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Abstract. Data scarcity and model over-parameterisation,
leading to model equifinality and large prediction uncer-
tainty, are common barriers to effective hydrological mod-
elling. The problem can be alleviated by constraining the
prior parameter space using parameter regionalisation. A
common basis for regionalisation in the UK is the HOST
database which provides estimates of hydrological indices
for different soil classifications. In our study, Base Flow In-
dex is estimated from the HOST database and the power of
this index for constraining the parameter space is explored.
The method is applied to a highly discretised distributed
model of a 12.5 km2 upland catchment in Wales. To assess
probabilistic predictions against flow observations, a prob-
abilistic version of the Nash-Sutcliffe efficiency is derived.
For six flow gauges with reliable data, this efficiency ranged
between 0.70 and 0.81, and inspection of the results shows
that the model explains the data well. Knowledge of how
Base Flow Index and interception losses may change under
future land use management interventions was then used to
further condition the model. Two interventions are consid-
ered: afforestation of grazed areas, and soil degradation as-
sociated with increased grazing intensity. Afforestation leads
to median reduction in modelled runoff volume of 24% over
the simulated 3 month period; and a median peak flow re-
duction ranging from 12 to 15% over the six gauges for the
largest simulated event. Uncertainty in all results is low com-
pared to prior uncertainty and it is concluded that using Base
Flow Index estimated from HOST is a simple and potentially
powerful method of conditioning the parameter space under
current and future land management.
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1 Introduction

Rainfall-runoff modelling can be undertaken on different
catchment discretisation scales: starting from representa-
tive volumes of a few centimetres, going up to the whole
catchment being treated as one element (Beven, 2008; Singh,
1996). The choice of modelling scale depends on modelling
objectives, the sought prediction accuracy and the available
supporting data, particularly rainfall and flow observations.
It is common to have supporting flow observations at only
one point in the catchment or to have no response record at
all (Sivapalan et al., 2003; Wagener et al., 2005). Such data
scarcity (or absence) contributes to ambiguity in model pa-
rameter values due to the absence of information with which
to constrain the prior parameter space (Beven, 2001, 2003),
which may result in unacceptable uncertainty in modelled re-
sponse. Where the modelling objective requires a detailed
catchment discretisation with many element types, each with
its own model parameter set, the issue of uncertainty due to
lack of flow observations quickly becomes over-riding.

To alleviate this problem, parameter regionalisation may
be used to constrain the parameter space prior to, or instead
of, calibration (Bardossy, 2007; McIntyre et al., 2005; Yadav
et al., 2007). The core of most regionalisation approaches is
an estimation of either the dependence of the model param-
eter on physical catchment characteristics (e.g. catchment
area, steepness, soil permeability) (Lamb and Kay, 2004; Lee
et al., 2006; McIntyre et al., 2005; Young, 2006); or the de-
pendence of response indices (e.g. mean annual discharge,
daily discharge standard deviation) using physical character-
istics (Bardossy, 2007; Yadav et al., 2007), so that the indices
can then be used to restrict the parameter space. The first ap-
proach is weakened by uncertainty in the model parameters
and hence the regional relationship, and the regional rela-
tionship neglects or simplifies model parameter interdepen-
dencies (McIntyre et al., 2005). The potential benefit of the
second approach is that the response indices may be selected
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so that they are relatively independent and well-defined for
the relevant set of catchments, so that relationships with the
chosen catchment characteristics may be found with mini-
mal ambiguity. The underlying challenge is to find indices
which are adequately informative, independent and lead to
well-defined regional relationships.

Yadav et al. (2007) explored different physical character-
istics and response indices in a pilot study for 30 UK catch-
ments. The most influencial properties were found to be Base
Flow Index (proportion of flow as base flow) and a Wetness
Index equal to precipitation divided by potential evaporation.
In their work the Base Flow Index (BFI) is estimated using
the HOST system ofBoorman et al.(1995). The HOST sys-
tem provides estimates of Base Flow Index (BFIHOST) for
each of 29 soil classes as functions of various physical soil
properties: depth to gleyed layer, depth to slowly permeable
layer, integrated air capacity, presence of peaty surface layer,
and soil parent material. Therefore, BFIHOST is non-linearly
related to soil properties, with considerable uncertainty. The
variance of BFIHOST is specified for each class, represent-
ing spatial and temporal variabilities within classes. Vari-
ous other researchers have found that BFIHOST is the catch-
ment characteristic of principal importance in the UK and
alone contains significant information about rainfall-runoff
model parameters (Lamb and Kay, 2004; Lee et al., 2006;
Young, 2006). In some cases, other catchment properties or
HOST outputs have been found to be more important. These
are generally, although not always, highly correlated with
BFIHOST (Wagener et al., 2004). In all applications of the
HOST data to rainfall-runoff modelling, the significant un-
certainty in HOST outputs, among other sources of model
uncertainties, means that formal uncertainty analysis is rec-
ommended.

