flood-
plain. Such phenomenon could also underlay results at MD,
the high-connected side channel. At MD, the amount of sed-
iment deposited was slightly higher than in low-connected
sites. The location of MD in the concave bank of a river me-
ander could reduce the quantity of sediment deposited by in-
creasing erosion at certain flood stages (Steiger and Gurnell,
2003). At the other high-connected site, MP, extraordinary
high sedimentation rates of coarse sediment were estimated.
MP is characterized by a smooth topographic change at the
border with the main channel.

At the site scale, complexity of local topography cre-
ates complex sedimentation patterns (Walling and He, 1998;
Hupp et al., 2009). Spatial differences in sedimentation de-
pend, at first, on the distance to water and sediment inputs
(Table 4). Secondly, local topography attributes as relict
channels create preferential flowpaths along which particles
and aggregates are conveyed. Depletion of suspended sedi-
ment by sedimentation along preferential flow paths results

(Middelkoop and Van der Perk, 1998). At the examined sites,
sediment, TOC and TN deposition varied along gradients
which run parallel and perpendicular to the main channel
(Fig. 5). Therefore, it is reasonable to assume that deposi-
tion from sediment entering the floodplain at the upstream
area is as important as those entering adjacent areas to the
main channel. Moreover, variability within these gradients
can differ depending on the location of the area within the
same study site. This implies that either suspended sedi-
ment concentrations decreased along flowpaths, or sediment
is transported by convective processes further from the input
point.

At the plot scale (1 m2), further research is required to elu-
cidate factors promoting variability on the considered vari-
ables. Spatial heterogeneity may respond to heterogeneous
vegetation structure within each plot, which modifies flow
patterns and therefore result on differences on sediment de-
position. Nicholas and Walling (1997) highlighted the need
to include such effects on sedimentation modelling in order
to improve its predictive ability at small spatial scales. Al-
though factors promoting variability at the plot scale were
not identified, our results indicate that the plot scale vari-
ability was smaller for TOC and TN concentrations that for
the amount of sediment deposited (Fig. 4). This suggest that
there is a certain degree of homogeneity in suspended sed-
iment composition when a given floodplain area is flooded,
and indicates that factors promoting heterogeneity at the plot
scale mainly operate over the amount sediment which is de-
posited. In turn, factors promoting heterogeneity at larger
spatial scales influenced TOC and TN concentrations. Re-
sults from the present study indicate that the amount of TOC
and TN deposited depend on sediment quantity rather than
in their TOC and TN contents (Table 2), in agreement with
previous reports in this study reach (Cabezas et al., 2009).
Consequently, studies dealing with TOC and TN retention
by floodplain habitats should address influence of these hot
spots. The crucial role of hot spots on TOC and TN reten-
tion has been previously highlighted for other biogeochemi-
cal processes implied in the TOC and TN turnover at riparian
floodplains (McClain et al., 2003; Groffman et al., 2009).

4.2 Linear mixed-effect models

Using GLME models to evaluate sediment, TOC and TN de-
position over riverine floodplains provided a valid framework
to identify factors promoting heterogeneity at the reach scale
by taking into account spatial heterogeneity at smaller spa-
tial scales. GLME models allowed us to include different
sampling sites in the same analysis, while discriminating be-
tween the variance explained by the fixed factors and the ran-
dom variance depending on the local characteristics of the
sites (sampling site, spatial auto-correlation). This allows for
the generalization of study findings (Bolker and Brooks). In
the current study, we could elucidate which variables were
significant in controlling the spatial sedimentation patterns
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Fig. 5. Prediction maps sediment, TOC and TN deposition after the Generalized linear mixed-effects models.

of TOC, TN and deposition rate, independent of the site con-
sidered. The validity of our model at another Middle Ebro
River reaches with similar geomorphological features is pos-
sible although must be investigated. However, a development
of a new model which includes different-magnitude flood
events is necessary to generalize our findings at larger tem-
poral scales. Moreover, GLME handles small-scale hetero-
geneity by including all sampling units (pseudo-replicates)
at each study plot. Previous studies (Steiger and Gurnell,
2003; Steiger et al., 2003) applied a lumped approach by av-
eraging values of the clustered sampling units. According
to our models, the amount of deposited sediment, TOC and
TN decreases within the study reach with distance to superfi-

cial water inputs (longitudinal and perpendicular distance in
Table 4). The inverse relationship between elevation and sed-
imentation rate (Walling et al., 1996; Walling and He, 1998)
could not be confirmed by this study. As Middelkoop and As-
selman (1998) and Thonon et al. (2007b) found, this might
be attributed to levees and other topographic features. More-
over, high flow velocities at low-lying areas can even reverse
this trend at certain flood magnitudes (Asselman and Mid-
dlekoop, 1998). The inclusion of the particle size fractions
in the TOC and TN deposition models reflects the influence
that particle-size exerted on sediment composition at the four
examined sites (Table 4). Assignation of model coefficients
to the different particle-size classes respond to the best model
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goodness of fit and not to the previously described empiri-
cal relationships. Note that cumulative particle-size fractions
were considered for this study.

Secondly, GLME models are able to predict Sediment,
TOC and TN deposition at the reach scale taking into ac-
count spatial heterogeneity at smaller spatial scales. As a
result, predicted deposition maps could be built for the four
study sites included in the analyses (Fig. 5). To interpret
predicted patterns, knowledge on site-specific features is re-
quired, as it was required by previous studies evaluating
floodplain sedimentation by using different techniques than
those performed in the current study (Middelkoop and As-
selman, 1998; Steiger and Gurnell, 2003). However, GLME
models are a useful tool when the scope of the study is to
predict Sediment, TOC and TN deposition at heterogeneous
river reaches rather than explaining spatial patterns at the site
scale. At the study reach scale, homogeneity of spatial pat-
terns was higher than expected for three of the four sites ex-
amined (Fig. 4). Flood magnitude and duration probably de-
termined sediment deposition patterns at the examined sites.
Also the position of study plots only in areas adjacent to the
channel margin could influence the results. Future studies
(either during different lower magnitude floods or position-
ing study plots in areas far to the main channel) are required
to test the validity of our findings at spatio-temporal scales
different than those considered in this study.

5 Conclusions

In the current paper, Sediment, TOC and TN deposition in
one reach of the Middle Ebro River were evaluated by using
GLME models. From this, we conclude:

1. As previously described for other study areas, channel-
floodplain connectivity determines spatial heterogeneity
on floodplain sedimentation at the reach scale, whereas
micro-topography controls at the site scale.

2. Relationships between the amount of sediment de-
posited and its characteristics (particle size, TOC and
TN concentration) vary when considering different spa-
tial scales.

3. Sediment deposition variability at the plot scale (1 m2)

can be as high as is for larger spatial scales (1000–
10 000 m2). This should be considered in future studies.

4. Factors determining heterogeneity at the plot scale ex-
ert a higher influence over the amount of sediment de-
posited than over TOC and TN concentrations.

5. By considering random effects, GLME can elucidate
which variables were significant in controlling the spa-
tial sedimentation patterns of TOC, TN and deposition
rate, independent of the site considered. Thus, con-
clusions could be extrapolated with caution to different
study sites.

6. GLME is a useful tool when the scope of the study
is predicting Sediment, TOC and TN deposition at the
reach scale while taking into account heterogeneity at
smaller spatial scales.
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