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Abstract. The paper introduces a stochastic technique for
forecasting rainfall in space-time domain: the PRAISEST
Model (Prediction of Rainfall Amount Inside Storm Events:
Space and Time). The model is based on the assumption
that the rainfall heightH accumulated on an interval1t be-
tween the instantsi1t and(i+1) 1t and on a spatial cell of
size1x1y is correlated either with a variableZ, represent-
ing antecedent precipitation at the same point, either with a
variableW , representing simultaneous rainfall at neighbour
cells. The mathematical background is given by a joined
probability densityfH,W,Z (h, w, z) in which the variables
have a mixed nature, that is a finite probability for null value
and infinitesimal probabilities for the positive values. As
study area, the Calabria region, in Southern Italy, has been
selected. The region has been discretised by 10 km×10 km
cell grid, according to the raingauge network density in this
area. Storm events belonging to 1990–2004 period were an-
alyzed to test performances of the PRAISEST model.

1 Introduction

The risk mitigation in landslide or flood prone areas is one of
the most important topics in environmental sciences. In the
next future this relevance will increase owing to the devel-
opment of mitigation and adaptation policies related to cli-
matic change (Stern, 2006; IPCC, 2007). In this scenario
the non structural measures, mainly based on early warning
system, will play, increasingly, a relevant role. So all the
related hydrological topics like rainfall-runoff modelling or
rainfall-landslide relationships will be also developed, with
the general scientific aim of realizing an accurate simulation
of the real phenomena, but also in order to forecast landslide
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and flood events with a lag time large enough for activating
civil protection measures.

Indeed, in all the cases where the phenomenon rapidly
evolves, like flash floods or shallow landslides, the lag time
between observed rainfall and flood or landslide occurrence
results too short and must be extended by rainfall fields fore-
casting. This is the main reason for the rise of the interest in
this topic (Reed et al., 2007; Bloschl et al., 2008).

In the technical literature rainfall forecasting models can
be classified in time stochastic models, space-time stochastic
models and meteorological ones.

In the first class, we consider the “discrete time-series
models”, that include AutoRegressive Stochastic Models
(Box and Jenkins, 1976; Toth et al., 2000). They describe
the rainfall process at discrete time steps, are not intermit-
tent and therefore can be applied for describing the “within
storm” rainfall. Space-temporal stochastic models can be
classified in Multivariate models and Multidimensional ones.
The former consider several rain gauges simultaneously and
are intended to preserve the covariance structure of the his-
torical rainfall data existing in the network points. On the
temporal axis, forecasting is made by autoregressive scheme
(STARMA and CARMA models, Cliff et al., 1975; Burlando
et al., 1996).

The latter models attempt to characterize the rainfall phe-
nomenon at every point over the area of interest (Bras and
Rodriguez-Iturbe, 1984; Meiring et al., 1997).

Finally, meteorological models (Untch et al., 2006) solve
in numerical way partial differential equations of atmosphere
thermodynamics: they can be classified in GCM (Global Cir-
culation Models) and LAM (Limited Area Models).

Meteorological models are useful qualitative-quantitative
rainfall forecasting tools on 24–72 h interval and on large
spatial scale. In such cases, indeed, absolute precision is
not required for practical application, then the precision of
forecasting model is quite enough. When both the forecast-
ing lag time and spatial scale decrease the effectiveness and
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the precision of this kind of models also decrease (Koussis
et al., 2003; Bartholmes and Todini, 2005; Sharma et al.,
2007). Unfortunately this is the time space scale of the fast
phenomena (flash floods and shallow landslide) that require
rainfall forecast for civil protection measures. Then it is not
plenty profitable to rely on meteorological models for quan-
titative rainfall forecasting, as the probability of both missed
and false alarms may be too large.

Consequently, in order to perform short term real-time
rainfall forecasts for small basins (i.e. with size ranging 100–
1000 km2), stochastic models appear to be competitive, as
they take account of the hydrological characteristics of the
investigated area.

