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Abstract. Investigation of transient soil moisture profiles
yields valuable information of near- surface processes. A re-
cently developed reconstruction algorithm based on the tele-
graph equation allows the inverse estimation of soil mois-
ture profiles along coated, three rod TDR probes. Laboratory
experiments were carried out to prove the results of the in-
version and to understand the influence of probe rod defor-
mation and solid objects close to the probe in heterogeneous
media. Differences in rod geometry can lead to serious mis-
interpretations in the soil moisture profile, but have small in-
fluence on the average soil moisture along the probe. Solids
in the integration volume have almost no effect on average
soil moisture, but result in locally slightly decreased mois-
ture values. Inverted profiles obtained in a loamy soil with a
clay content of about 16% were in good agreement with in-
dependent measurements.

1 Introduction

Only a minute amount of global water is stored as soil mois-
ture: with an estimated volume of about 16 500 km3, soil
moisture represents 0.0012% and 0.05% of total and fresh
water, respectively (Dingman, 1994). And yet, this tiny hy-
drological compartment exerts crucial control over interac-
tions between the atmosphere, land surface and groundwater,
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since soil moisture determines the partitioning of net radia-
tion energy on latent and sensible heat flux and the supply of
water for the terrestrial biomass. Furthermore, soil moisture
influences plot scale generation of Hortonian and saturated
excess overland flow (Chaves et al., 2008; Zehe et al., 2007)
and water repellency (Blume et al., 2009), as well as hillslope
and catchment scale runoff response to extreme precipitation
(e.g. Merz and B́ardossy, 1998; Zehe and Blöschl, 2004).

Spatially and temporally distributed Time Domain Reflec-
tometry (TDR) and Frequency Domain Reflectometry (FDR)
measurements are widely used to observe soil moisture dy-
namics at the plot to hillslope scale (e.g. Starr and Timlin,
2002). Conventional TDR measurements allow estimation
of the mean soil moisture and the bulk electrical conductiv-
ity of the surrounding media based on the travel time of a
reflected electromagnetic wave guided in a waveguide/TDR
probe installed in the soil. Excellent reviews are given by
Robinson et al. (2003) and Cassiani et al. (2006). Several
authors have shown that the shape of the reflected TDR sig-
nal, the reflectogram, contains information about the dielec-
tric permittivity (ε) and thus the soil moisture along the probe
(Oswald et al., 2003; Schlaeger, 2005). The retrieval of this
detailed information is achieved by inversion or by graphical
interpretation of the signal (Moret et al., 2006). Inverse es-
timation of the soil moisture profile seems to work well for
synthetic data sets (Oswald, 2000), homogeneous soils at the
lab scale (Becker, 2004; Greco, 2006; Bänninger et al., 2008)
or volcanic ash soils with low bulk densities of∼1.0 g cm−3

(Greco and Guida, 2008).
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Fig. 1: Typical soil profiles with different horizons and coarse gravel and possible 4 

deformations of the TDR wave guides when installed in the soil (A and B).  5 
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Fig. 1: Typical soil profiles with different horizons and coarse gravel and possible 4 

deformations of the TDR wave guides when installed in the soil (A and B).  5 
Fig. 1. Typical soil profiles with different horizons and coarse
gravel and possible deformations of the TDR wave guides when
installed in the soil (a andb).

The essential idea of Spatial TDR is to cluster several wave
guides in a small area, operate them by a single sampling
TDR and invert the reflectograms to elucidate the evolution
of the soil moisture profile. Spatial TDR was originally pro-
posed by Schlaeger (2005) and further tested by Scheuer-
mann et al. (2009) to monitor moisture in sandy dams. The
reflectogram of the TDR measurement is influenced by the
probe geometry (B̈anninger et al., 2008; Spittlehouse, 2000),
solids in the sphere of influence (Knight et al., 1997), layered
soils (Greco, 2008) or energy dissipation along the probe
due to clay and salinity (Jones and Or, 2004; Chen et al.,
2007; Kupfer et al., 2007). These different factors may ham-
per the application of Spatial TDR measurements in real
world settings. The use of coated rods protects the TDR
signal from energy dissipation (Ferré et al., 1998; Nichol
et al., 2002), increasing the signal-to-noise ratio and thus
allows the use of longer TDR rods compared to uncoated
rods, which is essential for Spatial TDR applications (Dal-
ton and Van Genuchten, 1986). The drawbacks of coated
rods are that they are less sensitive toε, that a coated ma-
terial needs specific calibration (Ferré et al., 1996), and that
the measurement of bulk electrical conductivity is restricted
(Moret-Ferńandez et al., 2009). As the high clay content of
the soils in the study area is around 16%, we preferred to use
TDR probes with three coated rods. This allows the use of
0.60 m long probes, which is favourable for the observation
of infiltration processes into the subsurface.

In general, it is assumed that the TDR rods are installed
parallel, but this is difficult to actually achieve when in-
stalling probes in natural soils, especially in the presence
of stones, layers, or soil bulk density differences. Figure 1
shows an extreme example with rods converging or diverging
with increasing depth for a rather heterogeneous soil located
in the Ore Mountains, Saxony, Germany.

The effect of the probe deformation on the reflectogram
and the retrieved soil moisture has thus to be studied in de-
tail, because it is essential for the Spatial TDR approach to

use long TDR rods. The influence of insulating solids in the
sampling volume was theoretically described by Knight et
al. (1997), but we are not aware of any study which studied
the influence of solids on the reflectogram.

The overall objective of this paper is to shed light on the
applicability of Spatial TDR in strongly heterogeneous field
soils. Therefore, the questions posed for this research are: 1)
How do coated probes of 0.60 m length react in these soils
(heterogeneous, electrical loss), and are these probes indeed
better suited for these soils compared to uncoated probes? 2)
How does the effect of a) different probe deformations, b)
solids (insulators, conductors) in the integration volume and
c) high clay content in combination with a bulk density gra-
dient influence theε profile, the inverted moisture profiles
and the average soil moisture along the probe? Different lab-
oratory experiments were performed to shed light on these
topics.

