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Abstract. Although floods in watersheds have been associ-
ated with land-use change since ancient times, the dynam-
ics of flooding is still incompletely understood. In this pa-
per we explored the relations between rainfall, groundwater
level, and cultivation to explain the dynamics of floods in the
extremely flat and valuable arable lands of the Quinto river
watershed, in central Argentina. The analysis involved an
area of 12.4 million hectare during a 26-year period (1978–
2003), which comprised two extensive flooding episodes in
1983–1988 and 1996–2003. Supported by information from
surveys as well as field and remote sensing measurements,
we explored the correlation among precipitation, groundwa-
ter levels, flooded area and land use. Flood extension was
associated to the dynamics of groundwater level. While no
correlation with rainfall was recorded in lowlands, a signifi-
cant correlation (P<0.01) between groundwater and rainfall
in highlands was found when estimations comprise a time
lag of one year. Correlations between groundwater level and
flood extension were positive in all cases, but while highly
significant relations (P<0.01) were found in highlands, non
significant relations (P>0.05) predominate in lowlands. Our
analysis supports the existence of a cyclic mechanism driven
by the reciprocal influence between cultivation and ground-
water in highlands. This cycle would involve the following
stages: (a) cultivation boosts the elevation of groundwater
levels through decreased evapotranspiration; (b) as ground-
water level rises, floods spread causing a decline of land
cultivation; (c) flooding propitiates higher evapotranspiration
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favouring its own retraction; (d) cultivation expands again
following the retreat of floods. Thus, cultivation would trig-
ger a destabilizing feedback self affecting future cultivation
in the highlands. It is unlikely that such sequence can work in
lowlands. The results suggest that rather than responding di-
rectly and solely to the same mechanism, floods in lowlands
may be the combined result of various factors like local rain-
fall, groundwater level fluctuations, surface and subsurface
lateral flow, and water-body interlinking. Although the hy-
pothetical mechanisms proposed here require additional un-
derstanding efforts, they suggest a promising avenue of envi-
ronmental management in which cultivation could be steered
in the region to smooth the undesirable impacts of floods.

1 Introduction

Since ancient times, the hydrological dynamics of water-
sheds were associated to land use/land cover change. Floods
were frequently attributed to the conversion of woodlands
and grasslands into grazing, cropping and urban lands. Wa-
ter runoff typically decreases exponentially as plant cover
increases (Elwell and Stocking, 1976; Lee and Skogerboe,
1985; Francis and Thornes, 1990) and paired catchment in-
vestigations on the hydrological role of vegetation show a
general trend of declining evapotranspiration and increas-
ing water yield as plant cover get reduced and as vege-
tation shifts across the forests-grasslands-annual crop se-
quence (Bosch and Hewlett, 1982; Calder, 1998; Zhang et
al., 2001; Andŕeassian, 2004). Models and observations in-
dicate that large trees in catchments may deplete ground-
water reserves where their roots reach the water table, yet
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their effect can be contrasting between temperate/tropical
and wet/dry regions (Le Maitre and Versfeld, 1997; Calder
1998).

Beyond its effect on water yield, the effect of cultiva-
tion on groundwater levels and its relation to land flooding
has been less studied and is still poorly understood. Be-
cause of the expansion of saline areas in agricultural lands
of Australia, Ferdowsian and Bee (2006) reported an exces-
sive groundwater recharge under traditional cultivation that
led to the rising of the water table. They recommended the
use of deep-rooted perennial pastures (such as alfalfa) to re-
duce recharge and lower water level.

As it happens in complex systems (Jeong et al., 2000), the
large scale dynamics of flooding processes are also essen-
tially unknown. Holistic approaches are necessary to im-
prove our knowledge and forecasting ability (Clark et al.,
1988). Data from long-term series have supported watershed
studies, but they are frequently criticised because most re-
search was focused on certain spatial scales (Hornbeck et
al., 1993). This is a relevant issue because agronomists,
ecologists, environmentalists, land managers, policy mak-
ers and development agents who make decisions at differ-
ent levels (plot, farm, ecosystem, landscape, eco-region) in-
creasingly demand scientific information about cross-scale
relations and interactions in hierarchical systems (Viglizzo
et al., 2005). Some authors (Buringh and Dudal, 1987; Bai-
ley 1995; O’Neill et al., 1991; Wagenet 1998) have stated
that high-level environmental factors like landform, climate
and land quality have strong top-down influence on lower
levels. On the other hand, human-dependent factors at lower
levels, such as land-use and management, may exert bottom-
up influences, that are smoothed at successively higher levels
(King, 1993; Viglizzo et al., 2004).