Nevertheless, stochastic models input is only constituted
by antecedent rainfalls, so they provide the same prevision,
whether meteorological models forecast a wet period or a
dry one. For these reasons, coupling stochastic and meteo-
rological models appears a very interesting topic for rainfall
forecasting in the small time space scale (Di Tria et al., 1999;
Sirangelo et al., 2006).

This work introduces a space-temporal models to fore-
cast rainfall fields named PRAISEST (Prediction of Rainfall
Amount Inside Storm Events: Space and Time). It is a mul-
tidimensional space-time model, that can be considered like
the generalization of the at-site model PRAISE proposed by
the authors (Sirangelo et al., 2007).

PRAISEST is based on the assumption that the evaluation
rainfall heightH , accumulated over an interval1t and on a
spatial cell of size1x1y, depends on antecedent precipita-
tion at the same site, and on rainfalls of neighbour cells.

In the following Sections the theoretical bases of the pro-
posed model (Sect. 2), fitting techniques (Sect. 3) and rainfall
generation algorithm (Sect. 4) are discussed. The application
of the model to the case study of Calabria region, in Southern
Italy, is reported in Sect. 5.

2 The PRAISEST Model

2.1 Identification of random variables

In the PRAISEST model there are three fundamental random
variables:

a) Hi+1, defined as the rainfall height on the forecasting
interval1t between the instantsi1t and(i+1) 1t for a cell
having area1x1y.

b) for a fixed lag in time,ν, and for a given pixel where
the future rainfallHi+1 must be estimated, construct the au-
toregression of rainfall heights

Z
(ν)
i =

ν−1∑
j=0

αjHi−j (1)

Fig. 1. PRAISEST Scheme for each pixel.

whereαj are autoregressive coefficients to be estimated for
each lag, with the conditions 0<αj≤1, for j=0, 1, ..., ν−1,

and
ν−1∑
j=0

αj=1.

c) Wi+1, defined as a weighted average of rainfall heights
over the four closest neighbouring pixels:

Wi+1 =

4∑
j=1

β
′

jH
(j)

i+1 (2)

where the superscript indicates the pixel in the neighbour-
hood, as shown in Fig. 1.

Considering larger neighbourhoods or a different weight-
ing procedure, to allow for either anisotropy or influence
from a larger region, implies a greater number of parameters
and gives us similar results.

As regardsZ(ν)
i , the linear stochastic dependence between

the random variableHi+1 and the generic antecedent ran-
dom variablesHi−j , j=0, 1, 2, ..., i.e. the extension of the
temporal “memory”ν of the rain field, for every cell, can
be assumed equal to the minimum value ofν for which the
sample maximum absolute scatteringχr (ν) (Sirangelo et al.,
2007) results less than a fixed critical valueχr,cr .

The coefficientsαj can be estimated by maximization of
the coefficient of linear correlationρ

Hi+1Z
(ν)
i

. If ν is large

the number of parameters may be too high, then a technique
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of linear filtering results convenient, as the coefficientsαj

depend on a reduce number of parameters.
In this paper, the gamma-power function is used as filter

(De Luca, 2005), depending on three parameters, that pro-
vides a good fitting of the estimated values ofαj .

Then, the coefficientsαj can be calculated as:

αj =
P
[
a, ((j + 1)b1t)c

]
− P

[
a, (jb1t)c

]
P
[
a, (ν b1t)c

] (3)

whereP (a, x) =
1

0(a)

x∫
0

e−t ta−1dt is the incomplete gamma

function (Abramowitz and Stegun, 1970).
More precisely, for every set(a, b, c), the sample vari-

ablez
(ν)
i ,i = ν, ν+1, ..., N − 1, can be evaluated and then

the optimal valueŝa, b̂, ĉ can be obtained by maximizing the
sample linear correlation coefficientrHZ betweenHi+1 and
Z

(ν)
i . A numerical procedure (Press et al., 1988) is adopted.