In Sect. 2 we give a review of different inversion tech-
niques. Section 3 provides details on the technological com-
ponents and discusses potential sources of errors observed in
field applications. Section 4 introduces five different labora-
tory experiments. Section 5 discusses the step from applica-
tions in homogenous media or “the technical scale” to reli-
able applications in heterogeneous field soils, for instance
when designing a site-specific calibration of transmission
line properties. This step is crucial for hydrology because
the relationship between soil moisture dynamics and runoff
generation is not well understood yet; this is especially true
for heterogeneous soils. These results are furthermore neces-
sary to interpret soil moisture observations obtained with two
Spatial TDR clusters installed in the Eastern Ore Mountains,
presented in a closely related study by Zehe et al. (2010).
That study will introduce the applicability of Spatial TDR in
the field scale.

2 Theoretical background and signal constrained
inversion

2.1 TDR inversion approaches

In this section we give an introduction to the inversion
methodology and an overview of the different inversion tech-
niques. Generally, it is necessary for the estimation of
the soil moisture profiles along the TDR probe to simu-
late the propagation of the TDR signal in time domain by
employing a numerical model (forward problem). This is
achieved by simulating the forward and back propagation of
the TDR signal along the wave guide and minimizing the
differences between observed and simulated signals by us-
ing an optimization algorithm which updates the parameter
profile along the transmission line. Full wave approaches
solve Maxwell’s equations within the forward step (Rejiba et
al., 2005). The target parameter of the optimization is the
profile of theε along the wave guide. Other studies have
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proposed simplified approaches based on multi-section trans-
mission lines (Heimovaara et al., 2004) or heterogeneous
transmission lines (Greco, 2006); the Spatial TDR approach
(Schlaeger, 2005) belongs to the latter category. The wave
propagation along the TDR probe is approximated by the
telegrapher’s equation. The transmission line is conceptu-
alized as a series of bulk electronic components such as re-
sistors, inductors and capacitors. Hence, the target parameter
of the optimization is the electrical capacitance profile (C).
The Spatial TDR algorithm requires additional material laws
that link C-ε-soil moisture and – in the case of TDR probes
with coated rods –C and electrical conductanceG of the
transmission line (compare Sect. 2.3).

2.2 STDR Signal inversion

The TDR signalV o
R(t,x0,) or reflectogram is a superposi-

tion of the input voltageV o
I (t,x0), generated by the TDR

device, and partial reflections of the input signal occurring at
the junction of the probe and cable as well as at the end of
the wave guide. The averageε along the transmission line is
determined by the speed of the electromagnetic wave and can
be calculated based on the travel time of the TDR signal. The
averageε can be transformed into the average soil moisture
content along the probe by appropriate calibration functions
(see Sect. 3.4). The form of the reflectogram between the
first and second main reflection at the probe’s beginning and
end is a finger print of the dielectric profile along the wave
guide.

The principle of the Spatial TDR inversion is to estimate
the capacitance profileC(x) along the wave guide by means
of inverse modelling and transform it into a soil moisture pro-
file θ (x). As explained above, the forward step of the Spatial
TDR algorithm is based on the telegrapher’s equation, which
describes the propagation of a voltage pulseV (x,t) along the
transmission line:(

L(x)C(x)
∂2

∂t2
+L(x)G(x)

∂

∂t
+

∂L(x)/∂x

L(x)

∂

∂t
−

∂2

∂x2

)
V (x,t) = 0. (1)

Herebyt is time andx the spatial coordinate along the wave
guide. The capacitanceC(x) and electrical conductance
G(x) are both affected by the soil moisture profileθ(x) along
the transmission line. The inductanceL(x) is a function
of the transmission-line only and piecewise constant for the
coaxial cable and moisture probe, as long as the rods are par-
allel. The spatial derivative of L in Eq. (1) accounts for the
difference between coaxial cable and probe. Compared to
the general telegrapher’s equation, it is assumed that resis-
tive losses along the probe can be neglected and the electrical
resistanceR = 0. All parameter profiles will be given as spe-
cific values per unit length. Nichol et al. (2002) have shown
that the true electric conductivityρ cannot be measured with
coated probes. Therefore,G is not the real ionic conductance
of the soil but an effective value of coating and soil conduc-
tivity.

Within the inverse procedure Eq. (1) is numerically solved
with appropriate initial and boundary conditions to simu-
lateV s

R(t,x0|C) for given parameter profilesC(x) andG(x).
Based on the difference between the simulatedV s

R(t,xi |C)
and observed signalV o

R(t,xi) between the first (att = 0) and
the second main reflection (att = T ), the transmission line
parametersC(x) andG(x) are updated by the conjugate gra-
dient method until the objective functionJ (C) in Eq. (2) is
minimized.

J (C) =

∫ T

0

(
V s

R (t,xi |C)−V o
R (t,xi)

)2
dt (2)

The high quality of the recorded signal of the TDR100
(Campbell Scientific Inc), which has a time to peak of
roughly 200 ps, allows inversion at a spatial resolution of
0.01 m (Oswald et al., 2003; Lin et al., 2005). The solu-
tion of Eq. (1) is a profile ofC(x) which has to be related to
the permittivity profile of the porous mediumε(x) and finally
to the moisture profileθ (x) (compare next sections). Subse-
quently, we will refer to the resulting soil moisture profile
which is obtained after conversion as the inverted moisture
profile. For more details see Schlaeger (2005).

3 Parameters and potential error sources of spatial
TDR-measurements

3.1 Technological components and setup of a spatial
TDR

We used a TDR100 by Campbell Scientific Inc. to gener-
ate TDR pulses. Coated three-rod probes of type SUSU03
with a length of 0.60 m developed by Schädel (2006) were
used as wave guides. These consist of a stainless steel core
of 6 mm diameter with a 1 mm thick PVC coating. The dis-
tance between the rods is 0.03 m. The rods are screwed into
the probe head that is connected to a 50� coaxial cable of
type RG213.The probes are connected to an eight channel
multiplexer of type SNAPMUX (Becker, 2004) with coax-
ial cables of type RG213 with an impedance of 50� and a
length of 15 m. The TDR100 is controlled and the data are
logged by an ARCOM VIPER 1.2 Industrial-PC with em-
bedded LINUX operating system.

3.2 Calibration of probe parameters

The pulse velocity of the TDR signalv is given by

v = 2l/1t, (3)

wherel is the probe length and1t the time difference be-
tween the first two main reflections in the reflectogram.