In this paper we (1) describe the dynamics of flooding in
the central Pampas of Argentina and (2) revise their trigger-
ing mechanisms, based on the analysis of∼30 year-long tem-
poral series of precipitation, land cultivation, groundwater
levels, and flooded area for the so-called Quinto river water-
shed (124 000 km2). Lowlands in the watershed represent a
typical case of flood-prone area in the Pampas, where regu-
lar floods undermine the regional economy (Fuschini Mejı́a,
1994). To guide our analysis we propose two extreme and
simple hypotheses that explain the onset of floods in the
study watershed, acknowledging that a more complex com-
bination of both is most likely taking place. Our climate-
oriented hypothesis suggests that flooding is the result of in-
creased precipitation inputs, which accumulated through a
certain period, causes a widespread elevation of groundwa-
ter levels that eventually reach the surface and limit cultiva-
tion. Our ecosystem-oriented hypothesis, on the other hand,
proposes that flooding emerges as a result of increasing cul-
tivation, which enhances recharge and raises groundwater
level when high water-consuming pastures and grasslands
are replaced by low water-consuming annual crops. In this
paper we explore the temporal variation and correlation of

rainfall, groundwater level, flooding and cultivation, and use
our extreme guiding hypotheses to explain the development
of flooding, and suggest possible non-linear interactions and
feedback mechanisms that might regulate the system.

2 Materials and methods

In order to understand the dynamics of floods in the study
area, the associations among rainfall, groundwater and culti-
vation were explored. We use the term cultivation to indicate
the proportion of arable land that is allocated to extensive
grain crops (mainly wheat, soybean, maize and sunflower)
every year, based on the fact that the rest of the land is typi-
cally occupied by perennial pastures (Hall et al., 1992).

2.1 The study region

The Argentine Pampas (33–35◦ S, 62–64◦ W) is a wide plain
of around 54 million hectare of fertile lands suiTable for cat-
tle and crop production (Hall et al., 1992; Viglizzo et al.,
2001). Soil quality varies (Satorre 2001) and rainfall de-
clines from NE to SW. The climate of the Western Pampas
is temperate (mean annual temperature=16.2◦C) with 70%
of rainfalls, that average 750 mm year−1 (Dı́az Zorita et al.,
1998), occurring between October and April. Winds are
more intense (around 16.8 km h−1) and frequent (only 14%
of calmed days) during the hot season (Hall et al., 1992),
triggering wind erosion episodes. Cyclical drought and flood
episodes that affect both crop and cattle production have been
described by Viglizzo et al. (1997) and Moncaut (2001).

The Western or “Sandy” Pampas (Fig. 1) occupy approx-
imately one third of the region and consist of a large and
complex system referred as the “Sand Sea” that comprise a
large regional configuration of longitudinal, mega-parabolic
dunes (Iriondo, 1990). The region was shaped during the
last Pleistocene glaciation and was partially reworked dur-
ing later desertification episodes (Iriondo, 1999), particularly
during the 1930–1940’s dust bowl that affected the Western
Pampas (Zarrilli, 1999, Fig. 1b). The linear features normally
observed in satellite images correspond to a succession of
elongated mounds and inter-dune depressions that constrain
the natural evacuation of water (Malagnino, 1991). The Late
Pleistocene–Holocene deposits provide the parent material
for the modern cultivated soils (Zárate, 2003).

In hydrological terms, the region comprises an active
groundwater system that is the result of the convergence
of Araucana, Puelche and Pampeana formations, being the
last one the top of the aquifer, which is relatively shallow
(Aradas et al., 2002). Very often, rainfall adds to already
water saturated soils and leads to multiple ephemeral water
bodies that, depending upon topographical configurations,
can join and produce extensive flooding episodes (Aradas
et al., 2002). Losses from the system occur by runoff and
vertical water fluxes that involve infiltration, evaporation and
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Fig. 1. Location of the Quinto river watershed shared by San Luis,
La Pampa, Ćordoba and Buenos Aires provinces;(a) location of
the Western Pampas and the watershed in the Argentine territory,
(b) detail of the watershed showing the spill-over area, the flooding
area, the Quinto river trajectory and the geographical location of the
study districts.

evapotranspiration from a plethora of occasional lakes and
wetlands (Scarpati et al., 2002). In order to relieve vulnera-
ble lands from flooding and water-logging problems in part
of the region, and also to improve conditions for agricultural
production, the political authority of Buenos Aires province
commissioned in 1987 the elaboration of an Integrated Mas-
ter Plan (Saravia et al., 1987) that later was only partially
carried out.

