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Abstract. This paper compares event-based and continuous
hydrological modelling approaches for real-time forecasting
of river flows. Both approaches are compared using a lumped
hydrologic model (whose structure includes a soil moisture
accounting (SMA) store and a routing store) on a data set of
178 French catchments. The main focus of this study was
to investigate the actual impact of soil moisture initial con-
ditions on the performance of flood forecasting models and
the possible compensations with updating techniques. The
rainfall-runoff model assimilation technique we used does
not impact the SMA component of the model but only its
routing part. Tests were made by running the SMA store con-
tinuously or on event basis, everything else being equal. The
results show that the continuous approach remains the ref-
erence to ensure good forecasting performances. We show,
however, that the possibility to assimilate the last observed
flow considerably reduces the differences in performance.
Last, we present a robust alternative to initialize the SMA
store where continuous approaches are impossible because
of data availability problems.

1 Introduction

1.1 Continuous vs. event-based approaches to mod-
elling

From the catchment point of view, the hydrological cycle is a
sequence of wetting and drying periods. On a given date, the
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moisture state of a catchment is the consequence of the past
sequence of meteorological conditions. The initial moisture
conditions at the beginning of a rainfall event have a major
influence on a catchment’s hydrological response. Therefore
the set-up (as defined byRefsgaard and Henriksen, 2004) of
a hydrological model requires choosing the initial conditions.
Depending on how this is done, hydrological models will be
categorized ascontinuousor event-based.

The initialization through a continuous approach consists
in running the model during awarm-upperiod in order to
let the model states reach values that no longer depend on
arbitrarily chosen initial values. The duration of this warm-
up depends on the catchment (its memory of past conditions)
and on the model and may last a few months (Kitanidis and
Bras, 1980b). A climatic cycle (i.e., one year) is often used,
although it has been shown that some catchments (especially
those where large aquifers feed streamflow) need up to sev-
eral years (Le Moine, 2008). In an operational forecasting
perspective, the major drawback of the continuous approach
lies in its data requirements: long continuous precipitation
time series up to the day of interest are difficult to provide
(data gaps occur frequently because of real-time data repatri-
ation difficulties). Another consequence is the necessity of
having to gather a long enough data series before issuing the
first forecast at new locations.

In contrast, event-based models require a separate method
to derive the initial values of model states. Numerous meth-
ods exist. If the model states reliably represented measurable
physical quantities, recent measurements or values based on
climatology would be solutions. For example,Brocca et al.
(2009) showed that assimilating soil moisture measurements
into the event-based SCS-CN model can be useful for flow
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simulation on a small catchment. However, these results
should be generalized, as mentioned by the authors.

Continuous approaches have been recommended to mod-
ellers for many years (e.g.Kitanidis and Bras, 1980a; Lins-
ley, 1982) as a rigorous solution to the estimation of initial
conditions. However, we must acknowledge that event-based
approaches are still often preferred in real-time operational
applications (Lamb and Kay, 2004). Event-based models
may be simpler because they often do not need to include all
the processes necessary in a continuous model. This means
more limited data requirements which may ease model im-
plementation and use. Another reason lies in the difficulty
maintaining and validating automatic measurement networks
over a long period in many countries. This is a frequent
situation when looking for high time resolution series. To
bypass this obstacle,Nalbantis(1995) suggests relying on
coarser data series (e.g. daily) to estimate fine (hourly) initial
conditions. The problem may also be cultural. Some end-
users, who traditionally use hydraulic propagation methods,
are culturally in favor of an event-based approach. Despite
all the good reasons advanced by hydrologists for using con-
tinuous approaches, practitioners often continue using event-
based models and see them as the only solution. Another rea-
son in favor of the event-based modelling is raised when the
model is not used only for flood forecasting (e.g., for other
uses like torrential flood modelling).

1.2 Sensitivity of hydrological models to the initializa-
tion procedure

The report of theNational Research Council (NRC)(2002)
identified as crucial the question of initial conditions. There
is a wide consensus among hydrologists that hydrological
models’ outputs are very sensitive to initial conditions, es-
pecially soil moisture or catchment wetness (e.g.Refsgaard
et al., 1999; Moore et al., 2006; Vivoni et al., 2007). Event-
based models can lead to very different outputs when run
with different initial conditions (Da Ros and Borga, 1997).
As hydrological processes are essentially non linear, even a
slight uncertainty on initial conditions can lead to dramatic
uncertainty on streamflow (Zehe and Bl̈oschl, 2004).

Many authors have studied the effects of initialization on
the response of models that seek to reproduce physical pro-
cesses. Already at the inception of the Soil Conservation Ser-
vice (SCS) Curve Number (CN) formula, modulating the CN
value according to the antecedent moisture conditions has
been found to be necessary (Ogrosky and Mockus, 1964).
More recently,Noto et al.(2008) showed that the degree of
sensitivity to the initialization procedure depends on other
factors, such as the intensity of precipitation or the catch-
ment’s physical properties.Vieux et al.(2004) demonstrated
that the sensitivity of the model is lower when the catchment
is already very wet.