The equation to linkv to ε with v = c0/
√

ε, with c0 as the
speed of light, does not apply for coated probes, because here
the signal depends on an effectiveε which is composed of
the dielectric properties of the coating and of the surround-
ing medium and would lead to an underestimation of soil
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Fig. 2: Total capacitance C of a 3-rod-probe as a function of the soil’s dielectric permittivityε. 2 

(A) segment of three parallel rods encompassed by soil; light grey: PVC coating; dark gray: 3 

metallic core; (B) equivalent circuit. C1, C2: constant capacitance parameters determined by 4 

the probe’s geometry (Becker, 2004).  5 

 6 

(b)

 24 

 1 

Fig. 2: Total capacitance C of a 3-rod-probe as a function of the soil’s dielectric permittivityε. 2 

(A) segment of three parallel rods encompassed by soil; light grey: PVC coating; dark gray: 3 

metallic core; (B) equivalent circuit. C1, C2: constant capacitance parameters determined by 4 

the probe’s geometry (Becker, 2004).  5 

 6 

Fig. 2. Total capacitanceC of a 3-rod-probe as a function of the
soils dielectric permittivitye.(a) segment of three parallel rods en-
compassed by soil; light grey: PVC coating; dark gray: metallic
core; (b) equivalent circuit.C1,C2: constant capacitance parame-
ters determined by the probes geometry (Becker, 2004).

moisture (Ferŕe et al., 1996). Becker (2004) and Huebner et
al. (2005) suggested that the pulse velocityv(ε) can be best
expressed by the constant inductanceL of probe and the ef-
fective capacitanceC(ε) of the system probe and medium:

v(ε) = 1/
√

L ·C(ε). (4)

In a second stepε of the medium is estimated with a relation-
ship betweenC(ε) andε in the case of our three rod TDR
probe described by a simple circuit model consisting of a
series of capacitors, representing the capacitor between the
rods filled with the surrounding mediumC1 and describing
the constant capacitance of the coatingC2 (Fig. 2):

1/C(ε) = 1/(ε ·C1)+1/C2. (5)

According to Eqs. (4) and (5) the probe is characterized by
the three parametersC2, C1, andL, which have to be esti-
mated by calibration measurements.C1 andL are affected by
the probe geometry, especially the distance of the wave guide
rods. For parallel rods, the parameters are assumed to be con-
stant. Becker (2004) found a good correspondence of the re-
lationship betweenε andC derived from full wave numerical
simulations of coated three rod probes and the capacitance
model shown in Eq. (5). Further laboratory observations cor-
roborated the applicability of this capacitance model to pa-
rameterize the relationship betweenε andC. Becker (2004)
suggested a calibration approach based on measuring TDR
pulse velocitiesvi = v(εi) for two different media with well
known dielectric permittivity valuesε1 andε2 (water and air)
to determineC2, C1, andL. Combining Eq. (4) and Eq. (5)
for the two media and solving them forC1 andC2 yields:

C1 = (ε2−ε1)/(ε2ε1(v
2
1 −v2

2) ·L,

and

C2 = (ε2−ε1)/((ε2v
2
2 −ε1v

2
1) ·L). (6)

Table 1. Probe parameters estimated based on Eqs. (5) and (9) and
absolute errors calculated with Gauss law.

Parameter Value Abs. Error

L [nH m−1] 625.0 23.0
C1 [pF m−1] 22.4 0.9
C2 [pF m−1] 304.6 30.0

Finally L is estimated with the relationship to the rod
impedance:

Z(ε) =
√

L/C(ε). (7)

The jump between the impedance of the probe plus the sur-
rounding mediumZ(ε) and the impedance of the connecting
cableZ0 causes a partial reflection of the TDR signal at the
junction of cable and probe. By measuring the amplitudes of
incoming and reflected signal, denoted byAI andAR, we ob-
tain the reflection coefficient that is linked to the impedance
as follows:

r(ε) = AR/AI = (Z(ε)−Z0)/(Z(ε)+Z0), (8)

Substitution of Eq. (4) and Eq. (7) into Eq. (8) and solving
for L yields:

L = (1+r(ε))/(1−r(ε)) ·Z0/v(ε). (9)

Based on Eqs. (6) and Eq. (9), the probe parametersC1, C2,
andL have been derived from TDR reflectograms obtained in
de-ionized water (ε=80 at 20◦C) and air (ε=1) with parallel
rod geometry for all probes as presented in Table 1. Based on
the standard deviation of the dielectric permittivity values we
could additionally quantify the relative measurement error to
5%.

3.3 C-G relation

As coated rods do not allow direct measurements of the elec-
trical conductivity, we employ an empirical function that re-
latesC(x) to G(x), as proposed by Hakansson (1997), to
close our set of equations:

G(C) =

{
G∞ · (1−exp(−(C −C0)/Cd), if C ≥ C0,

0, if 0 ≤ C ≤ C0.
(10)

G∞ is the conductance at saturation,C0 is a capacity thresh-
old below which conductance is zero andCd determines how
fast C reaches its maximum value. Becker (2004) showed
with numerical simulations that Eq. (10) is a suitable model.
In general,Cd ,G∞, andC0 have to be determined empiri-
cally. In a clay-rich soil one could furthermore expectG to
be non-zero for aC smaller thanC0. The parameter esti-
mation requires manual calibration during the inversion of a
known soil moisture profile.
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Table 2. Soil texture (following the United States Department of Agriculture (USDA), 1993 classification), bulk densityρb, saturated soil
moistureθS and permanent wilting point (PWP) of the dominating Cambisoil at the study area Rehefeld, and experimental glass beads.ρ

andθS were estimated on 1.00 m3 soil cores with grain density of 2.65 g cm−3. PWP is the soil moisture at 160 m pressure head. The glass
beads have a grain size ranging from 0.25 to 0.5 mm in diameter. Standard deviation is abbreviated as SD.

