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Abstract. In this study we propose a comprehensive multi-
criteria validation test for rainfall-runoff modeling by artifi-
cial neural networks. This study applies 17 global statistics
and 3 additional non-parametric tests to evaluate the ANNs.
The weakness of global statistics for validation of ANN
is demonstrated by rainfall-runoff modeling of the Plasjan
Basin in the western region of the Zayandehrud watershed,
Iran. Although the global statistics showed that the multi
layer perceptron with 4 hidden layers (MLP4) is the best
ANN for the basin comparing with other MLP networks and
empirical regression model, the non-parametric tests illus-
trate that neither the ANNs nor the regression model are able
to reproduce the probability distribution of observed runoff
in validation phase. However, the MLP4 network is the best
network to reproduce the mean and variance of the observed
runoff based on non-parametric tests. The performance of
ANNs and empirical model was also demonstrated for low,
medium and high flows. Although the MLP4 network gives
the best performance among ANNs for low, medium and
high flows based on different statistics, the empirical model
shows better results. However, none of the models is able
to simulate the frequency distribution of low, medium and
high flows according to non-parametric tests. This study il-
lustrates that the modelers should select appropriate and rel-
evant evaluation measures from the set of existing metrics
based on the particular requirements of each individual ap-
plications.
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1 Introduction

The rainfall-runoff relationship is an important issue in hy-
drology and a common challenge for hydrologists. Due to
the tremendous spatial and temporal variability of water-
shed characteristics such as snowpack, soil moisture, hy-
draulic conductivity, watershed slope, seasonal rainfall etc.,
the rainfall-runoff relationship is usually a nonlinear pro-
cess. Since the middle of the 19th century, different meth-
ods have been applied by hydrologists within rainfall-runoff
modeling whereupon many models have attempted to de-
scribe the physical processes involved (e.g. mathematical-
physical lumped or distributed models).

Over the last decade, there has been a tremendous growth
in the interest of application of a class of techniques that op-
erate in a manner analogous to that of biological neurons sys-
tem, i.e. artificial neural networks (ANNs). While ANNs are
capable of capturing non-linearity in the rainfall-runoff pro-
cess compared with other modeling approaches (Hsu et al.,
1995), ANN models have been applied in hydrology and in
the context of rainfall-runoff modeling (Smith and Eli, 1995;
Dawson and Wilby, 1998; Tokar and Markus, 2000; Zhang
and Govindaraju, 2003; Kumar et al., 2005). From these
studies, it has been demonstrated that ANN models can be
flexible enough to simulate the rainfall-runoff processes suc-
cessfully.

Various types of neural network models are available for
rainfall-runoff modeling. Feedforward artificial neural net-
works (FFANNs) maintain a high level of research inter-
est due to their ability to map any function to an arbitrary
degree of accuracy. This has been demonstrated theoreti-
cally for both the radial basis function (RBF) network and
the popular multilayer perceptron (MLP) network (Harpham
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Fig. 1 Location of Zayandehrud watershed in Isfahan Province and the location of Plasjan Basin. The 

rainfall stations (black circles) and Plasjan hydrometery station (black triangle) are also shown inside 

the Plasjan Basin.    

 

Fig. 1. Location of Zayandehrud watershed in Isfahan Province and
the location of Plasjan Basin. The rainfall stations (black circles)
and Plasjan hydrometery station (black triangle) are also shown in-
side the Plasjan Basin.

and Dawson, 2005). The primary goal of ANN modeling is
the prediction or forecasting of hydrological variables, e.g.
runoff prediction. In this case, a set of variables is divided
into two sets prior to the model building: the training set
and validation set. The validation set is kept aside to evalu-
ate the accuracy of the model derived from the training test.
In the validation phase, the model output is compared with
actual outputs using statistical measurements such as root-
mean-square error (RMSE) and the coefficient of correlation
(CORR).

However, the equality of the probabilistic characteristics
of the observed and simulated runoff is usually ignored in
validation test. It is important because the simulated runoff
should reflect the relevant hydrological characteristics of the
observed runoff in terms of both magnitude and frequency.
For example, the observations are arranged in order of the
magnitude, beginning with 1 for the biggest, when the flow
duration curves are depicted. Therefore, the simulated runoff
should reproduce the probabilistic behavior of the observed
runoff, especially for both upper and lower extreme values.