1.3 The real-time forecasting specificities

The sensitivity of hydrological models to initial conditions is
of prime importance for operational forecasting. For exam-
ple,Norbiato et al.(2008) showed that initial conditions (an-
tecedent soil moisture) are essential for efficient flash flood
alerts.

Real-time forecasting systems most often use a data as-
similation method to improve short-range prediction accu-
racy (Shamseldin, 2006). Among the different assimilation
techniques, state updating is quite popular (Refsgaard, 1997;
Moore, 2007). This method estimates state variables depend-
ing on the very last observed discharges. Consequently, the
question of initial conditions appears to be less important if
some (or even all) states are re-estimated by this updating
technique (Nalbantis, 2000; Aubert et al., 2003; Moore et al.,
2005).

State updating, when performed by assimilation of a small
number of measured inputs (e.g. only discharge or discharge
and soil moisture) compared to the number of internal states,
leads to uncertainties which combine with the uncertainty on
the initial values. Indeed, trying to update several model
states simultaneously may endanger model robustness and
it leaves the modeller in the uncomfortable situation where
there are more unknowns than equations to solve.

The uncertainties due to the initial conditions may also
be taken into account by using an ensemble forecast whose
members differ in their initial conditions (e.g.Dietrich et al.,
2008). However, this issue is not within the scope of this pa-
per and we will focus on deterministic forecasting methods
for the sake of simplicity.

1.4 Scope of the paper

This paper has both a theoretical and an applied objectives.
The theoretical one is to contribute to a more general an-
swer to the relative merits of continuous and event-based ap-
proaches for flood forecasting, through the comparison of
different initialization approaches for the very same flood
forecasting model. Indeed, although this issue has long been
in the forefront, the literature does not provide any clear an-
swer to this question. In addition, we investigate the possible
interplay between the updating techniques and the initializa-
tion impact: the applied objective is to determine whether
we can define simple initialization schemes which allow is-
suing forecasts without running the model over a long pre-
forecast period. Initialization strategies are tested on a set of
178 French catchments.

Several authors compared different models with different
initialization strategies. For example,Amengual et al.(2008)
compared the performances of two different models – one
being continuous, the other one event-based – to hindcast a
flash flood event and found little difference between them.
Instead, we choose to use the very same model in order to
focus exclusively on the initialization strategies.
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Fig. 1. Locations of the 178 French catchments used in this study.

2 Catchments set, model and assessment criteria

2.1 Test set of 178 French catchments

The comparison is based on 178 French unregulated catch-
ments (Fig. 1), chosen to represent the hydroclimatic vari-
ability encountered in the country (note, however, that no se-
lected catchment is significantly snow-affected and requires
a snowmelt module to ensure a proper modelling). Catch-
ment areas range from 10 to 5 940 km2 (average of 354
km2; median of 125 km2). By working on various catch-
ments, we aim to ensure more general conclusions to our
study (Andréassian et al., 2006). Our data set covers a var-
ied range of hydrological behaviours: some Mediterranean
catchments experience flash floods, whereas others typically
have slow floods. We used continuous hourly precipitation,
discharge and potential evapotranspiration (PE) data series
from 1995 to 2005. PE values were computed using the for-
mula proposed by Oudin et al. (2005), based on temperature
and extra-atmosphere global radiation (Morton, 1983). The
quality of data used in this study was controlled and is sup-
posed higher than the quality of data used in real-time oper-
ations.

2.2 Forecasting model

Our objective was to compare different initialization modes
using the very same model structure. We deliberately used
a simple model (GRP) in order to unambiguously analyze
the effects of different initializations. It is an efficient op-
erational model, one of those used to forecast river flows in
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Fig. 2. Structure of the GRP model. The SMA store has to be initial-
ized while the routing store level is updated when used in forecast-
ing mode. PE and AE are potential and actual evapotranspiration.
θi are model parameters: a volume adjustment factor, the capacity
of the routing store and the base time of the unit hydrograph.

real time on the Seine basin upstream from Paris (Cemagref,
2005). Detailing the structure of the forecasting model is not
within the scope of this paper; therefore, only a brief descrip-
tion follows.

GRP is a hybrid metric-conceptual lumped parsimonious
model, designed specifically for flood forecasting (see Tan-
gara, 2005, for mathematical details). Its structure was de-
rived from the structure of the GR4J model (Perrin et al.,
2003). GRP can classically be described as a production
function followed by a routing function (Fig. 2). The produc-
tion function consists in a non-linear ‘soil moisture account-
ing’ (SMA) reservoir and a volume adjustment coefficient
which determine the runoff ratio. The SMA store requires
either a specific initialization or a continuous running mode.
The routing function is composed of a unit hydrograph (UH)
and a non-linear routing store.