Sand Silt Clay ρb SDρb θS PWP
Soil type [%] [%] [%] [g cm−3] [g cm−3] [m3m−3] [m3m−3]

Cambisoil 52 32 16 1.15 0.11 0.56 0.08
Rehefeld
Glass beads 100 – – 1.50 0.05 0.38 0.03

3.4 ε−soil moisture relation

Different models linkingε and soil moisture are reviewed by
Cassiani et al. (2006) and Lesmes and Friedman (2005). Be-
cause of different geochemical and geophysical properties it
is difficult to find a universal petro-physical relationship for
the unsaturated zone (Paasche et al., 2006). In this study,
the soil moisture fromε is calculated using the empirical
relation proposed by Topp et al. (1980) for sand and glass
beads. Theε-soil moisture relation was developed using 11
undisturbed soil samples in a plastic core cylinder (diame-
ter=0.057 m, length 0.10 m) from different horizons of the
study area. In the laboratory, samples were saturated and
in each sample a 3-rod 0.075 m long TDR probe (CS640-L
connected to a TDR100, both Campbell Scientific Inc.) were
inserted. The samples were slowly dried. Once or twice a
day the soil moisture was estimated by gravimetric method
and the dielectric permittivity by TDR measurements. Dif-
ferent approaches to linkε and soil moisture were tested (Al-
harthi and Land, 1987; Roth et al., 1992; Malicki et al., 1996;
Friedman, 1997). For the soils in the study area, the linear
relationship between the refractive index and soil moisture
(Herkelrath et al., 1991) was found to be most suitable:

θ = a+b ·
√

ε. (11)

The parametersa andb are fitting parameters.

3.5 Probe deformations during installation

We investigated whether Spatial TDR clusters allows assess-
ment of distributed soil moisture profiles under natural con-
ditions in the headwater of the Weißeritz catchment close to
the village of Rehefeld in Saxony, Germany. Soils are mainly
Cambisols in periglacial weathering covers. In the summer
of 2006, we installed two Spatial TDR clusters at two hill-
slopes close to the village Rehefeld. Table 2 shows the mean
soil characteristics determined from 20 undisturbed soil sam-
ples extracted in profiles excavated up to a depth of 0.70 m
close to one of the clusters. Additional details on the project
context, the spacing of TDR probes and the catchment are
discussed in Zehe et al. (2010). The importance for the
present study is that the installation of the 0.60 m long Spatial

TDR probe at this field site was a challenging task, due to the
large amount of gravel of up to 0.4 kg kg−1 (Landesamt f̈ur
Umwelt, Landwirtschaft und Geologie, 2006), the increasing
density with depth and the heterogeneity of the soils. Simi-
lar problems were documented by Spittlehouse (2000). We
used a steel template with three holes set at the right distance
from each other as well as a power drill with a 0.60 m long
auger. Several attempts (on average about two) were nec-
essary to drill three holes with the appropriate distance and
depth due to gravel blocking. Nonetheless, we had difficul-
ties in ensuring that the rods of the probes were parallel. Fig-
ure 1 illustrates typical deformations of the probes; the rods
converge towards the end (Fig. 1a) or diverge with increas-
ing depth (Fig. 1b). As the theory of the inversion assumes
parallel geometry of the rods, these deformations will likely
cause errors in the estimated soil moisture profiles, because
C1 andL cannot be assumed as constant over the profile. In
section 3.2, we describe the experimental setup to investigate
the influence of simple rod deformations on the inversion.

3.6 Gravel and stones

The pulse velocity measured with TDR is related to the aver-
age volumetric soil moisture. This can, as suggested by Topp
and Davis (1982), lead to misinterpretations when abrupt wa-
ter content changes along the transmission lines are present.
Knight et al. (1997) theoretically discussed the influence of
“gaps” in the integration volume which were filled with ma-
terials with either a lower than average or higher than average
permittivity. They found materials with lower than average
permittivity to have stronger impacts on TDR measurements.
From a soil physical view, coarse gravel and stones in the in-
tegration volume of the TDR probe reduce the total volume
of the pore space8 at that depth.

4 Laboratory experiments to quantify error sources

In this section we present the setup of our five different lab-
oratory experiments and present the results. In experiment 1
to 4, we used glass beads with a grain size of 0.25–0.5 mm
diameter to ensure that our performance test took place in a
medium with homogeneous pore space. In experiment 5, we
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Table 3. Parameter sets characterizing theC-G relations for inver-
sion of the reflectograms into soil moisture profiles both for glass
beads and soils.

G∞ C0 Cd

Exp. Name [mS m−1] [pF m−1] [pF m−1]

1 Glass beads 1.5 50 18
2 Rehefeld soil 2.0 50 18

(a)

 25 

 1 

Fig. 3: Sketch of the plastic box with installed SUSU03 and position of the wooden template 2 

(A), and sketch of the four different probe geometries (B). 3 

 4 

(b)

 25 

 1 
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(A), and sketch of the four different probe geometries (B). 3 

 4 

Fig. 3. Sketch of the plastic box with installed SUSU03 and position
of the wooden template(a), and sketch of the four different probe
geometries(b).

used disturbed soil from the field as described in Table 2 to
test the method within a heterogeneous medium.

4.1 C-G relation,ε-soil moisture relation and constrain-
ing of inverted moisture profiles

We estimated the three parametersCd ,G∞, and C0 of
Eq. (10) within experiments 2 and 5. The results are listed
in Table 3. The parameters of Eq. (11)a andb were esti-
mated at−0.2291 and 0.1324, respectively. The coefficient
of determinationR2 was 0.9837.

The last crucial step to ensure that the inverted soil mois-
ture profiles complied with soil physics is to constrain the
inversion by a physical range. The upper end is defined by
soil saturated water content (θS) and the lower end by the
permanent wilting point (PWP). This can easily be achieved
by using the inverseε to θ and the inverseC to ε relation-
ships to obtain upper and lower limits forC. The parameters
for the different soil substrates are listed in Table 2.