2.2 The Quinto river watershed

Topographic watershed boundaries in this region are poorly
defined since no river or stream channels are evident and
most surface water bodies correspond to ponds and lagoons.
The extremely flat territory located at the SE of the lower
Quinto River, focus of our study, does not behave as a con-
ventional basin. In periods of high rainfall the Quinto River
may extend its landlocked basin beyond its natural end point
in the lagoons of La Amarga (Carignano, 1999), bringing
water to our study area. However, with the exception of ex-
treme flooding events, the water budget of the study area is
mainly explained by local rainfall inputs with only small con-
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Fig. 2. (a)graphic of Fig. 1 showing a slope class map of the area
of the Quinto river watershed, the Quinto river trajectory and the
drainage lines,(b) topographic features of the flooding area from
Landsat images showing the strip that separates highlands from
lowlands on 110–120 m on sea level.

tributions coming from outside its boundaries (Kruse, 1992;
Kruse et al., 2001). Our delimitation of the Quinto river
basin is only geographical and acknowledges the fact that
this portion of the Pampas have a rather anarchic and endor-
reic drainage system.

The plain where floods occur is in part located inside the
Western Pampas. It extends from NW to SE following a to-
pographic gradient that ranges between 900 m. in the cen-
tral hills of San Luis province (outside the Pampas), to less
than 100 m. above sea level (m.a.s.l.) on the flooding low-
lands of NW Buenos Aires province. As it can be appreci-
ated in the slope-class map (Figure 2a), an extremely gentle
slope (mean: 0.525%, SD: 0.423) dominates the whole study
area. A broad-scale NE-SW spill-over area (of around 12.3
million hectare) raises along the river, which favours water
drainage into a flooding plain that comprise highly produc-
tive and valuable lands in which cultivation has increased
since the 1960s (Viglizzo et al., 2001). Arrows in Fig. 2a
represent surface streams based on surface land elevation.
Drainage is relatively robust in the higher part of the water-
shed (hereafter highlands) because of the steep topographic
gradient that cuts across the southern districts of San Luis and
Córdoba provinces. The lower part of the watershed (here-
after lowlands) is, on the other hand, a flat depression that
extends over the NE districts of Buenos Aires province with
elevations ranging from 130 and 50 m.a.s.l. Despite flatness,
episodes of weak drainage that are mediated by occasional
interlinked water bodies and anthropic constructions such as
channels and roads occur inside the lowlands (Kruse et al.,
2001; Kruse and Zimmermann, 2002). Despite large differ-
ences, both highlands and lowlands are prone to flooding.

www.hydrol-earth-syst-sci.net/13/491/2009/ Hydrol. Earth Syst. Sci., 13, 491–502, 2009



494 E. F. Viglizzo et al.: The dynamics of cultivation and floods

Table 1. Correlation analysis between estimations of flooded areas
from satellite images and from field-data.

District Correlation P value
coefficient (R)

Highlands Chapaleufú 0.89 <0.01
Realićo 0.74 <0.05
Trenel 0.74 <0.05
Queḿu 0.81 <0.05
Maraćo 0.81 <0.05

Lowlands Bolivar 0.83 <0.01
9 de Julio 0.87 <0.01
Rivadavia 0.68 <0.05
Casares 0.56 >0.05
Pehuaj́o 0.54 >0.05
Trenque Lauquen 0.65 <0.05

We used different sources of information to place the limit
between highlands and lowlands. In first place we used a
digital elevation model (DEM) that included most of the Rio
Quinto watershed to identify sharp shifts in slope and eleva-
tion. Independently we worked with a Landsat scene (227-
85, 32 400 km2) that covers the transition zone within the wa-
tershed to characterize “baseline” flooding intensity based on
the total area covered by ponds during the dry year of 1997.
Elevation ranges between 300 and 80 m, gradually decaying
towards the SE. The topography is extremely flat with 90%
of the area having< 1% slope. A pronounced slope shift
takes place across the range of 110–120 m.a.s.l. contour line.
Using this contour as a limit for highlands and lowlands, the
mean elevation and slope for the two regions were, respec-
tively, 183 m. and 0.73% and 91 m and 0.45%. Based on the
1997 Landsat scene, the area covered by water bodies was
2% for highlands and 6% for lowlands (Fig. 2b).

2.3 Data sources and analysis

Data on latitude, longitude and landform were obtained from
field measurements, satellite images and topographic maps.
Land-use datasets were provided by the Annual Agricultural
Surveys for the period 1978–2003 provided by the Secretary
of Agriculture of Argentina. Public hydrological organiza-
tions (The Provincial Water Administration in La Pampa and
The Plains Hydrology Institute in Buenos Aires provinces)
and the National Meteorological Services provided iii) long-
term precipitation data and iv) groundwater level records
from a large network involving 58 phreatimetric nodes scat-
tered among 29 locations. A subset of 11 of these data points
(see Fig. 1) had continuous and homogenous data for the
whole study period.