In this regard, the main objectives of this study are
twofold; in the first step, we develop an effective ANN model
for studying the rainfall-runoff relationship in the study area
and verify the models by the global statistics such as root-
mean-square error (RMSE), coefficient of correlation and co-
efficient of efficiency. In the second step, the non-parametric
test for the equality of the mean, variance and probability dis-
tribution of the observed and simulated runoff is used to vali-
date rainfall-runoff models and to compare them with global
statistics.

  

  

  

  

  

 

 

Fig. 2 Daily streamflow of Plasjan River (m3/s)  

 

Fig. 2. Daily streamflow of Plasjan River (m3/s).

2 Study area and data

In this study, the most popular FFANN architecture, i.e. MLP,
is used for rainfall-runoff modeling of the main upstream
basin of the Zayandehrud watershed in the western region
of Isfahan Province in the center of Iran. Zayandehrud wa-
tershed has two main basins called Ghaleh Shahrokh and the
Plasjan Basin. These two basins connect directly to the Za-
yandehrud Dam which provides the water supply for Isfahan
province. The input and output variables for ANN is the daily
rainfall and runoff of the Plasjan basin (Fig. 1). The data set
includes Plasjan daily streamflow time series and three daily
rainfall time series of the stations within the basin for the pe-
riod of 1978-2000. The daily streamflow of Plasjan is given
in Fig. 2.

3 Multi-layer perceptron

In this study, the multilayer perceptron architecture assumes
that the unknown function (rainfall-runoff) is represented by
a multilayer feed forward network of sigmoid units. An ANN
model withn input neurons (x1, . . . , xn), h hidden neurons
(w1, . . . , wh) andm output neurons (z1,...,Zm) is considered
in this study. The function that this model calculates is

zk = f

(
h∑

j=1

αkjwj + εk

)
k = 1, . . . , m (1)

wj = g

(
n∑

i=1

βjixi + τj

)
j=1, . . . , h (2)

Whereg and f are activation functions, i, j, and k are
representing input, hidden and output layers respectively,τj

is the bias for neuronwj andεk is the bias for neuronzk, βij

is the weight of the connection from neuronxi to wj andαjk

is the weight of the connection from neuronwj to zk.
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Fig. 3a Scatter plot of observed versus simulated streamflow (m3/s) for MLP2 network 

 

Fig. 3a. Scatter plot of observed versus simulated streamflow
(m3/s) for MLP2 network.

  

  

  

  

  

  

 

 

Fig. 3b Scatter plot of observed versus simulated streamflow (m3/s) for MLP3 network 

 

Fig. 3b. Scatter plot of observed versus simulated streamflow
(m3/s) for MLP3 network.

The hyperbolic tangent sigmoid function is used in this
study as activation function for the hidden nodes. The func-
tion can be written as the following

g(si) =
esi − e−si

esi + e−si
(3)

Wheresi is the weighted sum of all incoming information
and is also referred to as the input signal

sj =

n∑
i=1

βjixi + τj (4)

The major advantage of the MLP is that it is less com-
plex than other artificial neural networks such as Radial Ba-
sis Function (RBF), and has the same nonlinear input–output
mapping capability (Coulibaly and Evora, 2007). The train-
ing of the MLP involves finding an optimal weight vector for
the network. The objective function of the training process
is:

E =
1

2
min

N∑
p=1

M∑
k=1

(tkp − zkp)2 (5)

WhereN is the number of training data pairs,M is the
output node number, tkp is the desired value of thekthoutput
node for input patternp, and zkp is thekth element of the
actual output associated with inputp (Antar et al., 2006).

  

  

  

  

  

  

 

 

Fig. 3c Scatter plot of observed versus simulated streamflow (m3/s) for MLP4 network 

  

Fig. 3c.Scatter plot of observed versus simulated streamflow (m3/s)
for MLP4 network.