As regards the random variableWi+1, theβ
′

j coefficients
can be evaluated as:

β
′

j =
ρ

′

j,0

4∑
j=1

ρ
′

j,0

j=1, 2, 3, 4 (4)

andρ
′

1,0, ρ
′

2,0, ρ
′

3,0, ρ
′

4,0 indicate the linear correlation coef-
ficients between the reference cell 0 and the neighbour cells
1, 2, 3and4 (Fig. 1).

Obviously if the field can be considered locally isotropic,
the coefficientsβ

′

j assume the same value equal to 1/4.
For each pixel the aim is then to predict the rainfall to-

tal Hi+1 at a subsequent timestep considering the triple(
Hi+1, Wi+1, Z

(ν)
i

)
, whereWi+1 is a weighted average at

the forecast timestep and this results in a implicit scheme.
Section 4 outlines a methodology for using this scheme in
the forecasting of rainfall fields.

The PRAISEST Model can be used considering several
temporal and spatial scales, according to the available rainfall
data. In the case of high-resolution timestep, for example
hourly or sub-hourly, storm advection may be reproduced,
in stochastic way, by the correlation structure referred to the
spatial neighbourhood approach.

In the following, for notation simplicity, the subscripts of
random variablesH , W andZ will be removed where possi-
ble.

2.2 Structure of the joint and conditional probability
density

Starting from the joint probability densityfH,W,Z (h, w, z) is
important for deriving the expression of the conditional one
fH |W,Z (h|w, z), used to forecast rainfall fields.

To identifyfH,W,Z (h, w, z) it is necessary to consider the
mixed nature of random variablesH , W andZ. All the three

variables are non-negative and characterized by a finite prob-
ability in correspondence of the null value and by infinitesi-
mal probabilities in correspondence of the positive values.

Then, indicated withpH,W,Z, pH,W,0, pH,0,Z, p0,W,Z,
pH,0,0, p0,W,0, p0,0,Z andp0,0,0 the probabilities associated,
for each pixel, to the events:

H>0 ∩ W>0 ∩ Z>0,
H>0 ∩ W>0 ∩ Z=0,

H>0 ∩ W=0 ∩ Z>0,

H=0 ∩ W>0 ∩ Z>0,

H>0 ∩ W=0 ∩ Z=0,

H=0 ∩ W>0 ∩ Z=0,

H=0 ∩ W=0 ∩ Z>0,

H=0 ∩ W=0 ∩ Z=0, the joint probability density
fH,W,Z (h, w, z) assumes the form:

fH,W,Z (h, w, z) = p0,0,0δ (h) δ (w) δ (z) +

pH,0,0 · gH,0,0 (h) · δ (w) δ (z) +

p0,W,0 · g0,W,0 (w) · δ (h) δ (z) +

p0,0,Z · g0,0,Z (z) δ (h) δ (w) +

pH,W,0 · gH,W,0 (h, w) δ (z) +

pH,0,Z · gH,0,Z (h, z) δ (w) +

p0,W,Z · g0,W,Z (w, z) δ (h) +

pH,W,Z · gH,W,Z (h, w, z)

(5)

where the symbolδ (·) indicates the Dirac’s delta function
and:

gH,W,Z (h, w, z) dhdwdz = (6)

Pr[ h≤H<h+dh ∩ w ≤ W < w + dw ∩ z≤Z<z+dz|

H>0 ∩ W>0 ∩ Z>0]

gH,W,0 (h, w) dhdw = (7)

Pr[h ≤ H < h + dh ∩ w ≤ W < w + dw|

H > 0 ∩ W > 0 ∩ Z = 0]

gH,0,Z (h, z) dhdz = (8)

Pr[h ≤ H < h + dh ∩ z ≤ Z < z + dz |

H > 0 ∩ W = 0 ∩ Z > 0]

g0,W,Z (w, z) dwdz = (9)

Pr[ w ≤ W < w + dw ∩ z ≤ Z < z + dz|

H = 0 ∩ W > 0 ∩ Z > 0]

gH,0,0 (h) dh = (10)