4.2 Experiment 1: effect of uncoated and coated probes
on the reflectogram in field soils

We compared two SUSU03 probes, one of each with and
without coating. Experiments were accomplished in a plas-
tic box with a height of 0.70 m and edge length of 0.30 m by
0.30 m (Fig. 3a). Both probes were installed in the middle
of the box and we placed a wooden template at 0.59 m depth
to secure ideal probe geometry (Fig. 3a). The box was care-

 26 
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Fig. 4: Reflectograms obtained with coated (CP) and uncoated (UP) SUSU03 probes with 2 

0.60 m rods at two different soil moistures, measured in an experimental box with glass beads 3 

(Table 2). Bulk electrical conductivity was 1.0 10-2 dS m-1 for the dry case and 6.7 10-2 dS m-1 4 

for the wet case. 5 

Fig. 4. Reflectograms obtained with coated (CP) and uncoated (UP)
SUSU03 probes with 0.60 m rods at two different soil moistures,
measured in an experimental box with glass beads (Table 2). Bulk
electrical conductivity was 1.0×10−2 dS m−1 for the dry case and
6.7×10−2 dS m−1 for the wet case.

fully filled with glass beads that were moderately compacted
to ensure good contact between soil and TDR probes (Ta-
ble 2). The experiment was conducted at two different wet-
ness conditions, namely 0.08–0.09 m3 m−3 (dry) and 0.20–
0.21 m3 m−3(wet).

Figure 4 shows the reflectograms of a coated and an un-
coated rod probe at two different soil moistures in glass
beads. In both cases the travel time of the coated probe is
smaller compared to the uncoated which is an effect of the
isolating PVC coating. Estimated bulk electrical conductiv-
ity based on the method suggested by Huisman et al. (2008)
and Lin et al. (2007) yielded values of 1.0×10−2 dS m−1 and
6.7×10−2 dS m−1 for the dry and wet case, respectively. For
the case of uncoated rods, even a low electrical conductiv-
ity has already a strong influence on the shape of the reflec-
togram. Especially in the wet case, there is a strong attenu-
ation between 2 and 14 ns that is much less pronounced for
the coated rods. Despite the low value of bulk electrical con-
ductivity, its influence on the uncoated probe is significantly
strong. We thus may state that coated rods will deliver the
more reliable reflectograms and should be used in these soils
when using a probe length of 0.60 m.

4.3 Experiment 2: performance in homogeneous media
during transient conditions

Figure 5 shows the experiment setup. The experiment was
conducted in a 1 m high and 0.15 m wide PVC tube. Glass
beads were filled into the tube and compacted, resulting in
a bulk density of 1.51 g m−3 and a saturated water content
of 0.38 m3 m−3 (Table 2). Two T-pieces with a diameter of
0.15 m and a length of 0.09 m in the tube allowed for the in-
stallation of THETA probes (THETA, Delta-T-Devices) with
a shaft length of 0.11 m, rod length of 0.06 m and a diam-
eter of 0.04 m. One probe of type SUSU03 was installed
in the centre of the tube with rods pointing from the upper
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Table 4. Difference of inverted soil moisture to point measurements with 1 THETA probes as absolute error (AE) of the soil moisture in
m3m−3; goodness of fit criteria calculated from observed and reconstructed reflectograms: root mean square error (RMSQ), mean error
(ME), standard deviation of error (STDE), Nash-Sutcliffe efficiency (NSE) and the objective function (Eq. 2).

Time [d] 0 1.5 2.5r 3.5 4.5

AE 0.30 m −0.022 −0.032 0.022 −0.002 −0.003
AE 0.55 m 0.003 0.000 0.010 −0.029 0.019
RMSQ 1.50×10−3 4.52×10−3 6.18×10−3 8.05×10−3 6.65×10−3

ME −1.02×10−3
−3.06×10−3

−4.60×10−3
−5.95×10−3

−4.51×10−3

STDE 1.10×10−3 3.35×10−3 4.02×10−3 5.06×10−3 4.81×10−3

NSE 0.995 0.994 0.992 0.990 0.993
Objective 3.35×10−14 3.06×10−13 5.69×10−13 9.63×10−13 6.55×10−13

Function

edge of the tube to the bottom and the narrow side of the
probe faced to the T-pieces. Independent soil moisture mea-
surements were obtained with two THETA probes placed at
a depth of 0.30 m and 0.55 m, which work in the FDR do-
main with a measurement error of±0.01 m3 m−3 (Gaskin
and Miller, 1996). The THETA probes reach 0.03 m into
the centre tube. The rods of the THETA probes have a dis-
tance of 0.04 m to the rods of the SUSU03 to avoid inter-
action of the measured signal. The sample area of a coated
probe is of low range (Ferré et al., 1998) outside the rods and
the additionally reflectograms are proven on the influence of
the THETA probes. We started the experiments with a tube
that was fully saturated with de-ionized water and the soil
moisture was reduced by sucking off 250 ml of water at the
bottom of the tube every 6 h. Soil moisture profiles were in-
verted at the different moisture conditions and compared to
the THETA probes.

Figure 6 presents inverted moisture profiles in comparison
to the THETA probe obtained during the experiment. For the
inversion the parameter set “exp. 1” in Table 3 was used for
the inversion. The profile data were aggregated to 0.05 m for
a better comparability. Table 4 shows the absolute error of
the inverted profiles to the THETA probes and goodness of fit
criteria for the inversion calculated from observed and recon-
structed reflectograms. Both data sets are generally in good
agreement, except for days 1.5 and 2.5. The higher values of
the THETA probe measurements may result from effects of
the T-pieces, which may have retained higher water content
during drainage. Finally, it is important to stress that even a
glass bead medium is not perfectly homogeneous. The reader
should note the small variations in the moisture profile at the
beginning of the experiment, which reflect small differences
in saturated water content.

4.4 Experiment 3: effect of probe deformations

The effect of probe deformation on the estimated soil mois-
ture profile and the mean soil moisture were studied by de-
forming the two outer rods under controlled conditions with
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Fig. 5: Sketch of the setup of Experiment 2. A SUSU03 probe and two Theta probes were 3 

installed in PVC tubes and the tubes were filled with glass beads. At the bottom of the tube, 4 

an outlet permits the controlled and stepwise drainage of water in the tube. 5 

Fig. 5. Sketch of the setup of experiment 2. A SUSU03 probe and
two Theta probes were installed in PVC tubes and the tubes were
filled with glass beads. At the bottom of the tube, an outlet permits
the controlled and stepwise drainage of water in the tube.

the assumption of a parameter set up for a correctly paral-
lel installed probe. Here we studied four different cases:
parallel rods, converged rods, diverged rods and strongly di-
verged rods (Fig. 3b and Table 5). The experiment was con-
ducted with glass beads in a plastic box and a template to
ensure the probe deformation (Fig. 3a). The experiment was
conducted at three soil moisture levels: 0.04–0.05 m3 m−3,
0.07–0.09 m3 m−3, and 0.20–0.23 m3 m−3. The values were
cross-checked with THETA probe measurements along the
experimental box. A TDR measurement was performed and
inverted into a soil moisture profile. The procedure was re-
peated for all selected deformations. Establishing a homo-
geneous soil moisture profile during a single experiment was
rather difficult and could only be achieved approximately.
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Table 5. Mean soil moisture observed with different probe deformations at soil moisture of approximately 0.04 m3m−3, 0.08 m3m−3 and
0.20 m3m−3 estimated with SUSU03 and THETA probes. Standard deviation is abbreviated as SD.