The forecasting model GRP uses a combination of two as-
similation (updating) functions for flood forecasting. The
first exploits the last observed discharge information to up-
date the state of the model routing store, while the second
draws information from the last model error to update the
model’s output through a multiplicative ARIMA model (Box
and Jenkins, 1976). We do not use the Kalman filter (or
one of its heirs) because we found it could lead to perfor-
mance losses during flood events when it assimilates stream-
flow alone (Aubert et al., 2003). The important thing to note
here is that the level of the SMA store is not updated in the
model and its initialization will be the main focus of the tests
presented hereafter.

Fig. 1. Locations of the 178 French catchments used in this study.

The remainder of the article is organized as follows: first
the data and the model are described as well as the assess-
ment criteria we employed. Then Sect. 3 details the method-
ology. The results are shown and discussed in Sect. 4. Finally
a number of conclusions are drawn.

2 Catchments set, model and assessment criteria

2.1 Test set of 178 French catchments

The comparison is based on 178 French unregulated catch-
ments (Fig.1), chosen to represent the hydroclimatic vari-
ability encountered in the country (note, however, that no se-
lected catchment is significantly snow-affected and requires a
snowmelt module to ensure a proper modelling). Catchment
areas range from 10 to 5940 km2 (average of 354 km2; me-
dian of 125 km2). By working on various catchments, we aim
to ensure more general conclusions to our study (Andréassian
et al., 2006). Our data set covers a varied range of hydrolog-
ical behaviours: some Mediterranean catchments experience
flash floods, whereas others typically have slow floods. We
used continuous hourly precipitation, discharge and potential
evapotranspiration (PE) data series from 1995 to 2005. PE
values were computed using the formula proposed byOudin
et al. (2005), based on temperature and extra-atmosphere
global radiation (Morton, 1983). The quality of data used
in this study was controlled and is supposed higher than the
quality of data used in real-time operations.
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2.2 Forecasting model

Our objective was to compare different initialization modes
using the very same model structure. We deliberately used a
simple model (GRP) in order to unambiguously analyze the
effects of different initializations. It is an efficient operational
model, one of those used to forecast river flows in real time
on the Seine basin upstream from Paris (Cemagref, 2005).
Detailing the structure of the forecasting model is not within
the scope of this paper; therefore, only a brief description
follows.

GRP is a hybrid metric-conceptual lumped parsimonious
model, designed specifically for flood forecasting (seeTan-
gara, 2005, for mathematical details). Its structure was de-
rived from the structure of the GR4J model (Perrin et al.,
2003). GRP can classically be described as a production
function followed by a routing function (Fig.2). The produc-
tion function consists in a non-linear “soil moisture account-
ing” (SMA) reservoir and a volume adjustment coefficient
which determine the runoff ratio. The SMA store requires
either a specific initialization or a continuous running mode.
The routing function is composed of a unit hydrograph (UH)
and a non-linear routing store.

The forecasting model GRP uses a combination of two as-
similation (updating) functions for flood forecasting. The
first exploits the last observed discharge information to up-
date the state of the model routing store, while the second
draws information from the last model error to update the
model’s output through a multiplicative ARIMA model (Box
and Jenkins, 1976). We do not use the Kalman filter (or one
of its heirs) because we found it could lead to performance
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losses during flood events when it assimilates streamflow
alone (Aubert et al., 2003). The important thing to note here
is that the level of the SMA store is not updated in the model
and its initialization will be the main focus of the tests pre-
sented hereafter.

The model includes two main state variables: the levels
of the production store and of the routing store. We do not
consider the internal states of the unit hydrograph since they
are very transient states: their values no longer depend on
their initial values after a finite number of time steps because
the model UH has a finite number of ordinates.

2.3 Assessment criteria

For a given lead timeL, the overall evaluation of the fore-
casts is based on the persistence index PI (Kitanidis and Bras,
1980a):

PI (L) = 1 −

∑
t

(
Q̂t+L|t − Qt+L

)2

∑
t

(Qt − Qt+L)2
(1)

whereQt andQt+L are the observed discharge at time stept

andt+L, respectively, whilêQt+L|t is the forecast issued at
time stept for time stept+L. A PI value of 1 indicates a per-
fect fit between forecasted and observed discharges. A posi-
tive value means that the root mean square error (RMSE) of
the assessed model is lower than the RMSE of the persistence
model which gives the last observed discharge as a prediction
for the future time steps. A negative value implies that the
model is less efficient than the persistence model. The crite-
rion value mostly reflects performances during floods since
it is a quadratic criterion. The PI is a well-suited quadratic
criterion to assess forecasting models, since it compares the
tested model to a naive one that uses the same information of
observed discharge.