Pr[ h ≤ H < h + dh| H > 0 ∩ W = 0 ∩ Z = 0]
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g0,W,0 (w) dw = (11)

Pr[ w ≤ W < w + dw| H = 0 ∩ W > 0 ∩ Z = 0]

g0,0,Z (z) dz = (12)

Pr[ z ≤ Z < z + dz| H = 0 ∩ W = 0 ∩ Z > 0]

and clearly, p0,0,0+pH,0,0+p0,W,0+p0,0,Z+pH,W,0 +

pH,0,Z+ p0,W,Z+pH,W,Z=1.
The conditional distributionfH |W, Z (h|w, z), necessary

to perfom the forecasting, is characterized by four separate
cases, due toW null or positive andZ null or positive.

Considering the cumulative distribution function (CDF)
FH |W,Z (h|w, z), we obtain the following expressions:

– if W=0 andZ=0 then

FH |W,Z (h|w, z) =
p0,0,0 + pH,0,0GH,0,0 (h)

p0,0,0 + pH,0,0
(13a)

whereGH,0,0 (h) is the CDF ofgH,0,0 (h) and the probability
referred to the eventH=0|W=0 ∩ Z=0 is:

p0,0,0

p0,0,0+pH,0,0
(13b)

– if W>0 andZ=0 then

FH |W,Z (h |w, z) = (14a)
p0,W,0 · g0,W,0 (w) + pH,W,0 · GH |W,0 (h|w) · gW (w)

p0,W,0 · g0,W,0 (w) + pH,W,0 · gW (w)

whereGH |W,0 (h|w) is the CDF of the conditional density
gH |W,0 (h|w), gW (w) is the marginal density with the re-
spect toW , derived fromgH,W,0 (h, w), and the probability
referred to the eventH=0|W>0 ∩ Z=0 is:

p0,W,0·g0,W,0 (w)

p0,W,0·g0,W,0 (w) +pH,W,0·gW (w)
(14b)

– if W=0 andZ>0 then

FH |W,Z (h |w, z) = (15a)
p0,0,Z · g0,0,Z (z) + pH,0,Z · GH |0,Z (h|z) · gZ (z)

p0,0,Z · g0,0,Z (z) + pH,0,Z · gZ (z)

whereGH |0,Z (h|z) is the CDF of the conditional density
gH |0,Z (h|z), gZ (z) is the marginal density with the respect
to Z, derived fromgH,0,Z (h, z), and the probability referred
to the eventH=0|W=0 ∩ Z>0 is:

p0,0,Z·g0,0,Z (z)

p0,0,Z·g0,0,Z (z) +pH,0,Z·gZ (z)
(15b)

– if W>0 andZ>0 then

FH | W,Z (h|w, z) = (16a)
p0,W,Z · g0,W,Z (w, z) + pH,W,Z · GH |W,Z (h|w, z) · gW,Z (w, z)

p0,W,Z · g0,W,Z (w, z) + pH,W,Z · gW,Z (w, z)

whereGH |W,Z (h|w, z) is the CDF of the conditional density
gH |W,Z (h |w, z), gW,Z (w, z) is the marginal density with
the respect toW andZ, derived fromgH,W,Z (h, w, z), and
the probability referred to the eventH=0|W>0 ∩ Z>0 is:

p0,W,Z · g0,W,Z (w, z)

p0,W,Z · g0,W,Z (w, z) + pH,W,Z · gW,Z (w, z)
(16b)

In each case reported in Eqs. (6–12) the marginal distribu-
tion of the positive variablesH , W andZ will be assumed
to follow a Weibull distributionFX (x) =1− exp(−λxη),
where the parametersλ and η can be estimated via the
method of moments.