  

  

  

  

  

  

 

Fig. 3d Scatter plot of observed versus simulated streamflow (m3/s) for MLP5 network 

 

  

Fig. 3d. Scatter plot of observed versus simulated streamflow
(m3/s) for MLP5 network.

4 Model development

The total daily observation was divided into training, vali-
dation and cross-validation sets prior to the model building.
The cross-validation is used to avoid any overfitting during
training. In this study, 60, 25 and 15% of data was used for
training, validation and cross-validation, respectively.

It is worth noting that the method used to divide the data
has significant impact on the results. In other words, the net-
work may use low or high flow samples and give a yield
of great precision for training set but fails to simulate out-
side the range of the training data (Tokar and Johnson, 1999;
Shahin et al., 2000). In this study, the rainfall and runoff
data were randomized prior to training the network to avoid
this problem. The randomization of input data was em-
phasized by many researchers such as Bras and Rodrı́guez-
Iturbe (1985) and Ochoa-Rivera et al. (2002) for hydrologic
variables with large degree of variability and uncertainty.
They stated that using only historical data as inputs into ANN
may result in a scarcely documented response. However, for
the randomization may lead to loosing the historical memory
of the basin in cases of the application of ANN for stream-
flow time series forecasting.
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Table 1. The rainfall and runoff variables used to construct neural network with the cross correlation (CCC) and Autocorrelation coefficients
(ACC).

Variable CCC ACC

x(1) : R1(t-1), Daily rainfall of station(1) at lag time 1-day, 0.133 –
x(2) : R1(t-2), Daily rainfall of station(1) at lag time 2-days 0.119 –
x(3) : R2(t-1), Daily rainfall of station(2) at lag time 1-day 0.076 –
x(4) : R3(t-2), Daily rainfall of station(3) at lag time 2-days 0.048 –
x(5) : Q(t-1), Daily streamflow at lag time 1-day – 0.935
x(6) : Q(t-2), Daily streamflow at lag time 2-days – 0.901

In the first step, we select the input data for MLP networks.
According to the autocorrelation properties of daily rainfall
and runoff time series and the cross correlation between daily
rainfall and runoff series, different input variables can be
used for ANN. However, due to the possibility of zero rain-
fall and runoff in the Zayandehrud basin, the initial efforts to
construct the ANN showed that data transformation is neces-
sary to reduce the variance of rainfall and runoff time series.
In this study, we apply standardized rainfall and runoff time
series to construct the ANN. After trial and error, the follow-
ing standardized variables were selected as input and output
data of ANN. The cross-correlation coefficients (CCC) be-
tween streamflow and selected rainfall variables and the au-
tocorrelation coefficients (ACC) of streamflow time series at
different lags are also given in Table 1. All the coefficients
are significant at 1% level.

The output of the model is streamflow discharge of the
Plasjan River (Qt ) at the outlet of the basin. We tested
different MLP architectures and found that the MLP with
1-hidden layer (i.e. MLP1) is not appropriate while other
MLPs (MLP2, MLP3, MLP4 and MLP5) are suitable net-
works for modeling rainfall-runoff relationship of Plasjan
basin. The random order was used for training material
and the Levenberg-Marquardt back Propagation algorithm,
as the most efficient algorithm (Ramirez-Beltran and Montes,
2002) was used to train neural network and training was
stopped at 1000 epochs. The learning rate was set from 0.7 to
0.1 and the learning rule is momentum. Each MLP network
contained 7 hidden units positioned in each hidden layer. The
performance of these networks is depicted in Fig. 3a–d which
shows the network estimated streamflow against observed
validation data set.

5 Empirical model

In order to compare ANN with an empirical model, we
also develop a multiple linear regression (MLR) model for
rainfall-runoff relationship. The discharge of Plasjan River
(Qt ) is selected as the dependent variable and the input vari-
ables of ANN are selected as independent variables. The

  

  

  

  

  

  

 

 

 

Fig 4 Scatter plot of observed versus simulated streamflow (m3/s) with regression model 

  

Fig. 4. Scatter plot of observed versus simulated streamflow (m3/s)
with regression model.

best-fit model is estimated using a stepwise procedure and se-
lected based on the highest coefficient of determination (R2)
and residual test for normality. Finally, the following regres-
sion model is estimated:

Qt = 0.814x6 − 0.043x2 − 0.032x1 + 0.103x4+

0.146x3 + 0.008x5

The performance of regression model is depicted in Fig. 4
for the validation data set.