In addition, we used a time criterion to assess the time
difference between the observed and forecasted flood events.
We are interested in the time-to-peak delay (or the time to a
fraction – say 90% – of the peak). Therefore we considered
the mean time-to-peak delay for the identified flood events.

Last, the visual comparison of observed and forecasted hy-
drographs for significant events will complete our analysis.

3 Methodology

3.1 Modus operandi

Since only the effects of the initialization procedure are to be
assessed, we used the same model and the same sets of pa-
rameters for the various initialization methods we tested. For
each catchment, the model was calibrated by an automatic al-
gorithm in a continuous mode (over a continuous series of 5
years). The PI was used as the objective function for parame-
ter calibration. Even if the effects of the calibration approach

(continuous or event-based) are not insignificant for the over-
all performance of the model (see e.g.Tan et al., 2008), we
do not discuss this aspect here for the sake of brevity.

Flood forecasting requires future precipitation scenarios.
In real-time conditions, some quantitative precipitation fore-
casts (QPF) may be available. In our study, we adopted a
perfect foreknowledge scenario: this scenario corresponds to
observed precipitations for the future time steps. While this
is clearly not a realistic scenario in real-time conditions (it
is overly optimistic), we selected this approach because we
wish to focus the analysis on the effect of the initial condi-
tions without adding other sources of uncertainty.

We used a classical split-sample test scheme (Klemĕs,
1986) to assess the model’s versions. The complete 10-year
record available on every catchment was split into two 5-year
sub-periods that alternatively served for calibration and val-
idation. Only the results obtained on validation periods are
shown.

Different catchments may have very different responses.
To check whether different initialization solutions could fit
different types of catchments, we divided the complete set
into four subsets (of equal sizes) depending on streamflow
autocorrelation, an index which provides information on the
way catchments behave: catchments with flash floods have a
low streamflow autocorrelation, while catchments with slow
variations of streamflow present a much higher autocorrela-
tion. For the same reason, forecasts are issued for different
lead times: we assessed our results for 1-, 3-, 6-, 12-, 18-,
24-, 36- and 48-h lead times.

3.2 Tested continuous approach

We first tested the continuous approach: the model runs con-
tinuously for 1 year of warm-up (to obtain model states that
are independent of the initial conditions) then continuously
for the 4-year validation period. A previous analysis of our
catchments (not shown here) demonstrated that a year of
warming up is sufficient to reach states that no longer depend
on the initial values for the studied catchments.

3.3 Tested event-based approaches

As the routing store of the selected model is updated us-
ing observed flow, the difference between the continuous and
event-based approaches lies in the need to initialize the SMA
store when working on an event basis. Three different sim-
ple event-based initializations are tested. For all of them, the
performance criteria are computed over the same 4-year val-
idation period so that they can be directly compared to the
values obtained by the continuous approach.

3.3.1 Poor-man’s initialization

The simplest initialization of the production store level is to
choose an arbitrary value and then to run the model on a very
short pre-forecast period (5 days) before issuing the forecast.
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Fig. 3. Persistence indexes for two Poor-man’s initializations at different initial values: the level of the SMA store is initially set at one-third
or two-thirds of its capacity. Different initializations lead to very different performances.

Table 1. Medians of persistence index values obtained using the GRP model on the 178 catchment set with different initialization approaches
for 1-, 6-, 24- and 48-h lead times.

Initialization 1-h lead time 6-h lead time 24-h lead time 48-h lead time

Continuous 0.58 0.45 0.63 0.70
Best Poor man’s 0.56 0.40 0.50 0.64
Best climatic 0.57 0.44 0.61 0.67
Best API-based 0.58 0.45 0.62 0.68

4.2 Use of a pre-forecast period: a compromise approach?

Actually, many so called event-based approaches are not
purely event-based since they use a short pre-forecast period
on which the model is run before issuing the forecast: the
model is initialized at time step t − τ and run during the
pre-forecast period from t − τ to t before being used to
issue a forecast at t of the runoff values at t + 1,. . . , t + L.
Many event-based approaches consider initial conditions
to be parameters; this requires pre-forecast period data to

calibrate the initial conditions. These models can not really
be considered as purely event-based. Thus, some modellers,
e.g. Merz and Bárdossy (1998) and Sheikh et al. (2009),
chose to use an inter-event model to initialize the most
sensitive states. Another example is given by Anctil et al.
(2004a), who used artificial neural networks (ANN) for flow
forecasting on two catchments: they showed that a long-term
soil moisture index derived from a continuous model is a
valuable input which improves forecasts. Here again the

Fig. 3. Persistence indexes for two Poor-man’s initializations at different initial values: the level of the SMA store is initially set at one-third
or two-thirds of its capacity. Different initializations lead to very different performances.

Different values of the SMA store level (zero, one, two and
three thirds of its capacity) are tested. This option makes it
possible to check that the forecasts are indeed sensitive to the
initialization of this store level.