As well as application to ungauged catchments, regional-
isation of response indices may be applied to land manage-
ment impacts analysis (Wagener, 2007). For example, the
impact of land management on soil properties can be spec-
ulated and translated, via the regional model, into changes
in response indices. This has been done most widely us-
ing indices derived from the USDA’s Curve Number system
(e.g. Gassman et al., 2007) and recently in the UK using
the HOST system (DEFRA, 2007). Although the effect of
some land management interventions has been well studied
in some catchments (e.g. the study of the impacts of trees by
Robinson et al., 2003), in general the link between land man-
agement and runoff indices is complex and not well identified
from the literature (O’Connell et al., 2007). Representation
of land management using conceptual models therefore in-
volves significant uncertainty.

The objective of this study is to propose a regionali-
sation scheme which may be applied throughout the UK,
and which may provide adequate information about rainfall-
runoff responses for a range of applications. In particular
the method is developed to allow us to predict flows in un-
gauged catchments and to explore impacts of local land man-

agement changes to catchment properties usinghighly dis-
cretisedcatchment models. The response index approach
to regionalisation is adopted, using the indices to condition
prior model parameter uncertainty into posterior distribu-
tions so that probabilistic predictions of land management
impacts can be made. While the methodology allows all
available runoff response indices to be introduced, we use
only BFIHOST with the hypothesis that this on its own is use-
fully informative. In the rest of this paper, the methodology
is described and assessed for a highly discretised catchment,
and its applicability to evaluating land use change impacts is
demonstrated.

2 Method

2.1 Parameter space restriction using BFI

Suppose a catchment is discretised into a large number
of runoff generating elements, and catchment response is
viewed as the integration of all the individual elemental re-
sponses (we consider network routing of generated runoff as
a separate issue, below). Potentially, the catchment model
needs a separate set of parameters for each element. Here, it
is assumed that all elements with the same HOST have the
same set of parameter values. Therefore, the number of dif-
ferent parameter sets needed for runoff generation modelling
is far less than the number of elements and cannot exceed 29
– the number of soil types in the HOST classification. For
simplicity, we assume each element to be homogeneous in
terms of HOST classification (although if the heterogeneity
was significant, the method could easily be extended to con-
sider the distribution of BFI values within each element).

For each model element, a hydrological model can be run,
and then the BFI can be estimated from the simulated runoff.
In this study, BFI is estimated using base flow hydrograph
separation procedure from Gustard et al. (1992). The pro-
cedure calculates flow minima of five-day non-overlapping
consecutive periods and subsequently searches for turning
points in this sequence of minima. The turning points are
then connected to obtain the base flow hydrograph which
is constrained to equal the observed hydrograph ordinate
on any day when the separated hydrograph exceeds the ob-
served. The simulated BFI is compared to the expected
BFIHOST value for the associated soil class. The closer the
comparison, the more consistent the model with the prior in-
formation about the soil. This comparison should account for
the standard deviation of BFI due to natural variablity within
a soil classσ (Table 1). Therefore, for each HOST soil type,
the posterior distribution of model parameterθ is expressed
as

p(θ) ∝ L(BFIHOST|BFIθ ) ∗ p0(θ) (1)

wherep0 is a prior parameter distribution,L(BFIHOST|BFIθ )
is the likelihood of BFI = BFIHOST given the model estimate
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Table 1. BFIHOST expected values, standard deviations and analogue classes under soil degradation (Packman et al., 2004).

HOST class 1 2 3 4 5 6 7 8 9 10

BFIHOST 1 1 0.9 0.79 0.9 0.65 0.79 0.56 0.73 0.52

Std 0.022 0.039 0.052 0.042 0.065 0.065 0.177 0.216 0.254 0.142

Analogue class 3 3 7 6 7 8 7 8 9 10

HOST class 11 12 13 14 15 16 17 18 19 20

BFIHOST 0.93 0.17 1 0.38 0.38 0.78 0.61 0.52 0.47 0.52

Std 0.213 0.075 0.231 0.225 0.028 0.195 0.027 0.039 0.104 0.207

Analogue class 11 12 3 24 15 18 18 20 22 20

HOST class 21 22 23 24 25 26 27 28 29

BFIHOST 0.34 0.32 0.22 0.31 0.17 0.24 0.26 0.58 0.23

Std 0.025 0.111 0.118 0.019 0.042 0.043 0.193 0.156 0.034

Analogue class 23 27 25 25 25 26 27 28 29

BFI = BFIθ . The likelihood function is assumed proportional
to a normal probability density function with expected value
BFIθ and varianceσ 2. In the case study, a single model struc-
ture is assumed, although the method may be generalized to
multiple model structures.