Type of Strong Mean THETA SD THETA
Convergence Standard Divergence

Deformation Divergence probes probes

Distance between 0.03 0.06 0.10 0.14 – –
the outer rods [m]

0.04 m3m−3 0.036 0.038 0.039 0.039 0.040 0.005
0.08 m3m−3 0.077 0.081 0.079 0.073 0.080 0.010
0.21 m3m−3 0.207 0.199 0.200 0.195 0.200 0.020

Table 6. Amplitude coefficient (CA) for different probe deformations at soil moisture of approximately 0.04 m3m−3, 0.08 m3m−3 and
0.20 m3m−3.

Type of Strong
Convergence Standard Divergence

Deformation Divergence

Distance between 0.03 0.06 0.10 0.14
the outer rods [m]

0.04 m3m−3 0.11 −0.33 −0.58 −0.75
0.08 m3m−3 0.22 −0.20 −0.66 −0.80
0.21 m3m−3 0.46 −0.25 −0.58 −1.31
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Fig. 6: Comparison of inverted soil moisture profiles obtained within glass beads with 2 

independent soil moisture measurements by means of THETA probes (marked with circles). 3 

The colour coding is the same for both data sets. 4 

 5 

Fig. 6. Comparison of inverted soil moisture profiles obtained
within glass beads with independent soil moisture measurements by
means of THETA probes (marked with circles). The colour coding
is the same for both data sets.

Figure 7 presents the reflectograms and the inverted
soil moisture profiles at different average soil moistures of
0.05 m3 m−3 (Fig. 7a and d), 0.08 m3 m−3 (Fig. 7b and e) and
0.20 m3 m−3 (Fig. 7c and f) for the four different rod geome-
tries shown in Fig. 3b. During inversion we used the parame-

ter set for glass beads (Table 3). It has to be noted that due to
installation and de-installation of the probe, which required
refilling of the box, the soil moisture and bulk density pro-
files varied slightly between different experiments (Table 5
and Fig. 7a–c) when comparing the different geometries.

A decreasing distance between the wave guide rods means
an increasing capacitance of the transmission line. Hence,
the probe parametersC1 andL should vary along the trans-
mission line. However, they are currently assumed to be con-
stant, because we are studying the effect of rod deformation
on the retrieved soil moisture profile by the supposition of a
parallel geometry on de facto different geometries. For con-
vergent rods, the average soil moisture was measured cor-
rectly compared to the measurement with parallel rods. How-
ever, the soil moisture along the rod increases with depth in
all three cases, implying an underestimation of soil moisture
in the upper half and an overestimation of soil moisture in
the lower half. This becomes especially apparent for inter-
mediate conditions and wet conditions.

For the case of divergent rods, the apparent soil moisture
profile is just flipped in comparison to the convergent case.
Thus, in the upper half we observe an overestimation and
in the lower part an underestimation of the soil moisture. It
is important to note that the average soil moisture calculated
from the travel time with constant parameters is in most cases
within the error range almost unaffected by deformations of
the probe (Table 5). The experiments were also repeated in
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Fig. 7. Reflectograms and inverted soil moisture profiles obtained with different probe deformations at a soil moisture of approximately
0.04 m3 m−3 (a) and (d); 0.08 m3 m−3 (b) and (e); and 0.20 m3 m−3 (c) and (f). Standard denotes according to Fig. 3 ideal geometry,
Convergence means convergent rods with increasing depth, Divergence and Strong Divergence values signifies a divergent probe as described
in Fig. 3.

coarse sand of 0.06 to 0.60 mm grain size, with similar re-
sults (not shown). Thus, we state that unknown changes in
probe geometry will lead to a systematic bias in inverted soil
moisture profiles, but will leave the average values largely
unchanged in case of the used SUSU03 probe.

As a first step, we tested a simple quality measure to iden-
tify probe deformations by introducing the coefficient of am-
plitude CA, defined as:

CA = (Vmax1−Vmin)/Vmax1 (12)

whereVmax1 = maximum voltage of the first reflection and
Vmin is the inflection point before the second reflection in
the reflectogram. The corresponding values for the deforma-
tion cases are listed in Table 6. In the convergent case, CA
has positive values and is negative in the standard and di-
vergent case. With increasing divergence CA values become
larger. This is consistent with the theory of a plate capacitor,
as an increasing distance between the rods corresponds to a
decreasing conductance. The amplitude at the end of the re-
flectogram will thus increase, which yields a negative value
for CA. In the convergent case the conductance increases at
the end of the probe, which means a small amplitude and thus
a positive CA. However, in the case of layered soils, where

the lower part can be systematically drier/wetter than the up-
per soil, or case of gradients in salt, clay or organic content
identification of probe deformations using Eq. (12) is not that
straight forward.

4.5 Experiment 4: effect of solid objects in the
integration volume

The purpose of this experiment was to study the influence
of different solids on the reflectogram and the estimated soil
moisture profile. A coated SUSU03 probe was installed in
the same box used in experiment 1 (Fig. 3a); ideal parallel
geometry was ensured by installing a wooden template at a
depth of 0.59 m. An iron block (a conductor), a dry and a
saturated piece of wood (insulator), a PVC block (insulator)
and a brick or a boulder from the study area, all with a vol-
ume of approximately 1.5 l, were placed close to the probe at
a depth of 0.30 m. The box was filled with glass beads (Ta-
ble 2). TDR measurements were performed at three different
soil moisture levels: 0.04 m3 m−3 (dry case), 0.16 m3 m−3

(intermediate case) and 0.30 m3 m−3 (wet case).
Figure 8 presents the reflectograms as well as the inverted

soil moisture profiles for the brick, the iron block, the dry
and saturated wood, and the boulder block. Table 7 lists
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Fig. 8. Reflectograms and inverted soil moisture profiles with an iron block, dry and wet wood, PVC block, brick and boulder with a volume
of approximately 1.5 l at a depth of 0.30 m. All probes were measured with ideal geometry. The mean soil moisture is about 0.04 m3 m−3,
((a) and(d), dry case) 0.16 m3 m−3 ((b) and(e), intermediate case) and 0.30 m3 m−3 ((c) and(f), wet case). Wood is abbreviated to W.