It is important to emphasise that each conditioning case
will have different power transformation parameters, as the
distribution of one variable differs depending on whether the
other variables are positive or zero. Moreover, the whole en-
semble of parameters varies from a pixel to each other. After
performing a power transformation, to model the joint den-
sity of the variables it suffices to consider multivariate expo-
nential distributions (Kotz et al., 2000). The Moran-Dowton
multivariate exponential distribution for a vectorX havingp

unit mean marginals is written as:

fX

(
x
)

= (17)

θp−1 exp

(
−θ ·

p∑
i=1

xi

)
· Sp

[
(θ − 1) θ (p−1)

·

p∏
i=1

xi

]

whereθ is an association parameter that is the same between
all dimensions and where

Sp [q] =

∞∑
r=0

qr

(r!)p
(18)

The Eq. (17) is characterized by exponential marginal den-
sity functions. The association parameter respect the condi-
tion θ ≥ 1 and it is related to the linear correlation coeffi-
cient between any two variablesXi andXj asρi,j=1−1

/
θ .

Consequently, ifθ=1 thenρi,j = 0 and the Eq. (17) can be
written as:

fX

(
x
)

= exp

(
−

p∑
i=1

xi

)
=

p∏
i=1

exp(−xi) (19)

that implies the independence among the random variables.
From the Eq. (17) the conditional densitygH |W,Z (h|w, z)

can be written as:
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gH |W,Z (h|w, z) = (20)
gH,W,Z (h, w, z)

gW,Z (w, z)
= θhwzλhηhh

ηh−1 exp
(
−θhwzλhh

ηh
)
·

S3
[
(θhwz − 1) θ2

hwzλhh
ηhλwwηwλzz

ηz
]

S2
[
(θhwz − 1) θhwzλwwηwλzzηz

]
where(λh , ηh ), (λw, ηw), (λz, ηz) are the power transfor-
mation parameters, respectively, forh, w, z andθhwz denotes
that the association parameter is estimated from the observa-
tions(h>0, w>0, z>0). Asθhwz is the same in each dimen-
sion it is evaluated from all of the pairs within this group (h,
w), (h, z), and (w, z).

The conditional densitygH |W,0 (h|w) can be written as:

gH |W,0 (h|w) =
gH,W,0 (h, w)

gW (w)
= (21)

θhwλhηhh
ηh−1 exp

(
−θhwzλhh

ηh
)
·

S2
[
(θhw − 1) θhwλhh

ηhλwwηw
]

where the power transformation parameters(λh, ηh),
(λw, ηw ) are different from those of Eq. (20) because they
are evaluated from the observations(h>0, w>0, z=0); the
same ensemble of observations is used for theθhw estima-
tion.

A similar expression forgH |0,Z (h|z) can be developed re-
quiring a separateθhzthat is estimated from the recordered
data(h>0, w=0, z>0). Starting from Eq. (17), it is easily
to determine the structure of the probability density function
g0,W,Z (w, z), while gH,0,0 (h), g0,W,0 (w) andg0,0,Z (z) are
simply the univariate Weibull distributions and do not require
any additional parameters apart from the power transforma-
tion ones.

3 Model calibration

The trivariate probability distribution function
fH,W,Z (h, w, z) presents 42 parameters for every pixel.
This number is not too large, if we consider that in 10 years
there are 87 600 hourly data (supposing that the rainfall
process is stationary in time during the whole year) related
to every cell, i.e. the d/p (data/parameters in a generic cell)
ratio is approximatively equal to 2050, and remains high
enough (about 150) also if positive rainfall data are only
considered. Using raingauge data and cells domain the
ratio does not change if the number of stations and cells are
similar.

This d/p ratio value allows consistent evaluations of
PRAISEST parameters referred to the whole spatial domain.

The first calibration step, for every cell, is the evaluation of
(a, b, c)by numerical technique. Estimation ofβ

′

j , j=1, 2, 3,

4, follows by analyzing sample linear correlation coefficient
r

′

1,0, r
′

2,0, r
′

3,0, r
′

4,0.
The probabilitiespH,W,Z, pH,W,0, pH,0,Z, p0,W,Z, pH,0,0,

p0,W,0 andp0,0,Z can be estimated by the frequencies of the
corresponding events.