As introduced previously, the underlying hypothesis be-
hind the method is that BFIHOST alone contains an adequate
amount of information with which to condition the parameter
space. The method is therefore not applicable for condition-
ing the parameters of model components unrelated to soil
type. For example, this may include the routing effects of
lakes, reservoirs and the channel network; and effects of veg-
etation types on evapotranspiration and routing. The param-
eters of these components must be constrained using some
other source of knowledge or observed data.

2.2 Modelling aspects of land use change

As well as testing the applicability of the method to un-
gauged catchments, our motivation is to allow element-scale
(100 m×100 m) land management changes to be easily rep-
resented within catchment scale models. This involves iden-
tifying suitable changes top(θ) for the affected elements.
Two examples are discussed here – afforestation and grazing
intensity.

In most situations trees are known to increase interception
losses and hence reduce net rainfall, reduce soil water con-
tent, and increase infiltration rates at the soil surface (Jewitt,
2005). There is also evidence that base flow proportion in-
creases under forest both in Pontbren (Wheater et al., 2008)
and in reviews of paired catchment studies around the world
(Brown et al., 2005), but currently only limited quantitative

information about this change is available. Therefore, af-
forestation is assumed to lead to higher BFI, whilekeeping
the same HOST soil type. Hence, given a parameter setθ0
(and corresponding BFI value BFI0) before afforestation, the
posterior parameter probability distribution for new condi-
tions is defined as,

p(θf |θ0) ∝ L(θf |θ0) ∗ p0(θf ) (2)

Here,θf is a parameter set for afforested conditions, the prior
p(θf ) = p(θ0) is the parameter distribution for the current
HOST class, and the likelihoodL(θf |θ0) takes one of two
values: 1 if the simulated BFI forθf is higher than BFI0 and
0 otherwise. In other words, the posterior includes only those
parameter sets that lead to a base flow increase. We note
that, in principle, physics based models could be used as an
additional source of information for parameter conditioning,
e.g. followingJackson et al.(2008).

Changes in interception losses associated with afforesta-
tion may be estimated using a standard model using param-
eter distributions from the literature. For the simple hard
threshold bucket model shown in Fig. 1, the value of canopy
storage capacity,Cint can range from 0.2 to 3.8 mm depend-
ing on species, leaf area index, canopy cover, vegetation
structure, and density. Canopy storage is particularly low in
deciduous forests during leafless (winter) periods (David et
al., 2005).

The second land management change considered is in-
creasing stocking density, leading to soil structural degra-
dation. Following the approach of Hollis (Packman et al.,
2004), degraded soil is assigned an appropriate analogue
HOST class to represent the change (Table 1). The rationale
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for the proposed changes is that soil structural degradation,
in the form of topsoil and upper subsoil compaction and sea-
sonal “capping” and sealing of soil surfaces, causes a re-
duction in the effective soil storage, which in turn results
in increased surface runoff. Therefore, the general princi-
ple is that soil structural degradation affects the soil stor-
age/wetness component of the HOST classification, but does
not alter the hydro-geological component.

Given a parameter setθ0 (and corresponding BFI value
BFI0) before soil degradation, the posterior parameter prob-
ability distribution for the degraded conditions is defined as

p(θd |θ0) ∝ L(θd |θ0) ∗ p0(θd) (3)

whereθd is a parameter set for the degraded conditions, the
priorp(θd) equals the parameter distribution for the analogue
HOST class, and the likelihoodL(θd |θ0) takes one of two
values: 1 if the simulated BFI forθd does not exceed BFI0
and 0 otherwise. Hence, the posterior accepts only those pa-
rameter sets that lead to a base flow reduction and therefore
flashier response.