Table 7. Mean soil moisture observed with THETA probes and estimated with the different objects and the soil moisture in the area of the
object.

Soil moisture between 0.28–0.33 m depth [m3m−3]

t Mean Iron Boulder Dry Wood Sat.Wood Plastic Brick
THETA
probe

dry 0.04 0.094 0.034 0.031 0.034 0.031 0.034
intermediate 0.16 0.240 0.131 0.135 0.152 0.142 0.140
wet 0.30 0.378 0.306 0.308 0.307 0.299 0.328

mean soil moisture SUSU03

dry 0.04 0.037 0.034 0.034 0.033 0.034 0.035
intermediate 0.16 0.160 0.147 0.147 0.154 0.166 0.161
wet 0.30 0.310 0.313 0.313 0.312 0.315 0.316

the soil moisture observed with THETA probe measurements
along the profile, the mean soil moisture estimated with the
SUSU03 and the soil moisture in the area of the object. Dur-
ing inversion, parameter set “exp. 2” (Table 3) was used to
characterize the transmission line. Similar to experiment 3
it has to be noted that due to installation and de-installation
of the probe, soil moisture and bulk density profiles varied
slightly between different experiments. This leads to a non-
constant profile in the inverted profiles, especially in the in-
termediate and wet case (Fig. 8e and f).

As the iron block is an ideal conductor, the electric con-
ductivity is strongly increased at a depth of 0.30 m. Con-
sequently, soil moisture appears to be higher at that depth
in the soil moisture profile, which is indicated in the reflec-
togram by the pronounced decrease in the amplitude at 5 ns
in Fig. 8c. The inversion yielded a soil moisture value of
0.37 m3 m−3 at 0.30 m, whereas the true soil moisture was
approximately 0.30 m3 m−3. The other objects, with the ex-
ception of the wet piece of wood, show up as a slightly drier
region in the reflectogram, marked by the small increase in
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Fig. 9. Inverted soil moisture profiles obtained in an experimental box filled with soil from Rehefeld with(a) the irrigation,(b) the absolute
error of inversion compared to measurement with THETA,(c) the objective function (shortened with OF) of the inversion and(d) the inverted
profiles to a depth of 0.55 m.

normalized voltage at 5 ns in Fig. 8b and c. The wet peace
of wood has no influence in the dry and intermediate case
and less effect on the profile in the wet case, although slight
heterogeneities in the pore space could be observed and have
similar impact on the reflectograms. Inversion yields slightly
lower soil moisture at 0.30 m when compared to the values
below and above. The effect of the iron block and the other
objects agree with the expected behaviour.

It is important to stress that an ideal conductor in the in-
tegration volume has the same influence on the reflectogram
and the inverted moisture profiles as a convergent probe ge-
ometry (compare Fig. 7a and Fig. 8a). Both lead to a strong
decrease in the amplitude of the reflectogram. Fortunately,
gravel, boulder blocks and other solid objects of low electric
conductivity and low permittivity seem to be not as critical
as was expected. Their effect on the reflectogram is rather
small.

4.6 Experiment 5: measurement of soil moisture in
disturbed soil

The applicability of TDR in soils of high clay content is gen-
erally hampered because of relaxation phenomena and high
energy losses along the transmission line (Chen et al., 2007;
Kupfer et al., 2007). As the soil at the field sites contains
about 16% clay, we performed irrigation experiments using
field soil material (Table 2) in the box described in experi-

ment 1 with the wooden template to guarantee an ideal probe
geometry. The plate at the base was perforated to allow for
exfiltration of irrigated water. To set up the experiment, we
filled the box to 50% with disturbed soil material from the
field site, installed the SUSU 3 probe in the template, in-
stalled two THETA probes at depths of 0.25 m and 0.50 m
and then filled the remaining volume. Additionally, we in-
stalled a 0.30 m uncoated TDR probe of type CS610 (Camp-
bell Scientific Inc.) vertically from the top into the box to
measure the bulk electrical conductivity. After filling and
probe installation, the soil material was compacted to avoid
air gaps between the rods and the surrounding soil. The spin-
up time of the experiment was two months with an irrigation
amount of 74 l m−2 every fourth day to achieve stable ini-
tial conditions. The actual irrigation experiment lasted 10 h,
with a temporal sampling interval of the soil moisture data
before irrigation of 20 min and during and after irrigation of
10 min. The soil was irrigated twice (74 l m−2 4 min−1) us-
ing de-ionized water. During the inversion we used the pro-
file information of the previous time step as the initial con-
dition for the following step. Inverted soil moisture profiles
obtained with Spatial TDR were compared to measurements
with the THETA probes at two different depths.

Figure 9 presents the temporal development of the inverted
soil moisture profile during two irrigations of approximately
74 l m−2 in a period of 4 min at 5:20 h and 6:40 h (a), the
absolute error of inverted profile compared to THETA probe
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measurements (b), the objective function of the inversion (c),
and the inverted profiles (d). The range of the bulk conductiv-
ity measured with a CS610 was 0.04–0.10 dS m−1. The spa-
tial resolution was aggregated to 0.05 m length for a better
comparability with the THETA probe measurements. Dur-
ing inversion, parameter set “exp. 2” (Table 3) was used to
characterize the transmission line.