We focused our work at two spatial and temporal scales:
A broad-scale analysis for the 1978–2003 period comprising
highlands and lowlands as whole units in the flooding area,

and a small-scale analysis for the 1996–2003 period. Data
were disaggregated into eleven political districts (five located
in highlands, and six in lowlands), which are the smallest unit
in which public surveys of land use are organized. To study
the dynamics of cultivation and floods along a 25-year pe-
riod we relied on existing records (on land use, precipitation
and groundwater level) from different sources (see above in
this section). Mean values and standard deviations were re-
spectively used to characterize the patterns of precipitation,
groundwater level and % of cultivation at the broad highland
and lowland scales during 1978–2003. Simple correlation
analyses using best-fitting linear models were used to evalu-
ate relations at both scales. Given that the relation between
rainfall and groundwater is essential to interpret our results,
we explored eventual time lags (0 to 6 years) between both
variables through correlation analysis.

Correlation analysis were used at the district level during
the period of 1996–2003 to estimate the degree of associa-
tion between a) the groundwater level and the% of croplands
affected by floods and b) the change of cultivation during
the inter-flooding period of 1989–1995 and the groundwa-
ter level during the 1996–2003 flooding period. It should be
noticed that cultivation increased in all districts during the
inter-flooding period (Viglizzo et al., 2001).

Given that no numerical measurements of flood extension
were available for the last 30-year period we estimated it
based on the values of reduction of cultivated area obtained
from survey data for the 1996–2003 flooding event. This es-
timate assumed that the cultivated area was exclusively re-
duced by flooding. To validate this procedure, we relied on
the support of satellite images in order to estimate the ex-
tension of flooded lands along the flooded period of 1996–
2003. Smith (1997) provided a brief review about the use of
active and passive remote sensing to map surface water and
flooding, including the development of correlations between
ground level indicators and satellite data. We followed this
last approach based on the correlation of cultivated area ex-
tent (assumed to be constrained by floods) and surface water
coverage characterization with LANDSAT images. In Ta-
ble 1, we show the correlations coefficients (R) and their
statistical signification (P value) for highlands and lowlands
districts. Considering that correlation coefficients (R) ranged
between 0.54 and 0.89 and were significant (P<0.01 or
P<0.05) in nine of the eleven study districts, we assumed
that the reduction of the cultivated area is an appropriate es-
timator of flood extension.

3 Results and discussion

3.1 Precipitation, groundwater and cultivation at whole
region level

While homogenous behaviour of land use across districts
of the Western Pampas prevailed until the middle of the
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Table 2. Broad-scale correlation analyses.

Correlation between a b R SE P value

Highlands Rainfall Groundwater level −4.48 0.002 0.46 141.17 <0.05
% annual crops −6.79 −0.006 −0.09 158.52 >0.05

Groundwater level % annual crops 37.04−6.790 −0.41 0.56 <0.05
Lowlands Rainfall Groundwater level −2.37 0.000 −0.06 130.37 >0.05

% annual crops 51.67 −0.015 −0.28 125.50 >0.05
Groundwater level % annual crops 28.85−2.520 −0.23 0.64 >0.05

References: Correlation analysis between rainfall, groundwater level and % of annual cultivation in flooding lands of the spill-over area
within the Quinto river watershed during a 26-year period (1978–2003).
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Fig. 3. Temporal variability in patterns of(a) precipitations,(b)
groundwater level, and(c) annual cultivation in highlands (white
symbols) and lowlands (black symbols) within the spill-over area of
the Quinto River watershed during the period 1978–2003. Av: av-
erage value, sd: standard deviation. Analyzed period: 1978–2003.

20th century, a decoupling of flooded vs. non-flooded re-
gions emerged during the high-rain period initated in the
70‘s (Viglizzo et al., 1997, 2001). Throughout the 25 year
study period (1978–2003) highlands and lowlands displayed
similar trends in precipitation, groundwater level and cul-

tivated area, with correlation coefficients between regions
of 0.75, 0.64 and 0.70 (P<0.01). Highlands had on aver-
age lower precipitation, deeper groundwater, and more cul-
tivation than lowlands (Fig. 3a). In spite of having lower
precipitation variability, lowlands displayed similar ground-
water level variability than highlands, with water tables be-
ing on average 80 cm shallower throughout the study period
(Fig. 3b). Highlands averaged 50% of cultivated area, peak-
ing of 70% in 1995–1997 (Fig. 3c), whereas in lowlands
these values were 34% and 45%, respectively.