The power transformation parameters referred to the prob-
ability densities of the Eq. (5) can be estimated by using
classic expressions of Weibull distribution parameters esti-
mation, referred to the method of moments.

The estimation of the association parameterθhwz, is per-
formed minimizing the following function:

R (θhwz) = (22)

ω1 (ρHW − rHW )2
+ ω2 (ρHZ − rHZ)2

+ ω3 (ρWZ − rWZ)2

whererHW , rHZ, rWZ are the sample linear correlation coef-
ficients, and the sum of the weightsω1, ω2 andω3 is unitary.
The Eq. (22) depends only on the parameterθhwz, since the
remaining parameters have been evaluated in a previous step.

With similar procedures, the association parameters of the
remaining density functions of Eq. (5) can be evaluated.

4 Rain fields generation algorithms

The generation of the rainfall heights on the entire domain
differs from the standard Monte Carlo approach. In fact, at
the current timei, the values of the random variableZi in
every cell are known, but values ofWi+1 andHi+1 on the
entire domain must be generated. Such generations cannot be
carried out independently cell by cell, because the variables
are linked by congruence equations. This problem has been
solved using the following “Chess-Board” algorithm (Fig. 2):

1. for every “0” cells of the spatial domain, know-
ing the value of Zi , generation is made us-
ing the random numberR(0)

U , by the formula

h
(0)
i+1=F−1

H |Z

(
R

(0)
U |W

(0)
i+1≥0, Z

(0)
i =z

(0)
i

)
, i.e. the vari-

ableHi+1 is generated supposing zero as lower bound
for Wi+1. The formulation of the densityFH |Z (h|z),
marginal with respect toW and conditional with re-
spect toZ, is easily obtained from the Eq. (5). This type
of generation is justified because, in the model, rainfall
heights in the “0” cells are each other independent.

2. As regards the “1” cells, knowing the value of
Zi , W

(1)
i+1 is set equal to the linear combination

of the H
(0)
i+1 in the neighbours “0” cells. Con-

sequently, generation is made by the formula

h
(1)
i+1=F−1

H |W,Z

(
R

(1)
U |W

(1)
i+1=w

(1)
i+1, Z

(0)
i =z

(0)
i

)
us-

ing the random numberR(1)
U .

The equations referred toh(0)
i+1 andh

(1)
i+1 are numerically

solved by using bracketing and regula falsi techniques (Press
et al., 1988).
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Fig. 2. “Chess-Board” algorithm.

5 Application

5.1 Parameters estimation

PRAISEST model has been applied using the hourly rain
heights database of the tele-metering raingauge network of
the “Centro Funzionale Meteorologico Idrografico Mare-
ografico” of the Calabria region. The network, extended all
over the Calabria and Basilicata regions has 92 stations for
the period 1990–2001, and 126 stations from 2002 to 2004
(Fig. 3). Approximately, 13 million of hourly rainfalls form
the database, of which about 7% are rainy.

The region was discretized by 10 km×10 km cell grid, ac-
cording to the raingauge network density.

In order to respect the hypothesis of stationary process,
only the data measured during the “rainy season”, 1 October–
31 May have been used (De Luca, 2005). In this period,
correlation structure, mean and variance of the sample appear
significantly homogeneous (Sirangelo et al., 2007). So the
d/p ratio is equal to about 2050 and about 150 considering
only rainy intervals.

The historical series do not refer to a regular mesh, so the
model parameters have been estimated for every raingauge
and then mapped on the regular discretized domain by using
a surface spline technique (Yu, 2001).

The extension of the “temporal memory”, i.e. the param-
eter ν, has been determined for every raingauge starting
from sample partial autocorrelogram, and using the tech-
nique cited at point 2.1 (Sirangelo et al., 2007). The value of
χ r,cr has been fixed equal to 0.025, and the estimate ofν has
beenν̂=8, as depicted in Fig. 4, where the mean value of the
scatteringχr (ν), considering all the telemeter-raingauges, is
represented.

