A Bayesian approach to estimate sensible and latent heat over vegetated land surface
Abstract. Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.