2.3 Performance statistics

The proposed parameter restriction method will result in
probabilistic discharge prediction. Often in hydrology, pre-
diction quality is characterised using the Nash-Sutcliffe ef-
ficiency coefficient (NS). To define its analogue for proba-
bilistic predictions, a “distance” between a data point at time
t (q0

t ) and a random variable that represents the modelled
value(ξt ) can be introduced as follows,

d(ξt , q
0
t ) =

√∫
(q − q0

t )2 · fξt (q)dq (4)

wherefξt denotes probability density function (pdf) forξt ,
and q is a variable for integration. Then transforming the
relationship using probability theory, the distance becomes

d(ξt , q
0
t ) =

√
Var[ξt ] + (E[ξt ] − q0

t )2 (5)

where Var[·] denotes variance, andE[·] denotes mathemati-
cal expectation. Then the NS statistic is defined as

NSprob
= 1 −

∑T
t=1 d2(ξt , q

0
t )∑T

t=1(q
0
t − E[q0])2

(6)

or using the above transformation

NSprob
= 1 −

∑T
t=1 Var[ξt ] + (E[ξt ] − q0

t )2∑T
t=1(q

0
t − E[q0])2

(7)

This can be subdivided into two parts

NSprob
=

{
1 −

∑T
t=1(E[ξt ] − q0

t )2∑T
t=1(q

0
t − E[q0])2

}
−

∑T
t=1 Var[ξt ]∑T

t=1(q
0
t − E[q0])2

(8)

Fig. 1. Interception loss model.

where the first part corresponds to the traditional NS coef-
ficient in which expected values are considered as predic-
tors; and latter represents the variance whereby the higher
predictor variance around the mean is, the less “effective”
the prediction. Although the proposed method may be used
for ungauged and poorly gauged catchments, for perfor-
mance assessment purposes the method is applied here to
a densely monitored experimental catchment, as if it were
poorly gauged; and the predictions are evaluated using the
traditional and proposed Nash-Sutcliffe efficiency coeffi-
cients.

3 Case study

3.1 Case study – catchment description

The method is demonstrated using data from the Pontbren
catchment in Powys, Wales, UK (gauged area 12.5 km2)
(Marshall et al., 2009). Elevations in the catchment range
from 170 m to 438 m, and slopes are typically steep, on aver-
age 5.9% . The land at Pontbren is almost exclusively grazed
grassland, which occupies approximately 88% of the land.
Woodland occupies 7% of the land area, and the remaining
5% is crops, roofs, paved areas, private gardens and open
water.

The average annual rainfall measured at Pontbren for the
period April 2005–January 2008 is 1670 mm, and poten-
tial evapotranspiration, estimated by the MORECS model
(Hough and Jones, 1997) for grassland is 774 mm, so that
P/PE ratio is about 2.16. Soil types are dominated by low
permeability silty clay loams (Table 2 and Fig. 2). Typically,
20 cm depth of topsoil overlies a deep layer of relatively
impermeable subsoil. On moorland, the topsoil has a sig-
nificant peat content.

The time-series data used for this study are 10-min res-
olution rainfall from one of the on-site raingauges, daily
MORECS potential evapotranspiration data, and 15-min
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Table 2. Soils of the Pontbren catchment.

Soil series Broad texture
group

Soil water regime Soil parent ma-
terial

HOST class BFIHOST

Manod Fine loamy
over lithoskele-
tal

Well drained, moderately perme-
able, subsoils rarely wet

Mudstones and
sandstones

17 0.61

Denbigh Fine loamy
over lithoskele-
tal

Well drained, moderately perme-
able, subsoils rarely wet

Mudstones and
sandstones

17 0.61

East Keswick Fine loamy Well drained, moderately perme-
able, subsoils rarely wet

Drift with
siliceous stones

6 0.65

Sannan Fine silty Slight seasonal waterlogging, sub-
soils slowly permeable

Glacial till with
siliceous stones

18 0.52

Cegin Fine silty Slowly permeable, seasonally wet Glacial till with
siliceous stones

24 0.31

Wilcocks Peaty surface
layer over
loamy

Seasonally waterlogged, topsoils
wet for most of autumn, winter and
spring, subsoils wet for most of
year

Glacial till with
siliceous stones

26 0.24

Hiraethog Thin peat over
loamy over
lithoskeletal

Seasonally waterlogged, topsoils
wet for most of autumn, winter and
spring

Mudstone and
sandstone

15 0.38

Crowdy Deep peat Permanently waterlogged Humified peat 29 0.23

Winter Hill Deep peat Permanently waterlogged Peat 29 0.23

Table 3. Contributed areas for the considered gauges.