The coefficientsαj have been calculated, for every rain-
gauge, applying the gamma-power function as filter (Eqs. 2–
3).

For the evaluation of coefficientsβ
′

j definingWi+1 (Eq. 4),
sample directional spatial correlograms have been analysed,
using simultaneous rainfall, and considering, on abscissa,
distance between raingauges over the range [5 km; 15 km],
representing spatial resolution of the region, discretized by
10 km×10 km cell grid. Four circular sectors of 90 degrees,
centred in the NE, SE, SW, NW directions have been consid-
ered. Sample correlation values appear to be independent on
the directions, as depicted in Fig. 5, so the rain fields can be
considered as local isotropic, and thenβ

′

j=1/4, j=1, 2, 3, 4.

Table 1 reports a set of estimated parameters, evaluated as
described in Sect. 3.

Figure 6 shows an example of parameter mapping in Cal-
abria region, referred toθhwz, for H>0∩W>0∩Z>0 event.
Greater values are located in the Southern Calabria, so in this
area the variablesH , W andZ appear more strongly corre-
lated.

5.2 Model validation

The hourly scattered data, referred to raingauges network,
have been interpolated, by a surface spline technique, on reg-
ular mesh, of 10×10 km square cells.

Each rain field simulation requires the knowledge of the
rainfalls during the eight previous hours, equal to the tem-
poral memory. The rain field simulations can be carried out
for the successive hours, but the temporal extension of the
forecasting should not exceed six hours, to avoid rainfall es-
timations based on only simulated precipitations. Beyond
this limit the uncertainty in rainfall evaluation increases, as
the influence of recorded rainfall decreases.

In the application here described, 10 000 simulations of the
process have been carried out, by Monte Carlo technique de-
scribed in Sect. 4, in order to obtain a large synthetic sample,
necessary to determine probabilistic distribution of rainfall
height for every pixel and for each hour. The Monte Carlo
technique is adopted because of the complexity of determin-
ing analytical probabilistic distributions for forecast rainfall
during the hours successive to the first one. For these distri-
butions, convolution operations are required.

Firstly, the validation is carried out focusing our attention
on the ensemble of events inside the storm development char-
acterized byZ0>1 mm (where the subscript “0” is related the
eight previous hours of recorded data), which are of major
interest for our approach, and then testing the model perfor-
mance on reproducing, for each of the successive six hours
of forecasting, the following sample moments which are not
fitted in the parameters estimation:

– meanmH |Z0>1 and standard deviationssH |Z0>1;

– spatial correlationrHW |Z0>1 and autocorrelation of lag
1 r1|Z0>1;
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Fig. 3. (a)Location of Basilicata and Calabria regions;(b) Rainguage network;(c) Discretization of spatial domain.

Table 1. Example of estimated parameters set.

event p (−) 1
/
λh (mm) ηh (−) 1

/
λw (mm) ηw (−) 1

/
λz (mm) ηz (−) θ (−)

H>0 ∩ W>0 ∩ Z>0 0.062 1.27 0.76 1.25 0.81 1.10 0.75 1.94
H>0 ∩ W>0 ∩ Z=0 0.008 0.81 0.66 0.83 0.73 2.12
H>0 ∩ W=0 ∩ Z>0 0.013 0.61 0.66 0.61 0.65 1.75
H=0 ∩ W>0 ∩ Z>0 0.034 0.46 0.64 0.44 0.56 1.16
H>0 ∩ W=0 ∩ Z=0 0.005 0.46 0.63
H=0 ∩ W>0 ∩ Z=0 0.028 0.45 0.59
H=0 ∩ W=0 ∩ Z>0 0.107 0.26 0.46

Fig. 4. Evaluation of temporal memory extension.

– dry ratios f00|Z0>1, wet-to-dry f10|Z0>1, dry-to wet
f01|Z0>1 and wet-to-wetf11|Z0>1 ratios for two subse-
quent images.