Rainfall-groundwater and rainfall-cultivation associations
were weaker than groundwater-cultivation (Table 2). While
rainfall and groundwater level are positively and significantly
(P<0.05) correlated in highlands, such correlation is not sig-
nificant (P>0.05) in the case of lowlands. The relation be-
tween rainfall and cultivation was non significant (P>0.05)
in both areas, but the correlation coefficient was substan-
tially higher in lowlands than in highlands. This supports the
notion that while groundwater might have a larger effect in
highlands than in lowlands, rainfall might be more influential
in lowlands. We found no correlation between rainfall and
groundwater level in lowland sites, in agreements with pre-
vious findings for the Flooding Pampas, east of our study re-
gion (Paruelo and Sala, 1990). In highland sites, however, the
introduction of lags revealed a delayed response of ground-
water levels to rainfall in previous years, with correlations
peaking with a one-year lag (R=0.56, p<0.01). The lack
of correlation in lowlands could be interpreted as follows: i)
water tables are always shallow and less sensitive to precip-
itation supplies; ii) surface or iii) subsurface water transport
from highlands are a more important control of groundwater
levels than local rainfall.

Simple input-output correlation analysis may not cap-
ture complex interactions in the flooded landscapes. Non-
linearities and multiple interactions between climatic, geo-
logical and biological factors could increase the complexity
of surface-subsurface water interactions (Tóth 1970, Sopho-
cleous 2002). In flat sedimentary landscapes, surface-water
bodies can be integral parts of the groundwater flow sys-
tem being both foci of recharge and discharge depending on
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Fig. 4. Percentage of cropland affected by floods during the period
1996–2003 in the flooding area of the Quinto River basin. High-
land districts(a) comprise 1. Chapaleufú, 2. Realićo, 3. Trenel,
4. Queḿu , 5. Maraćo (R=0.67, P<0.01). 1996–2002 was the
period covered by floods in highlands. Lowlands(b) comprise 6.
Bolivar, 7. Rivadavia, 8. 9 de Julio, 9. Casares, 10. Pehuajó, 11.
Trenque Lauquen. 1996–2003 was the period covered by floods in
highlands.

the location and regional flooding situation (Winter, 1999).
In these complex system vegetation, can influence runoff,
groundwater recharge/discharge, affecting both groundwa-
ter levels and flooded area (Jobbágy and Jackson, 2004;
Rodŕıguez-Iturbe et al., 2006; Montaldo et al., 2005; Man-
freda and Fiorentino, 2008). For this reason analyses based
solely on groundwater-climate links may fail to explain the
hydrological dynamics of basins and flooding plains.

For our purposes, whenever we use rainfall or ground-
water arguments to explain flooding, both tend to support
our climate-oriented hypothesis, which suggests that floods
are the result of increased precipitation that directly expands
water bodies, or indirectly cause a widespread elevation of
groundwater that saturates land surface and limits cultiva-
tion. Nevertheless, in isolation, this hypothesis seems to be
unable to explain the potentially cyclical behaviour of floods
and cultivation.
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Fig. 5. Relationships between groundwater levels and % of crop-
land affected by floods in the flooding area of the Quinto River
basin during the period 1996–2003. Highland districts(a) comprise
1. Chapaleuf́u (R=0,99,P<0.01), 2. Realićo (R=0.84,P<0.01),
3. Trenel (R=0,97, P<0.01), 4. Queḿu (R=0.91, P<0.01), 5.
Maraćo (R=0.95,P<0.01). Lowlands district(b) comprise 6. Bo-
livar (R=0.92,P<0.01), 7. Rivadavia (R=0.18,P>0.05), 8. 9 de
Julio (R=0.86,P<0.05), 9. Casares (R=0.26,P>0.05), 10. Pe-
huaj́o (0.23,P>0.05), 11. Trenque Lauquen (R=0,35,P>0.05).
1996–2003 was the period covered by floods in highlands.

3.2 Groundwater and floods at the district scale

Considering the predominant and significant positive corre-
lations between survey and satellite data to estimate the ex-
tension of floods, we proceeded on our analysis by using the
first set of records from annual surveys. Three aspects of
the dynamics of flooded area can be highlighted (Fig. 4): i)
Lowlands showed a more disperse and erratic behaviour than
highlands, where a relatively homogeneous flooding pattern
predominated, ii) the flooding extension picked one year ear-
lier in highlands than in lowlands, probably suggesting a
slow transference of water from highlands to lowlands. In
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fact, when floods began to decrease in highlands (2002), they
showed maximum expansion in lowlands (2003).

District-scale results showed contrasting flooding and cul-
tivation dynamics and association in highlands and lowlands
(Fig. 5). Setting aside the fact that correlations were pos-
itive in all study districts, relations were unambiguous and
highly significant (P<0.01) in highlands but rather anarchic
and non-significant (P>0.05) in lowlands. While groundwa-
ter level seems to play a dominant triggering role of floods in
highlands, drivers other than groundwater seem to predom-
inate in lowlands. Because of the flat landscape, it is likely
that factors such as local rainfall, subsurface drainage, and
the coalescence of scattered water bodies facilitating surface
water transport patterns could play a role during wet periods.