6 Comparison of the models: comprehensive multi-
criteria analysis

6.1 Global statistics

The performance of hydrologic models is usually evaluated
by the comparison of desired and model predicted values.
This comparison can be done by graphical or numerical
methods. The global statistics (Root Mean Squared Error,
Correlation Coefficients, the Coefficient of Efficiency (CE),
Index of Agreement (Legates and McCabe, 1999; Harmel
and Smith, 2007)) are usually used for model calibration or
comparison of different models.
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Table 2. Performances indices for MLP and regression models.

Criteria ANNs Regression
model

MLP2 MLP3 MLP4 MLP5

AME 2246.52 1296.85 1104.05 2972.94 4684.42
CE (%) 82 96.5 97.3 88.35 92
IoAd 0.930 0.991 0.993 0.960 0.970
MAE 190.95 65.77 53.24 127.39 56.93
MARE 6.85 1.88 1.25 4.03 0.66
MdAPE 41.78 13.68 11.27 33.22 12.01
ME −53.49 −6.11 −3.59 −10.21 0.003
MRE −6.72 −1.79 −1.17 −3.87 −0.58
MSRE 406.46 31.87 14.45 141.72 6.509
PDIFF 1262.15 −1066.84 190.30 1636.13 519.43
PEP 19.47 −15.90 2.94 25.24 8.015
PI 0.9119 0.9824 0.9865 0.9417 0.9600
R2 0.9365 0.9582 0.9635 0.9222 0.9208
RAE 0.53 0.18 0.14 0.35 0.15
R4MS4E 435.28 282.48 238.26 555.62 732.54
RMSE 247.17 112.21 97.15 201.1 165.77
RVE −0.121 −0.014 −0.008 −0.023 0.009

It is noted that Unal et al. (2004) validated simulation mod-
els by using statistical characteristics such as average, stan-
dard deviation, skewness coefficient, autocorrelation coeffi-
cient, maximum and minimum values, and performance cri-
teria such as relative error, absolute error, frequency of suc-
cess, ranges of relative and absolute errors. Liu et al. (2003)
validated the results of the ANN models with root mean
square error and determination coefficient.

Very recently Aksoy and Dahamsheh (2009) used a multi-
criteria validation of ANN models developed for Jordan by
using graphical and numerical measures including the fore-
casted and observed time series, scatter diagram, the residual
time series between the forecast and observation, mean abso-
lute and relative errors between the forecast and observation,
dimensionless mean absolute error and dimensionless mean
relative error between the forecast and observation. Addi-
tionally following performance measures are adopted: De-
termination coefficient to quantify the linearity between the
forecast and observation, mean square error, mean absolute
error; and a and b (the slope and the intercept) in the best-
fit linear line of the scatter diagram between the forecast and
observation.

As there is no single definite evaluation test, it is important
to apply a multi-criteria assessment of ANN skill (Dawson et
al., 2002; Kumar et al., 2005). These statistics are summa-
rized in a recent paper by Dawson et al., (2007) and could be
calculated automatically on the Hydrotest website available
at http://www.hydrotest.org.uk. We apply 17 criteria which
are listed in Appendix A. The reader is referred to Dawson et
al. (2007) for the mathematical formulation of these criteria.

These error statistics are given for different MLP networks
in Table 2. It is evident that the MLP4 network is better than
all other networks. Compared with regression model and ac-
cording to some criteria, i.e. MARE, ME, MRE and MSRE,
the regression model performs better than MLP4 network.
However, these criteria that are unbounded do not neces-
sarily show the preference of regression model because the
low score of these criteria do not necessarily indicate a good
model in terms of accurate forecasts, since positive and neg-
ative errors will tend to cancel each other out.