The number of events is about 2000 and the results are
reported in Figs. 7–8, in which the histograms represent the

sample values averaged on the whole spatial domain. More-
over for each index, mean value and 95% band of PRAISEST
simulations are reported. The figures demonstrate the over-
all capability of the method to reproduce the rainfall fields
properties.

Moreover, as examples of model output, the applications
relative to 1 February 1998 and 24 November 1999 events in
the Calabria region are illustrated in Figs. 9–10.

For the first event the rain fields from 07:00 p.m. of 31
January to 03:00 a.m. of 1 February have been used as model
memory, and the simulation period starts from 03:00 a.m and
finishes at 09:00 a.m. of 1 February. The second event is
characterized by a rain field memory from 08:00 p.m. of 23
November to 04:00 a.m. of 24 November , while the simu-
lation period starts from 04:00 a.m and finishes at 10:00 a.m.
of 24 November. On the abscissa, the cells are sorted from
left to right, and from North to South. In the figures, be-
sides the rain histograms effectively occurred, for every cell,
percentiles 90% and 95% of the simulated fields are re-
ported. Following the axis of the abscissas, the chief towns of
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Fig. 5. Sample directional spatial correlograms.

Fig. 6. Mapping of the parameterθhwz.

Cosenza (CS), Crotone (KR), Catanzaro (CZ), Vibo Valentia
(VV) and Reggio Calabria (RC) are met in this order. One
tail significance test, at 5% and 10% significance level, has
been performed. The diagrams show that observed rainfall
for all, but one, cells are inferior to percentiles 95% of fore-
cast values. In the most cases observed values are also in-
ferior to percentiles 90% of forecast ones. Then in all cases
the results obtained by PRAISEST model seem in agreement
with observed data.

6 Conclusions

The PRAISEST model, presented herein, is a multidimen-
sional space-time model for forecasting rainfall fields. Math-
ematical background is characterized by a trivariate proba-

bility distribution, referred to the random variablesH , Z and
W , representing rainfall to forecast at the generic cell, an-
tecedent precipitation in the same cell and rainfall in the ad-
jacent cells.

The results in simulation at regional scale show the capa-
bility of the model to reproduce, for each forecasting hour,
mean and standard deviations values, autocorrelations and
spatial correlations, dry ratios, wet-to-dry, dry-to-wet and
wet-to-wet ratios for two subsequent images.

Consequently it is able to provide distribution functions of
the rainfall in the successive hours that are in agreement with
the observed values, at least at 10% significance level.

PRAISEST therefore can be easily coupled with other
models like rainfall-runoff and rainfall-landslide ones for
nowcasting of fast phenomena, characterized by short lag
time, like flash floods and shallow landslides.

Moreover the model is highly flexible and can be usefully
adopted with any cell grid, within the limit of the raingauge
density. Then it is very suitable for the analysis of spatial
rainfall data like the radar derived ones, which give a finer
spatial description of the precipitation fields. Radar data are,
in fact, compatible with the cell organization of the PRAIS-
EST spatial domain.

The proposed model also seems appropriate for coupling
with meteorogical models in order to realize a Bayesian
approach to rainfall nowcasting.

Edited by: E. Toth
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a b

c d

Fig. 7. Validation results for(a) mean valuemH |Z0>1; (b) standard deviation valuesH |Z0>1; (c) spatial correlationrHW |Z0>1; (d) autocor-
relation of lag 1r1|Z0>1.

a b

c d

Fig. 8. Validation results for the ratio(a) f00|Z0>1; (b) f10|Z0>1; (c) f01|Z0>1; (d) f11|Z0>1.
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a b

c d

e f

Fig. 9. February 1st 1998: forecasting results for:(a) 1st h,(b) 2nd h,(c) 3rd h,(d) 4th h,(e)5th h and(f) 6th h of simulation.
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a b

c d

e f

Fig. 10. 24 November 1999: forecasting results for:(a) 1st h,(b), 2nd h,(c) 3rd h,(d) 4th h,(e)5th h and(f) 6th hour of simulation.
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