3.3.2 Climatic initialization

The second tested approach consists in initializing the level
of the production store at its pluri-annual average value (as
calculated on the calibration period, i.e. over 5 years) at the
beginning of a very short simulation period preceding the
date of the forecast issue. Different simulation period lengths
(from 5 to 15 days) are considered.

3.3.3 Antecedent moisture conditions initialization

The third initialization procedure is more elaborate. It looks
in the calibration period archive for the time step that has
the most similar antecedent precipitation index (API) value
to the API value of the time stept at which we issue the fore-

cast. The API (see e.g.Kohler and Linsley, 1951) is com-
puted as follows:

API(t)=
Nα∑
i=0

αiPt−i (2)

whereα is a decay rate,Nα is the number of antecedent time
steps taken into account andPt−i is the precipitation at time
step t − i. Nα is chosen to ensure thatαiPt−i would be
negligible compared to any precipitationPt for any i higher
thanNα. Different values ofα from 1− 10−1 to 1− 10−5

were tested. Anα value of 1− 10−3.5 was selected here as it
gave the best results. Detailed results are not shown for the
sake of simplicity.

4 Results and discussion

4.1 Results on the whole catchment set

First the Poor-man’s initialization showed wide performance
differences depending on the initial conditions for the tested
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Fig. 4. Performance (persistence index) obtained by the model on 178 catchments, according to the initialization modes: the continuous
strategy is depicted on the left and two event-based strategies (climatic and API strategies) are on the depicted right. The results are displayed
for lead times ranging from 1 to 48 hours. The pre-forecast period for event-based strategies lasts 120 h (5 days). Boxplots give minimum
and maximum values (dots) as well as 0.05 and 0.95 quantiles (whiskers), 0.25, 0.50, 0.75 quantiles (boxes). Mean values are indicated by
crosses.

Table 2. Mean time-to-peak errors obtained with the different initialization methods (expressed in hours)

Initialization 1-h lead time 6-h lead time 24-h lead time 48-h lead time

Continuous 0.23 1.39 0.69 -0.09
Best Poor man’s 0.25 1.42 0.76 -0.05
Best climatic 0.24 1.43 0.73 -0.09
Best API-based 0.24 1.45 0.71 -0.01

resulting models are not purely event-based: they belong to
a continuum between event-based and continuous models.

In this paper, our initialization strategies also use a short
pre-forecast period to come closer to a continuous approach:
the resulting initial conditions are a mix of assumptions
implied by the initial choice and of the model’s internal
representation of the catchment behaviour.

In the strategies we tested, this pre-forecast period lasts at
least the length of the UH (to obtain proper values in the UH)
and was tested up to 15 days. It is clear for all event-based
initializations that the longer the pre-forecast period, the
better the performance (Fig. 7). For the climatic initializa-
tion, a pre-forecast period of 5 days leads to performance
significantly lower than the performance obtained with a
continuous initialization. However, a 15-day pre-forecast

Fig. 4. Performance (persistence index) obtained by the model on 178 catchments, according to the initialization modes: the continuous
strategy is depicted on the left and two event-based strategies (climatic and API strategies) are on the depicted right. The results are displayed
for lead times ranging from 1 to 48 h. The pre-forecast period for event-based strategies lasts 120 h (5 days). Boxplots give minimum and
maximum values (dots) as well as 0.05 and 0.95 quantiles (whiskers), 0.25, 0.50, 0.75 quantiles (boxes). Mean values are indicated by
crosses.

model and our catchments (Fig.3). Thus, at the 1-h lead
time, the persistence differences for different (arbitrary) ini-
tial values are greater than 0.03 (which is a significant differ-
ence) on more than 75% of the catchments; for the 48-h lead
time, this difference is greater than 0.14 for more than 90%
of the catchments.

The results clearly show that the continuous approach
gives the best results (see Table1 and Figs.4 and5), and that
the longer the lead time, the greater the difference in perfor-
mance. Our interpretation is the following: model states do
not reflect reality directly but are distorted representations of
the real world as seen by the model. It is a better choice to
initialize the model states as if they were seen from a given
reality (continuous approaches) by the model rather than to
impose values derived from measurements that do not corre-
spond to the inner model logic. These results can be com-
pared to those presented byAnctil et al. (2004a) andMerz

and Bl̈oschl(2009): antecedent soil moisture is a better con-
trol on the runoff coefficient ratio than antecedent precipita-
tion depth and the state of a conceptual rainfall-runoff model
can give valuable information on catchment moisture state.