The Pampas are an extremely flat setting, with regional
slopes of<0.01% (Tanco and Kruse, 2001; Jobbágy et al.,
2008). In most of the Pampas, however, small-scale slopes
(across distances of less than 1 km) are larger than regional
slopes because of the dune landforms shaped by intense ae-
olian activity during the Holocene. In this context, local
hydraulic gradients overwhelm regional ones, favouring lo-
cal flow systems over intermediate and regional ones (sensu
Tóth, 1963). Under these conditions the expansion of flooded
areas is associated with gradual water level raises and the
eventual coalescence of ponds and shallow lagoons. Accu-
mulated water excesses cannot be stored in the unsaturated
zone that gets thinner and is unable to host additional wa-
ter inputs. As a result, surface water bodies emerge across
the lowest portions of the landscape. Floods in most of the
Pampas are more likely to develop through saturation-excess
overland flow and subsurface flow than through infiltration
excess or Hortonian flow (Sophocleus, 2002). Local influ-
ences on recharge and discharge fluxes could play a strong
role in the Pampas, regulating the water budget (and area) of
ponds and lagoons (Meyboom, 1967). For this reason the dy-
namics of floods are not of high frequency (i.e. flash floods)
but of slow initiation and even slower retraction.

Flood retraction can be explained through direct evapora-
tion from sporadic lagoons and water bodies. Tank evapo-
ration (A-tank) records are unavailable in the study region.
However, two stations located in a drier climate, 50 km to-
wards the west (Anguil), and in a cooler and moister climate,
300 km towards the southeast (Balcarce) achieve average val-
ues of 2009 and 1011 mm/yr for 1976–2006 (Casagrande,
personal communication). Even the lowest of these val-
ues is higher than those typically reported for annual crops
with unlimited water supply (Carcova et al., 2000; Gardiol et
al., 2003), suggesting that pond evaporation could become a
more effective vapour evacuation pathway than transpiration
to remove water once flooding expands. This contrast be-
tween pond evaporation and transpiration may be even more
dramatic if the effects of waterlogging, curtailing water con-
sumption by crops are considered (Meyer et al., 1987). In
this case, water level raises may trigger a positive feedback
on flooding in a first stage, caused by transpiration inhibition,

but a negative feedback on a second stage, motorized by the
high evaporation rates achievable under tank conditions.

3.3 The potential effect of cultivation on flooding

Our ecosystem-oriented hypothesis can provide an extra in-
sight on flooding dynamics. Two hydrological mechanisms
have been suggested to explain the potential influence of cul-
tivation on flooding: increased runoff and decreased evapo-
transpiration (ET). Various authors (Fullen, 1985; Faulkner,
1990; Evans, 1993; McNeill and Winiwarter, 2004; With-
ers et al., 2007) have reported that cultivation is likely to
increase surface runoff and flooding. On the other hand,
ET rates can decline in cultivated lands (Newman et al.,
2006). Changes of ET in response to land use change proved
to have a powerful effect on soil water balance (Wilcox et
al., 2003, Nosetto et al., 2005; Wilcox and Thurow, 2006)
in turn affecting groundwater level (Scanlon et al., 2005).
The timing of groundwater raise in relation to land-use/land-
cover change is not still well understood, but different spa-
tial and temporal plant-cover configurations can create dif-
ferent ET patterns (Gilfedder et al., 2003). While peren-
nial vegetation tends to show long-term and rather contin-
uous ET patterns, annual crops show short-term ET pulses
that agree with periods of active growing (Doorenbos and
Pruitt, 1977). Therefore, it is expected that the substitution
of permanent or perennial plants by annual crops may re-
duce ET rates, and eventually increase groundwater level be-
cause of a shortened growing period. In Australia, Allison
et al. (1990), Ward et al. (2006) and Ferdowsian and Bee
(2006) reported that the broad-scale clearing of perennial
vegetation and its replacement by annual crops and annual
pastures has resulted in rising groundwater levels. An ad-
ditional aspect that may restrain ET once the onset of floods
has taken place is the fact that land with the water Table close
to the surface (e.g.<0.8 m deep) often ceases to be sown and
is deprived from plant transpiration. This process can pro-
ceed until groundwater reaches the surface and direct surface
evaporation occurs. There is an incomplete understanding
about the time lag between land-use change and groundwa-
ter level change, but today this information is essential to
design sound land use and land management strategies (Gil-
fedder et al., 2003). Given that both the percentage of annual
crops and the flooded croplands were estimations obtained
from the same data source, any correlation between them
would inevitably connote circular calculation and spurious
results. To manipulate independent data periods, we alter-
natively explored the correlation between cultivation during
the inter-flooding period (1989–1995) and groundwater level
during the flooding period (1996–2003). The notion that in-
creasing cultivation could lead to groundwater elevation was
supported by a positive correlation observed in all highland
districts (Fig. 6a). This response gives room to speculate that
the increase of cultivation during the inter-flooding period
can trigger groundwater elevation that later saturates the soil
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Fig. 6. Relationships between% cultivation during the inter-
flooding period (1989–1995) and groundwater levels during the
flooding period 1996–2003. Highland districts(a) comprise 1.
Chapaleuf́u (R=0,86, P<0.01), 2. Realićo (R=0.61, P>0.05),
3. Trenel (R=0,92, P<0.01), 4. Queḿu (R=0.75, P<0.05), 5.
Maraćo (R=0.88,P<0.01). Lowlands districts(b) comprise 6. Bo-
livar (R=−0.42,P>0.05), 7. Rivadavia (R=0.70,P>0.05), 8. 9 de
Julio (R=0.91,P<0.01), 9. Casares (R=0.48,P>0.05), 10. Pe-
huaj́o (−0.51, P>0.05). 1996–2003 was the period covered by
floods in highlands.