Gauge number 2 5 6 7 9 10

Contributing area, km2 1.3 2.4 3.2 5.8 4.1 12.5

resolution streamflow data from five bed-mounted acoustic
Doppler velocity meters (gauges 2, 5, 6, 7, and 9 in Fig. 3)
and from a pressure transducer at a rated section (gauge 10).
Gauge 10 data are used for assessing low flow (< 1.5 m3/s )
performance only because the rating curve for higher flows
is poorly defined. The contributing areas at each of the six
gauges are given in Table 3. Although another four flow
gauges exist (Fig. 3) their data are considered less accu-
rate (McIntyre and Marshall, 2008) and so are neglected
here. The periods used for the modelling demonstration are
January 2007–March 2007, where the best quality and the
most complete data exist; and end of June 2007–beginning
of August 2007, used to demonstrate the prediction skill in
dry conditions. To match observation record frequency, the
model input-output time resolution is 15 min.

3.2 Case study – model description

The catchment is discretised into 100 m×100 m runoff gen-
erating elements. A semi-distributed modelling toolkit (Orel-
lana et al., 2008; Wagener et al., 2004) is used that requires

Fig. 2. Pontbren soils.

specification of a conceptual runoff generating model and
a routing model for each element. An element’s generated
runoff directly goes to a stream network that connects all ele-
ments, so that there is no model element interaction. A prob-
ability distributed soil moisture (PDM) model together with
two parallel linear routing stores (Fig. 4) is selected, as this
is perceived to be widely applicable in the UK (Calver et al.,
2005; Lamb and Kay, 2004; Lee et al., 2006). This model has
five parameters (units are listed in Table 4):cmax is the max-
imum soil water storage capacity within the element,b is a
shape parameter defining the storage capacity distribution,α

is a parameter defining the proportion of quick runoff, andkf
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Fig. 3. Pontbren instrumentation locations: black triangular with
number denotes stream and drain flow monitoring site; blue trian-
gular denotes rain gauge.

andks are routing store residence times. Actual evapotran-
spiration is equal to potential evapotranspiration multiplied
by the relative moisture content of the soil.

There is a lake upstream of gauge 8 (Fig. 4). Its response is
simulated using the weir equationQ = kHm, whereH is the
water level in the lake above the outlet’s lowest point, and co-
efficientsk andm are related to the outlet geometry (Montes,
1998) that, following channel measurements (McIntyre and
Marshall, 2008), is assumed to be parabolic. Any subsurface
flow from the lake is neglected. Other lakes and reservoirs in
the catchment are not accounted for, due to their small sizes.

Each element is connected to the stream network. In
each element the channel is assumed to be a single straight
length of channel connecting the upstream and downstream
nodes of that element. The runoff from each element is
assumed to be uniformly distributed along the associated
stream length. Element runoff is routed down using a con-
stant celerity approach, i.e. the water moves with constant
velocity (Beven, 1979). Rainfall is assumed uniform across
the catchment, while PE is associated with vegetation cover
via the MORECS data.

3.3 Case study – conditioning the parameter space for
land management impacts analysis

Prior ranges for the runoff generating model parameters are
given in Table 4. These are liberal ranges for UK catch-
ments (Wagener et al., 2004). To select acceptable param-
eter sets for each HOST soil class, 10 000 parameter sets are
randomly sampled from the five-dimensional prior parame-
ter space using the Latin hypercube method, and the model is
run for 2 years (2006–2007 WY) to estimate the correspond-
ing BFI for each parameter set. Following Eq. (1), each pa-

Fig. 4. Rainfall-runoff conceptual model.

Table 4. Parameter ranges used in analysis.

Parameter Cmax, b α kf , ks ,
mm – – 15 min 15 min

Range 0–500 0–2.5 0–1 1–60 60–3000

rameter set is prescribed a weight based on the closeness of
the simulated BFI to the corresponding BFIHOST value, pro-
ducing aposteriorparameter distribution for each soil type.
Then 1000 parameter sets for each HOST class are indepen-
dently sampled from the posterior distributions. Thus 1000
possible parameter sets for each of the 29 soil classes define
the conditioned parameter space, and no observed flow data
have yet been used.

The celerity parameter is estimated by fitting the modelled
peak flow arrival times to observations. To do so, a celerity
value is sampled from the range 0.1 to 1 m/s, and the semi-
distributed model is run to generate modelled time of arrival
for each flood event. Several samples of peak flow arrival
time observed at gauge 6 are used to estimate the best of the
sampled celerity values (visual fit). Note that the flow data
requirement for parameter estimation is thereby limited to
a few samples of peak flow arrival time (and no actual dis-
charge values are used). In catchments which are completely
ungauged, the celerity parameter could instead be estimated
from channel properties. In this work, we keep the celer-
ity parameter unchanged for both current day and land use
change scenarios, assuming that stream network hydraulics
will not differ significantly under the scenarios.

