Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 14, issue 7
Hydrol. Earth Syst. Sci., 14, 1233–1245, 2010
https://doi.org/10.5194/hess-14-1233-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 14, 1233–1245, 2010
https://doi.org/10.5194/hess-14-1233-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  13 Jul 2010

13 Jul 2010

Catchment conceptualisation for examining applicability of chloride mass balance method in an area with historical forest clearance

H. Guan2,1, A. J. Love3,2,1, C. T. Simmons2,1, J. Hutson2,1, and Z. Ding4,1 H. Guan et al.
  • 1School of the Environment, Flinders University, Australia
  • 2National Centre for Groundwater Research and Training, Australia
  • 3Department of Water, Land and Biodiversity Conservation, South Australia
  • 4College of Earth and Environmental Science, Lanzhou University, China

Abstract. Of the various approaches for estimating groundwater recharge, the chloride mass balance (CMB) method is one of the most frequently used, especially for arid and semiarid regions. Widespread native vegetation clearance, common in many areas globally, has changed the land surface boundary condition, posing the question as to whether the current system has reached new chloride equilibrium, required for a CMB application. Although a one-dimensional CMB can be applied at a point where the water and chloride fluxes are locally in steady state, the CMB method is usually applied at a catchment scale owing to significant lateral flows in mountains. The applicability of the CMB method to several conceptual catchment types of various chloride equilibrium conditions is examined. The conceptualisation, combined with some local climate conditions, is shown to be useful in assessing whether or not a catchment has reached new chloride equilibrium. The six conceptual catchment types are tested with eleven selected catchments in the Mount Lofty Ranges (MLR), a coastal hilly area in South Australia having experienced widespread historical forest clearance. The results show that six of the eleven catchments match a type VI chloride balance condition (chloride non-equilibrium with a gaining stream), with the ratios of stream chloride output (O) over atmospheric chloride input (I), or catchment chloride O/I ratios, ranging from 2 to 4. Two catchments match a type V chloride balance condition (chloride non-equilibrium with a losing stream), with catchment chloride O/I ratios about 0.5. For these type V and type VI catchments, the CMB method is not applicable. The results also suggest that neither a chloride O/I ratio less than one nor a low seasonal fluctuation of streamflow chloride concentration (a factor below 4) guarantees a chloride equilibrium condition in the study area. A large chloride O/I value (above one) and a large fluctuation of streamflow chloride concentration (a factor of 10 and above) generally indicates either a chloride disequilibrium, or cross-catchment water transfer, or both, for which the CMB method is not applicable. Based on regression between chloride O/I values and annual precipitation for type VI catchments, a catchment with annual precipitation of 900 mm in MLR has most likely reached new chloride equilibrium, and the CMB method can be applied if no cross-catchment water transfer occurs. CMB is applied to one catchment at chloride equilibrium, suggesting a net groundwater recharge of 27 mm/yr, about 3% of annual precipitation.

Publications Copernicus
Download
Citation