and expands floods. Thus, with a variable time lag, increased
cultivation in one period would reduce the chance of culti-
vation in the following period. This interpretation is con-
sistent with our ecosystem-oriented hypothesis, which pro-
poses that flooding possibly responds to increasing cultiva-
tion, which enhances recharge and raises groundwater level
when high water-consuming pastures and grasslands are re-
placed by low water-consuming annual crops. However, in

principle this interpretation is not strictly applicable to low-
land districts (Figure 6b), which showed a more random-
like behaviour that deviates from that showed by highlands.
Probably, the same multiple drivers of flood mentioned above
generated noisy responses.

The negative relationship between groundwater and cul-
tivation may have practical implications in highlands: first,
groundwater level can be useful to predict a cultivation re-
duction in response to flood expansion; second, consider-
ing the slow movement of groundwater in soils, ground-
water level can be monitored to anticipate flood risk, help-
ing to cope in advance with its potentially harmful conse-
quences. However, this reasoning line deserves more expla-
nation. There is a considerable time lag between the inter-
flooding period (1989–1995) and the subsequent flooding pe-
riod (1996-2003). Thus, while cultivation expansion during
the inter-flooding period of 1989-95 can explain groundwa-
ter rise in highlands, high water Table contributed to remove
land from cultivation during the flooding period 1996–2003.
Hypothetically, a delayed negative feed-back may have op-
erated: it is likely that the rapid cultivation expansion dur-
ing the inter-flooding period triggered a negative feed-back
that caused, through floods, a retraction of cultivation during
the later flooding period. Given that groundwater showed a
smooth rise (around 50 cm/year) since 1996, we think that
this persistent rising trend could have been used to anticipate
the maximum flood expansion that occurred during 2001 and
2002.

3.4 Cyclical behaviour and the ecosystem-oriented hy-
pothesis

A complete and useful compilation of drought and flood-
ing episodes that occurred in the Argentina Pampas between
1576 and 2001, reconstructed through historical chronicles
and numerical data by Moncaut (2001), indicates that flood-
ing was a natural episode that repeated cyclically in the his-
tory of the study region. Given the qualitative nature of such
information, quantification was not possible. Considering
that colonization of lands in the study area started between
the end of the 19th and the beginning of the 20th century, it
is likely that cultivation affected the intensity and frequency
of flooding episodes. The rapid cultivation wave that began
at the end of 1970’s and still persists probably untied a force
that destabilized the hydrology of the flooding lands. The
abrupt transition from cultivation to flooding, and again to
cultivation, especially in highlands, suggests that both hy-
drology and cultivation are probably subjected to a cyclical
behaviour.

One hypothetical interpretation to this cycle is that the
competition between amplifying (positive) and controlling
(negative) feedbacks is probably modulating the hydrological
response of flooding lands. The inversion of phases within
each cycle probably occurs when one feedback dominates
over the opposite one. By triggering a positive feedback,
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cultivation could destabilize the hydrological balance of the
area. On the other hand, floods could trigger a negative feed-
back that forces the ecosystem to a lower cultivation level
that would stabilize the regional hydrology. While posi-
tive and negative feedbacks may be mutually neutralizing
in a sequential order, we can presume that the flooding pro-
cess moves between two (upper and lower) critical thresholds
that, in theory, were not still irreversibly surpassed (Scheffer
et al., 2001; Rial et al., 2004). The consequences of positive
feedbacks prevailing over the negative ones in the long term
are pure speculative at this point, yet the possibility of irre-
versibly surpassing threshold as stated by Peters et al. (2004)
and Briske et al. (2006), should be considered.