The soil column was relatively dry before the irrigation,
with a dry top layer and a slight increase in soil moisture to-
wards the bottom. During the irrigation, the infiltration front
reaches a depth of approximately 0.15 m in the first 10 min,
and then the infiltration front reaches the bottom after further
10 min. Exfiltration starts at the bottom of the soil column,
with some 10 l m−2 leaving the column in the first few min-
utes after the infiltration front has reached the bottom. In
the top layer, up to a depth of 0.10 m, the soil moisture de-
creases while the lower layers remain saturated for 2 h, after
which the second irrigation experiment is initiated. The wet-
ter soil reacts much faster upon irrigation. Drying then starts
again, mainly forced by evaporation, and the profile evolves
to the initial conditions. First, the soil moisture decreases
from 0.56 m3 m−3 to 0.25 m3 m−3 in the top layer up to a
depth of 0.08 m within a few hours. The deeper parts have
lower rates of drying depending on the depth, and at the end
of the experiment the lowest 0.12 m were still saturated.

The estimated absolute error (Fig. 9b) of the inverted value
minus the measured soil moisture with THETA probes in
the depths 0.20 m and 0.50 m shows that the inverted value
slightly underestimates the soil moisture measured with the
THETA probes before the irrigation. During the irrigations,
the inversion overestimates the soil moisture, and during
the drying the soil moisture is underestimated again. Espe-
cially during the irrigation phase, the absolute error is larger
for the upper probe (0.15 m3 m−3) than for the lower one
(0.05 m3 m−3). During the drying phase, the soil moisture
for the upper probe is slightly overestimated, and for the
lower it is underestimated. One explanation for the differ-
ences smaller<0.03 m3 m−3 between inverted soil moisture
and THETA probe measurements during the experiment is
small scale heterogeneity in the soil column.

Figure 9c shows the temporal development of the objec-
tive function for the inversions, which is an uncertainty mea-
sure for the inverted soil moisture values. A higher value of
the objective function implies a high uncertainty of the mea-
surements. The objective function slightly decreases at the
beginning of the experiment. It increases with the start of the
irrigation. Between the two irrigation events, the objective
function remains constant, but increases again after the sec-
ond irrigation. Finally, the objective function value decreases
continuously with decreasing soil moisture content. The in-
crease of the objective function and the large difference to
the upper THETA probe during the irrigation indicate that
fast soil moisture changes are problematic for the inversion
procedure, which applies especially for the upper part of the
probe.

5 Discussion and conclusions

Different laboratory experiments were carried out to inves-
tigate the feasibility of retrieving soil moisture profiles with
Spatial TDR technology in glass beads and heterogeneous
loamy soils with substantial clay content.

This study shows that deformation of the probe geometry,
which can be assumed to be the rule rather than the exception
when installing long TDR probes in heterogeneous soils, in-
fluence both the reflectogram and the inverted soil moisture
profile. In the case of divergent or convergent rods, neither
the inductanceL nor the capacitanceC1 can be assumed to
be constant along the transmission line. Fortunately, probe
deformations leave the average moisture content along the
probe almost unchanged. The average value is determined
from the pulse travel time between the first and second main
reflections in the reflectogram. Their location is not affected
by probe deformations, because we used coated probes here.
Average soil moisture values obtained with uncoated probes
are, however, more sensitive to probe deformations as shown
by Bänninger et al. (2008) and Spittlehouse (2000). Spittle-
house observed a reduction of average soil moisture in the
divergent case and predicted an underestimation of the sam-
pling volume for the convergent case. Ferré et al. (1998)
showed that coated probes have a clearly smaller sampling
volume than uncoated probes and that three rod probes have
a smaller sample volume than two rod probes. A decreas-
ing/increasing of the sample volume in the case of conver-
gent/divergent probes has thus a smaller effect when using
coated three rod probes, which explains the robustness of av-
erage soil moisture contents obtained here. A much stronger
deformation than has been investigated here could surely
have an effect on the average soil moisture values. However,
in the present study we just investigated realistic rod defor-
mations that were observed in a related field study (Zehe et
al., 2010).

It is also good news that solid objects like gravel, wood or
boulder blocks only have a small effect on the inverted soil
moisture profiles. They show up as slightly drier regions in
the reflectogram. However, when a solid electrical conduc-
tor (an iron block) is present, soil moisture in this region is
strongly overestimated by the inversion. Similar problems
could occur in soils with a high content of iron-rich miner-
als, as discussed by Robinson et al. (1994) and Van Dam et
al. (2002).

Finally, we found that observations with THETA probes
and soil moisture values retrieved from the same depths were
generally in good accordance both in glass beads and dis-
turbed natural soil from the field site. It has to be considered
that during infiltration or withdrawal, the accuracy of the in-
verted profile decreases. We demonstrated furthermore that
Spatial TDR is capable of monitoring fast infiltration and re-
distribution of irrigation water in soil.

We have analyzed the sources and subsequent impacts of
different kind of errors. The biggest problem is certainly the
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bias that is introduced by probe deformations. The suggested
measure CA allows assessing whether the probe is conver-
gent or divergent. During the experiments we found positive
values in the case of convergent rods. Negative values are
observed for parallel and divergent rods. The absolute value
of the negative values increases with increasing divergence.
Thus, if the reflectogram of a probe shows strongly negative
or positive values under different conditions, it is likely that
the probe geometry is deformed. In the case of a small neg-
ative CA, the function is not able to give clear information
about the probe geometry if the probe is parallel or slightly
divergently installed. This could lead to a biased inversion
with a slight underestimation in the depth. This error source
can only be identified by excavation of the probe. In the case
of layered soils where the lower part can be systematically
drier/wetter than the upper soil, or the case of gradients in
salt, clay or organic content, identification of probe deforma-
tions using Eq. (12) is not that straight forward. The ampli-
tude coefficient should to be evaluated for different wetness
states, if the amplitude coefficient remains unchanged while
observed, a probe deformation is likely. We recommend, fur-
thermore, assessment of detailed information on the soil pro-
file and the soil’s physical properties within different layers
to assist interpretation of the amplitude coefficient.

Future steps should further elaborate on the calibration of
transmission line parameters. Especially for soils rich in fine
particles, Eq. (10) should be revisited, to check whether the
assumption of zero conductivity is reasonable whenC drops
belowC0. We think that independent data on the electrical
conductivity of the soil will facilitate solving this problem.
Furthermore, information about soil chemical properties and
mineral content could be used as a pedotransfer function in
supplementary work. It might also be necessary to intro-
duce separate parameterization of theC −G relationship in
Eq. (10) for strongly different soil horizons.
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