At the beginning of the simulations the soil moisture stores
are assumed to be full, and the fast and slow routing stores
are assumed to be empty. To diminish the influence of the
initial conditions on predictions, the model is run for a two
month “warming up” period before the 1st of January 2007.

To investigate the effect of afforestation and grazing
effects, the conditioning method described by Eqs. (2)
and (3) is implemented. Additionally, for afforestation, an
interception capacity is added to the model usingCint=1 mm,
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Fig. 5. BFI – restricted marginal parameter distributions (HOST = 4, BFIHOST = 0.79,σ = 0.042).

and wet canopy evaporation is assumed to be three times
higher than the dry canopy transpiration rate, representative
of pine/coniferous forest (David et al., 2005; Stewart and
Thom, 1973). Alternatively, an interception capacity and
wet canopy enhanced evapotranspiration rate could be con-
ditioned using the top-down model for forest actual evapo-
transpiration rate proposed by Zhang et al. (2001).

4 Results

The posterior parameter distributions restrict the slow flow
residence timeks and runoff partitioning coefficientα
(Fig. 5). The lowks values have low posterior probabil-
ity, and the runoff partitioning coefficient distribution is con-
centrated around a value of(1−BFIHOST). The celerity of
0.7 m/s provided satisfactory peak flow arrival timing, and is
used for stream network routing.

These results illustrate that BFIHOST contains information
about baseflow response time as well as baseflow proportion,
however lacks information about soil moisture capacity and
fast flow response. Nevertheless, the results below show that
despite this missing information, the method performs well
in terms of explaining the observed flow. Other investiga-
tions have indicated that soil parameters and fast flow resi-
dence times may be usefully estimated from other prior in-
formation (e.g. Koren et al. 2004; Lee et al. 2006; Jackson
et al., 2008) and/or may be well identified from suitable cal-
ibration data sets. Such information would be necessary if
uncertainty needed to be constrained further.

Figure 6 shows discharge predictions for January 2007,
which is representative of the 3-month evaluation period.
Here, the medium grey area represents the 90 percentile on
the discharge prediction; and the blue dots are observed data
points. The light grey area represents the 90 percentile of
prior uncertainty, when there is no distinction due to soil
type and land use, and parameters are assigned uniformly
across the catchment. The dashed lines show the range of
flows within which the streamflow gauge was calibrated and
considered accurate (McIntyre and Marshall, 2008), so that
the data points lying in the range could be considered as be-
ing more reliable than the points lying outside. Note that
gauge 10 rating curve is estimated using flows up to 1.5 m3/s
only. The Nash-Sutcliffe statistics for probabilistic predic-
tions and expected values, as defined in Sect. 2, are summa-
rized in Table 5. These are better overall than those achieved
by Jackson et al.Jackson et al.(2008) who used a data-
intensive “meta-modelling” approach, combined with cali-
bration to observed flows, to model the same catchment. Al-
though the PDM model is not designed for dry period mod-
elling, predictions for a summer period (end of June 2007
to beginning of August 2007) are shown in Fig. 7. While
the good performance is maintained in general, the model
significantly over-estimates stormflow following the rainfall
events during the relatively dry periods in the middle of July.
Difficulty in simulating wetting-up periods is typical of this
PDM model and similar conceptual models. In particular, the
simple evapotranspiration calculation and the inability of the
model to maintain percolation while turning off stormflow
generation (i.e. the assumption of constantα) are thought to
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Table 5. Nash - Sutcliffe efficiency coefficients (1 January 2007–31 March 2007).

Gauge 2 Gauge 5 Gauge 6 Gauge 7 Gauge 9 Gauge 10

Random variable 0.71 0.66 0.81 0.70 0.79 0.64
Expected value 0.84 0.70 0.85 0.78 0.80 0.65

Fig. 6. Prediction uncertainty bounds for January, 2007. 90% high probability density interval is shown as medium grey area; the blue dots
are measured data; the prior 90% high probability density area is represented by the light grey area, and the dashed lines indicate flow range
streamflow gauge was calibrated on.

be the main causes of this error. Both Figs. 6 and 7 show that
the model is least successful at gauge 9 in terms of explaining
the base flow observations. This may be because the influ-
ence of the lake in sustaining low flows is more complex than
represented in the model; or may be due to low flow gaug-
ing errors. The performances achieved together with Fig. 6
support the view that BFIHOST is an effective response index.