The model has small time-to-peak errors: even for a 48-h
lead time, the time-to-peak errors of the model on more than
90% of the catchments are smaller than 5 h. No significant
difference in time-to-peak errors can be noted, whatever ini-
tialization method is considered (Table2). Event-based ini-
tialization can even lead to very slightly smaller time-to-peak
error than the continuous approach. Indeed, the initialization
of the SMA store has a much more important influence on
the simulated flood volume than on its timing. This can be
seen on an example (Tarn River at Millau, spring 2004 floods,
Fig. 6c): the different initializations lead to very different
discharge magnitudes, but they all have the same temporal
behaviour.
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Fig. 5. Performance (persistence index) obtained by the model on 178 catchments, according to the initialization modes: continuous or
event-based (climatic and API) strategies with a pre-forecast period lasting 360 h. Results are displayed for lead times ranging from 1 to 48
h.

Table 3. Medians of persistence index values obtained by the selected model with the climatic initialization approach using pre-forecast
period of different lengths for 1-, 6-, 24- and 48-h lead times. HU length ranges from 1 to 64 h depending on the catchment.

Pre-forecast length 1-h lead time 6-h lead time 24-h lead time 48-h lead time

HU length 0.57 0.42 0.57 0.64
5 days 0.57 0.44 0.59 0.65

10 days 0.57 0.44 0.61 0.66
15 days 0.57 0.43 0.60 0.67

Continuous 0.58 0.45 0.63 0.70

period allows performances close to what is given by the
continuous approach (see Table 3).

4.3 Do results depend on catchment size?

Fig 8 shows the difference in performances obtained by the
same model running in continuous mode and in event-based
mode (with climatic initialization) depending on the catch-
ment area. No clear trend can be detected from these analy-
ses. It is interesting to note moreover that the model’s perfor-

Fig. 5. Performance (persistence index) obtained by the model on 178 catchments, according to the initialization modes: continuous or
event-based (climatic and API) strategies with a pre-forecast period lasting 360 h. Results are displayed for lead times ranging from 1 to
48 h.

Table 1. Medians of persistence index values obtained using the GRP model on the 178 catchment set with different initialization approaches
for 1-, 6-, 24- and 48-h lead times.

Initialization 1-h lead time 6-h lead time 24-h lead time 48-h lead time

Continuous 0.58 0.45 0.63 0.70
Best Poor man’s 0.56 0.40 0.50 0.64
Best climatic 0.57 0.44 0.61 0.67
Best API-based 0.58 0.45 0.62 0.68

As expected, the event-based initialization strategies lead
to poorer forecasting performances. However the good news
(from an operational point of view) is that the performance
loss due to the use of a simple event-based initialization strat-
egy is not large for most catchments (see Figs.4 and5). This
result must be moderated by the fact that we used controlled
offlinedata which are supposed to be high quality compared
to the data used in real-time operations. Event-based initial-
ization can not always be done with sufficiently controlled
data and therefore might encounter more errors in rainfall

while the continuous approach may do a better use of con-
trolled data.

The event-based initialization strategies we tested ranked
in a quite logical manner: the best one is not surprisingly
the API method, which is the most informative approach
concerning the catchment initial moisture conditions. Then
comes the climatic solution, which provides little informa-
tion. The strategy that leads to the lowest performances is
the Poor-man’s approach.
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the 25 March 2004: there is convergence mainly during showers. Different initializations lead to very different forecasts when no updating
technique is applied(c), whereas forecasts depend much less on the initial production store content when the model is updated(d).

Table 2. Mean time-to-peak errors obtained with the different initialization methods (expressed in hours)

Initialization 1-h lead time 6-h lead time 24-h lead time 48-h lead time

Continuous 0.23 1.39 0.69 −0.09
Best Poor man’s 0.25 1.42 0.76 −0.05
Best climatic 0.24 1.43 0.73 −0.09
Best API-based 0.24 1.45 0.71 −0.01

Those results are indeed model-dependent: they depend
actually on the model structure used and on the choice of
the updating methods. However,Moore (2007) pointed out
that many models present strong structural and behavioural
similarities; consequently the conclusions may remain valid
for many conceptual models. Conversely, the choice of the
updating method is crucial: updating the SMA store leads
to very poor performance with the same model structure
(Javelle and Berthet, 2008; Tangara, 2005).

4.2 Use of a pre-forecast period: a compromise ap-
proach?

Actually, many so called event-based approaches are not
purely event-based since they use a short pre-forecast pe-
riod on which the model is run before issuing the forecast:
the model is initialized at time stept − τ and run during
the pre-forecast period fromt − τ to t before being used to
issue a forecast att of the runoff values att+1, . . . , t+L.
Many event-based approaches consider initial conditions to
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Table 3. Medians of persistence index values obtained by the selected model with the climatic initialization approach using pre-forecast
period of different lengths for 1-, 6-, 24- and 48-h lead times. HU length ranges from 1 to 64 h depending on the catchment.