Beyond the competing-feedback interpretation to explain
cycles, one answered question in our ecosystem-oriented hy-
pothesis is what can explain water withdrawal once flood-
ing extension peaks. Flooding can favour vertical water-loss
pathways through pan-evaporation from water bodies, hypo-
thetically surpassing the ET rates observed under any herba-
ceous vegetation cover. Another vertical pathway can be the
slow infiltration process that later causes lateral subsurface
drainage to lower lands. Flooding water can also overflow
beyond the watershed boundaries and connect large chains
of water bodies, favouring surface flows towards the Atlantic
Ocean. This situation was observed under the extreme flood-
ing conditions of 2001 when the Quinto river watershed get
a surface connection with the Eastern Salado river watershed
(Scarpati et al., 2002). Certainly, a nested-scale configuration
seems to be necessary to interpret the agro-eco-hydrological
dynamics of the study region.

4 Conclusions

Our findings are useful to interpret the complex and dynamic
relations between rainfall, groundwater level and cultivation
in flooding lands of the Western Pampas. Firstly, we reached
the conclusion that this region, often referred as the “Quinto
river basin” does not behave as a conventional watershed
but as an extensive flooding plain that holds water coming
from various sources and through multiple pathways, and not
only from Quinto river spills. The long-lasting confusion is
probably the ineviTable consequence of misinterpreting the
complex hydrological dynamics of a flat aeolian landscape.
Secondly, results indicate that a purely climate-oriented per-
spective that sets aside essential biological aspects like those
related to land-use and land-cover change may be insuffi-
cient to explain the potential cyclical behaviour of floods and
cultivation, and a complementary, ecosystem-oriented view,
may be required. Cultivation may have a strong influence on
the dynamics of groundwater and floods in the highlands of
the study region. In practice, cropping would cause a neg-
ative self-impact that could deplete cultivation in the near
future. Besides, because of its location in an upper transi-
tional drainage area, the hydrological effect of cultivation in

highlands could indirectly contribute to alter the dynamics
of floods in lowlands. So, on broad-scale basis, both the
climate- and the ecosystem-oriented hypothesis should not
be considered mutually excluding but complementary.

Mediated by groundwater variability, the recurrent occur-
rence of cultivation-flooding cycles appears to be an out-
standing feature of highlands that is not so evident in low-
lands. Floods in lowlands appear to be the combined result of
various factors that may include not only groundwater varia-
tions, but also local rainfall inputs, runoff from upper lands,
subsurface drainage and interlinking of water bodies. Con-
sidering the flatter configuration of lowlands, such factors
can converge to mask a foreseeable relation between ground-
water and flooding.

Taking into account the relative importance of groundwa-
ter in highlands as a driver of flood, land planners and deci-
sion makers can take advantage of this condition to prevent
catastrophic situations: the slow pace of groundwater pro-
cesses is suiTable to implement an early-warning monitoring
system to facilitate adaptation before the flooding outbreak.
Likewise, a knowledge-based land-use policy for highland
should not discard the potential effect of cultivation on flood-
ing. To deal with this, we suggest the following hypotheti-
cal mechanism to explain the cultivation-flood relation: first,
cultivation boosts the elevation of groundwater level through
decreased evapotranspiration; second, as groundwater level
rises, floods spread causing a decrease of land cultivation;
third, flooding propitiates higher evaporation favouring its
own retraction. Despite nowadays most drivers of the hy-
drological dynamics escape to human control, cultivation
emerges a promising human-controlling factor that could be
managed to smooth the undesirable impact of floods. This
view would become more relevant under a wetter climate
scenario like that the IPCC (2007) report predicts for the Ar-
gentine Pampas.

Given that drainage from highlands appears to be a strong
factor affecting the lowlands hydrology, a sensible land-use
policy should treat the flooding area a whole hydrological
unit. In practical terms, the combination of an engineered
channel-infrastructure plus a designed plant-cover structure
in highlands seems to be necessary to smooth the impact of
drainage water on lowlands.
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desaf́ıo ecohidroĺogico de las transiciones entre sistemas leñosos
y herb́aceos en la llanura Chaco-Pampeana, Ecologı́a Austral.,
18, 305–322, 2008.

King, A. W.: Considerations of scale and hierarchy, in: Ecological
Integrity and the Management of Ecosystems, edited by: Wood-
ley, S., Kay, J., and Francis, G., St. Lucie Press, Delray Beach,
Florida, USA, 19–45, 1993.
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