The afforestation and soil degradation scenarios introduce
the shifts in the distributions ofα shown in Fig. 8. Figure
9 shows the predicted impacts of these land management
changes on runoff at gauge 10. Here, the solid lines repre-
sent the 90 percentiles for current conditions and the dashed
lines are the corresponding results for full afforestation and
soil degradation. The peak flow distributions provide quanti-
tative information which reflects our basic prior knowledge.
The uncertainty in the peak flow is high compared to the ex-

pected changes, indicating that there would be benefits in
seeking some more information about the model parameter
values particularly, perhaps,kf . The relative differences be-
tween the median and mean results associated with the sce-
narios are given in Table 6. This includes changes in total
runoff within the period 1 January 2007–31 March 2007 and
changes in the highest observed peak flow (on the 18th of
January). The percentage reductions in total runoff, when
rounded to the closest integer, were the same for all gauges
(only this single number for each land use change is shown
in the corresponding rows in Table 6). The afforestation
delayed the highest peak arrival by 15 min (one simulation
time step), and the soil degradation scenario did not show
any difference in peak flow arrival time.
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Table 6. Median and expected value of relative reductions in total flow and peak flow (in percent relative to current day land use) due to
some effects of afforestation and soil degradation.

Gauge 2 Gauge 5 Gauge 6 Gauge 7 Gauge 9 Gauge 10

Afforestation

% reduction in
total runoff

24

% reduction in
peak flow

14 13 12 14 15 12

(5)* (6) (8) (8) (11) (8)

Soil degradation

% reduction in
total runoff

0

% reduction in
peak flow

−9 −9 −9 −9 −4 −8

(−20) (−17) (−15) (−13) (−7) (−11)

* The numbers in parenthesis are expected values of changes, if different from corresponding medians

Fig. 7. Prediction uncertainty bounds for the end of June–beginning of August, 2007. 90% high probability density interval is shown as
medium grey area; the blue dots are measured data; and the dashed lines indicate flow range streamflow gauge was calibrated on.

5 Conclusions

This study illustrated a simple method of conditioning hy-
drological model parameters on prior information in order

to simulate runoff under current conditions and future land
management scenarios. The prior information about cur-
rent conditions, in this case, came almost entirely from the
BFIHOST index from a national database of soil types. Under
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the case study catchment (Pontbren, a 12.5 km2 upland catch-
ment in Wales), the conditioned model was shown to simu-
late observed flows to an impressive level of accuracy in a
wet winter period. Due to the simplicity of the evapotranspi-
ration model and also due to the fixed split of effective pre-
cipitation between slow and fast stores, the method did not
perform so well in a drier period, and is not expected to per-
form so well on relatively permeable soils. Under land man-
agement scenarios, new posteriors for BFIHOST and intercep-
tion losses were introduced based on best available knowl-
edge, providing probabilistic predictions of land manage-
ment effects on flood runoff. Two speculative scenarios were
investigated: 1) returning the catchment to a pristine wood-
land landscape through afforestation and; 2) further degra-
dation of the soil associated with over-grazing. Median val-
ues show significant impacts: for example, the changes in the
largest observed flood peak at the catchment outlet were 12%
reduction with afforestation and 8% increase due to overgraz-
ing. However, Fig. 9 illustrates the high uncertainty associ-
ated with these predictions, prompting a discussion of the
need for better conditioning of the model parameters.

The most obvious limitations of the approach are associ-
ated with the limited information in the BHIHOST index, in
particular the failure of the BFIHOST to significantly condi-
tion the soil parametersb andcmax and the fast response pa-
rameterkq , and the need for observed water levels to estimate
the celerity parameter. These limitations warrant consider-
ation of additional sources of prior information. The tra-
ditional method of developing posterior parameter distribu-
tions for ungauged catchments is to relate parameter values
directly to catchment properties through regression. Various
examples exist of how this might be done and which proper-
ties might contain useful information about specific parame-
ters, although these are restricted to daily or hourly analyses
(Wagener et al., 2004; Lamb and Kay, 2004; Lee et al., 2006).
For example, Lee et al.2006found thatcmax could be related
to urban cover, andb to altitude (reflecting generally thinner
soils at higher altitudes in their data set); while (Wagener and
Wheater, 2006) found thatcmax was related to steepness (re-
flecting generally thinner soils at higher inclines) andb to the
complexity and size of the stream network (reflecting spatial
variability). Additonally,kq has consistently been found to
have strong regression relationships with properties control-
ling flashiness of catchments (e.g.Lamb and Kay, 2004; Lee
et al., 2006). However, as previously noted, the traditional
regression method has theoretical limitations which cause in-
formation about parameter interactions to be lost. It is also
unclear whether the information from these previous stud-
ies can be integrated coherently with the Bayesian approach,
due to the wish to properly represent dependencies between
parameters, and between the input properties.