Pre-forecast length 1-h lead time 6-h lead time 24-h lead time 48-h lead time

HU length 0.57 0.42 0.57 0.64
5 days 0.57 0.44 0.59 0.65
10 days 0.57 0.44 0.61 0.66
15 days 0.57 0.43 0.60 0.67

Continuous 0.58 0.45 0.63 0.7010 L. Berthet et al.: Antecedent Moisture Conditions in flood forecasting
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Fig. 7. Differences between the performance (persistence index) obtained by the model on 178 catchments in continuous mode and using an
event-based climatic initialization, according to the pre-forecast period length: the longer the pre-forecast period, the smaller the differences.

mance does not decrease as the catchment size increases: the
catchment behaves as a low-pass filter (Oudin et al., 2005)
and as the catchment size increases, forecasting in fact be-
comes an easier task (for a given lead time).

4.4 Do results depend on catchment reactivity?

We found no relationship between catchment response time
and the impact of choosing a continuous or an event-based
strategy. Fig 9 shows the difference in performances obtained
by the same model running in continuous mode and in event-
based mode (with climatic initialization) depending on the
catchments discharge autocorrelation. No trend was detected
from these analyses.

4.5 Impacts of the updating procedure

When used to issue discharge forecasts, hydrological mod-
els are most often updated (Refsgaard, 1997). In practice,
this means that the discharge forecast no longer depends on
forcing variables only (e.g. precipitation, evapotranspiration,

etc.) but also on the information contributed by the data
assimilation process. The discharge forecast is constrained
by data assimilation and consequently it may depend (much)
less on the internal states and so on their initialization.

We used the GRP model with and without updating tech-
niques to compare the influence of initialization of the
model’s SMA store (which is never updated) on forecasts in
both cases. Fig 6 shows an example of spring floods for the
Tarn River at Millau (2170 km2). We chose different initial
production store levels from 0 (empty store) to its maximum
capacity A (full store). From those initial values, the pro-
duction store levels converge slowly; convergence is mostly
achieved during showers (Fig 6.a,b). The differences in pro-
duction store levels lead to dramatic differences in discharge
forecasts when no updating technique is applied (Fig 6.c),
whereas the 6-h forecasts are much more constrained with
data assimilation (Fig 6.d). Similar results were obtained for
the other catchments of our data set.

Thus, the updating procedure used in forecasting models

Fig. 7. Differences between the performance (persistence index) obtained by the model on 178 catchments in continuous mode and using an
event-based climatic initialization, according to the pre-forecast period length: the longer the pre-forecast period, the smaller the differences.

be parameters; this requires pre-forecast period data to cali-
brate the initial conditions. These models can not really be
considered as purely event-based. Thus, some modellers, e.g.
Merz and B́ardossy(1998) andSheikh et al.(2009), chose
to use an inter-event model to initialize the most sensitive
states. Another example is given byAnctil et al. (2004a),
who used artificial neural networks (ANN) for flow forecast-
ing on two catchments: they showed that a long-term soil
moisture index derived from a continuous model is a valu-

able input which improves forecasts. Here again the resulting
models are not purely event-based: they belong to a contin-
uum between event-based and continuous models.

In this paper, our initialization strategies also use a short
pre-forecast period to come closer to a continuous approach:
the resulting initial conditions are a mix of assumptions im-
plied by the initial choice and of the model’s internal repre-
sentation of the catchment behaviour.
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Fig. 8. Differences between the performance (persistence index) obtained by the model on 178 catchments in continuous mode and using
an event-based climatic initialization approach, depending on the catchments’ areas (a). Here lead time is 6 h. The pre-forecast period for
the event-based strategy lasts 240 h. Four classes of catchments are defined: the first class groups the 25 % smallest catchments, the second
class, the following 25 % , etc. Distributions of the difference in performance for every class are displayed (b).

does limit the impact of crude initialization procedures, in
comparison with simulation models: this explains why a
rather simple procedure with a short pre-forecast period gives
results close to those obtained when using a continuous ini-
tialization.

5 Synthesis and conclusions

Initial conditions are known to be of crucial importance for
hydrological models. In this paper, we compared different
initialization strategies of the soil moisture component of a
rainfall-runoff forecasting model. The continuous mode was
compared to several event-based approaches for the same
model. The main conclusion is that the best results were ob-
tained when the model was run in a continuous mode. This
corroborates the results of previous studies (e.g., Anctil et al.,
2004b). However, we showed that one of our tested event-
based initialization strategies (i.e., the API-based initializa-

tion) could lead to performances rather close to what is ob-
tained with the continuous approach, provided that the model
can be run on a short pre-forecast period.

Indeed, the sensitivity of the model outputs to the initial con-
ditions is much lower in forecasting mode than in simulation
mode (i.e. without updating through the assimilation of mea-
sured streamflow): the output is considerably constrained by
the information contributed during the observed flow assim-
ilation process, which partly compensates for the errors in
initial values.

Given the large and varied data set used here, we believe that
these results are not catchment-dependent (in particular we
found no relation to catchment size or reactivity). The results
may remain to some extent model-dependent. However, we
expect that the behaviours we observed can also be found for
many forecasting models, since they all have to use efficient
data assimilation.

Fig. 8. Differences between the performance (persistence index) obtained by the model on 178 catchments in continuous mode and using an
event-based climatic initialization approach, depending on the catchments’ areas(a). Here lead time is 6 h. The pre-forecast period for the
event-based strategy lasts 240 h. Four classes of catchments are defined: the first class groups the 25% smallest catchments, the second class,
the following 25%, etc. Distributions of the difference in performance for every class are displayed(b).

In the strategies we tested, this pre-forecast period lasts
at least the length of the UH (to obtain proper values in the
UH) and was tested up to 15 days. It is clear for all event-
based initializations that the longer the pre-forecast period,
the better the performance (Fig.7). For the climatic initial-
ization, a pre-forecast period of 5 days leads to performance
significantly lower than the performance obtained with a con-
tinuous initialization. However, a 15-day pre-forecast period
allows performances close to what is given by the continuous
approach (see Table3).

4.3 Do results depend on catchment size?

Figure8 shows the difference in performances obtained by
the same model running in continuous mode and in event-
based mode (with climatic initialization) depending on the
catchment area. No clear trend can be detected from these
analyses. It is interesting to note moreover that the model’s

performance does not decrease as the catchment size in-
creases: the catchment behaves as a low-pass filter (Oudin
et al., 2005) and as the catchment size increases, forecasting
in fact becomes an easier task (for a given lead time).

4.4 Do results depend on catchment reactivity?

We found no relationship between catchment response time
and the impact of choosing a continuous or an event-based
strategy. Figure9 shows the difference in performances ob-
tained by the same model running in continuous mode and
in event-based mode (with climatic initialization) depending
on the catchments discharge autocorrelation. No trend was
detected from these analyses.
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Fig. 9. Differences between the performance (persistence index) obtained by the model on 178 catchments in continuous mode and using
an event-based climatic initialization approach, depending on the discharge autocorrelation (a). Here the lead time is 6 h. The pre-forecast
period for the event-based strategy lasts 240 h. Four classes of catchments are defined: the first class groups the 25 % of catchments with the
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are displayed (b).

The loss in performance when running the model using
event-based strategies is not substantial: indeed, in most
cases, the difference is not really significant. This means that
if an efficient assimilation of the last observed streamflow
is possible, event-based strategies can be efficiently used for
operational purposes when and where it is impossible to run
a model continuously.
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4.5 Impacts of the updating procedure

When used to issue discharge forecasts, hydrological mod-
els are most often updated (Refsgaard, 1997). In practice,
this means that the discharge forecast no longer depends on
forcing variables only (e.g. precipitation, evapotranspiration,
etc.) but also on the information contributed by the data as-
similation process. The discharge forecast is constrained by
data assimilation and consequently it may depend (much)
less on the internal states and so on their initialization.

We used the GRP model with and without updating tech-
niques to compare the influence of initialization of the
model’s SMA store (which is never updated) on forecasts
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for the Tarn River at Millau (2170 km2). We chose dif-
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applied (Fig.6c), whereas the 6-h forecasts are much more
constrained with data assimilation (Fig.6d). Similar results
were obtained for the other catchments of our data set.

Thus, the updating procedure used in forecasting mod-
els does limit the impact of crude initialization procedures,
in comparison with simulation models: this explains why a
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tialization.
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5 Synthesis and conclusions

Initial conditions are known to be of crucial importance for
hydrological models. In this paper, we compared different
initialization strategies of the soil moisture component of a
rainfall-runoff forecasting model. The continuous mode was
compared to several event-based approaches for the same
model. The main conclusion is that the best results were ob-
tained when the model was run in a continuous mode. This
corroborates the results of previous studies (e.g.,Anctil et al.,
2004b). However, we showed that one of our tested event-
based initialization strategies (i.e., the API-based initializa-
tion) could lead to performances rather close to what is ob-
tained with the continuous approach, provided that the model
can be run on a short pre-forecast period.

Indeed, the sensitivity of the model outputs to the initial
conditions is much lower inforecasting modethan insimu-
lation mode(i.e. without updating through the assimilation
of measured streamflow): the output is considerably con-
strained by the information contributed during the observed
flow assimilation process, which partly compensates for the
errors in initial values.

Given the large and varied data set used here, we believe
that these results are not catchment-dependent (in particular
we found no relation to catchment size or reactivity). The
results may remain to some extent model-dependent. How-
ever, we expect that the behaviours we observed can also be
found for many forecasting models, since they all have to use
efficient data assimilation.

The loss in performance when running the model using
event-based strategies is not substantial: indeed, in most
cases, the difference is not really significant. This means that
if an efficient assimilation of the last observed streamflow
is possible, event-based strategies can be efficiently used for
operational purposes when and where it is impossible to run
a model continuously.
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