A more promising approach to introducing additional in-
formation would be to look for additional response indices
which complement BFIHOST. Ideally these indices would be
independent of BFIHOST and each other, so that their dis-

Fig. 8. The joint distributions for runoff partitioning coefficients
before (α0) and after (αF andαD) land use change:(a) afforesta-
tion, (b) soil degradation (HOST = 4, BFIHOST = 0.79,σ = 0.042).
The contours with smaller perimeter correspond to higher density
values.

tributions could be identified independently of each other,
and Bayesian updating of parameters (Eq. 1) could be se-
quentially applied. The information content of different re-
sponse indices has been explored in this context by Yadav et
al. (2007) using a similar conceptual PDM model to that em-
ployed by us, applied to daily data. For example, Yadav et
al. 2007 found that the high pulse count, an index of flashi-
ness, could be identified for ungauged catchment using re-
gionalisation. Subsequently Zhang et al. (2008) demonstrate
the power of this index for conditioning thekq parameter.
Similarly, significant information about theb and cmax pa-
rameters was retrieved using regionalised indices represent-
ing the runoff ratio and the flow variance. Theb parameter,
representing the shape of the distribution of soil moisture ca-
pacity, has been found by successive authors as difficult to
identify, raising the question of whether a specially designed
response index, focussing on wetting up response is needed,
for example based on distributed measurements of soil mois-
ture.

The potential benefits of integrating additional response
indices into the Bayesian framework are large, including re-
ductions in ungauged catchment prediction uncertainty and
allowing additional land use scenarios to be examined. The
principal challenge of doing so lies largely in the regional-
isation step, which generally requires analysis of large data
sets. Although regionalised information about UK soils is
ready-made in the form of the HOST database, it is un-
clear how much more useful information can be extracted
from this source. Another ready-made source of region-
alised data, potentially containing additional information, is
the USDA’s Soil Conservation Service curve number system
(USDA, TR55, 1986), although transferability of the infor-
mation to UK soil classifications, land use issues, and any
particular conceptual model may be problematic. It is likely
that significant additional regionalisation exercises, along the
lines of Yadav et al. (2007) and Zhang et al. (2008) but using
larger data sets and sub-daily data, may be needed to achieve
the full potential of the method.
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Fig. 9. Prediction uncertainty bounds for flows at gauge 10 due to the 18th of January, 2007 rainfall event:(a) afforestation,(b) soil
degradation. The solid lines are 90% high probability density intervals for current day land use, and dashed lines are 90% high probability
density intervals for flow predictions due to the land use change.)

Another challenge in the context of predicting effects of
land use management, is that land management may occur at
small spatial scales. In our case study, the model was discre-
tised into a 100 m square grid so that spatially discriminate
interventions may be explored. In landscapes such as Pont-
bren, however, effective land management interventions of-
ten occur at even smaller scales, for example tree shelter belts
of a few meters width (Jackson et al., 2008; Marshall et al.,
2009). These scales are much smaller than scales at which
the reponse indices have been estimated and regionalised.
Other relevant land management interventions, althought po-
tentially implemented at small catchment scales, may not be
represented by the regional model due to lack of measure-
ments of their effects. Tile drainage installation and drain
blocking are two such examples in the Pontbren case study.
The proposed methodology does not by itself address these
types of issues. To do so, small-scale physics-based models
or observations would be needed to generate additional in-
formation on smaller-scale response indices (Jackson et al.,
2008). Estimating channel routing parameters is another is-
sue (observed levels were used to estimate channel celerity
in our application), however these parameters and their un-
certainty may be estimated from channel characteristics the-
oretically (e.g.Koren et al., 2004).

Finally, it must be noted that the land use impacts analysis
presented in this paper is largely theoretical (i.e. HOST class
change and interception loss modelling) and built mainly
on literature review. Validation studies are required. This
may be done using paired catchment or manipulation plot
experimental data (Brown et al., 2005; Marshall et al., 2009),
and will be one of our future work directions.

Edited by: R. Merz
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