6.2 Statistical validation

Although the above error statistics provide relevant informa-
tion on the overall performance of the models they do not
provide specific information about model performances at
high or low flows, which are of critical importance in flood or
low flow contexts. This study proposes other criteria to eval-
uate the performance of ANNs, especially for the rainfall-
runoff relationship. These criteria are divided into the fol-
lowing graphical and numerical tests:

6.2.1 Graphical tests

In this section we compare the box-plot and probability plot
of the observed and computed flows. The probability plot
of the observed and simulated streamflow is fitted by Blom’s
method (Blom, 1958) which is based on the fractional rank of
the observation. The parameters of the probability function
are estimated by maximum likelihood method.

www.hydrol-earth-syst-sci.net/13/411/2009/ Hydrol. Earth Syst. Sci., 13, 411–421, 2009
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Fig. 5 Comparison of box‐plots of observed runoff and simulated runoff by MLP networks 

  

Fig. 5. Comparison of box-plots of observed runoff and simulated
runoff by MLP networks.

Table 3. Test results (p-values) of non-parametric methods for the
difference between observed and ANN and regression-simulated
streamflow data at 95% confidence level.

Nonparametric ANNs Regression
Method Model

MLP2 MLP3 MLP4 MLP5

Wilcoxon 0.003 0.035 0.312 0.008 0.026
Levene 0.002 0.023 0.073 0.005 0.012
K-S 0.001 0.011 0.028 0.004 0.001

These tests are useful for visual comparison of the upper
or lower tail of the distribution of the observed and estimated
streamflow. The box-plots of observed and estimated stream-
flow for different MLP networks and regression model are
illustrated in Fig. 5 From box-plots, it is clear that the MLP4
network and regression model most closely match the ob-
served streamflow, especially for high flows.

The probability plots for the observed and MLP4 network
reveal that the distribution of observed and MLP4-estimated
streamflow data are more similar for a normal distribution
(Fig. 6) than for a gamma distribution (Fig. 7) because the
lower tail of a gamma distribution is very different for ob-
served and estimated streamflow. The gamma distribution
for MLP2 and MLP5 networks are also presented in Fig. 8. It
is clear that the networks are not able to reproduce the prob-
ability distribution of the observed streamflow and there is
a significant difference in both upper and lower tails of the
quantile distribution of streamflow. The probability plots of
estimated streamflow by regression model are also presented
in Fig. 9. The normal probability plot (Fig. 9a) is similar
to the normal probability plot of observed streamflow and
MLP4 network (Fig. 6a and b, respectively). However, the
Normal and Gamma probability plots for regression and ob-
served streamflow are different, particularly for lower tail of
distribution. These probability plots illustrate that neither the
MLP network nor the regression model are able to simulate

  

 

 

Fig. 6 Normal cumulative probability plots for a) observed and b) MLP4 simulated streamflow  

  

Fig. 6. Normal cumulative probability plots for(a) observed and
(b) MLP4 simulated streamflow.

the probability distribution of the observed streamflow (see
also Table 3 and Sect. 6.2.2).

Although the MLP4 network seems to be a better network
than other networks and does not achieve very much better
results than those of the regression model for rainfall-runoff
modeling of the Zayandehrud basin, it would wise to check
the validation of the ANN network by statistical measure-
ments presented in the following section.

6.2.2 Statistical tests

In this section, we suggest useful statistical tests to evaluate
the performance of the ANNs and to compare these ANNs
with each other. These statistical methods include non-
parametric tests to compare mean, standard deviation and
the cumulative distribution function (CDF) of observed and
estimated streamflow. Khan et al. (2006) used these statistics

Hydrol. Earth Syst. Sci., 13, 411–421, 2009 www.hydrol-earth-syst-sci.net/13/411/2009/
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Fig. 7 Gamma cumulative probability plots for a) observed and b) MLP4 simulated streamflow 

 

  

Fig. 7. Gamma cumulative probability plots for(a) observed and
(b) MLP4 simulated streamflow

to compare different precipitation downscaling methods
including ANN and Modarres (2007) used a non-parametric
method to evaluate drought time series forecasting with
ARIMA model for the Plasjan River.

Non-parametric test for the difference of two population
means

The Wilcoxon rank sum method (Conover, 1980) is a
robust non-parametric method for constructing a hypothe-
sis testp-value forµ1 − µ2 (difference of two population
means). At any significance level greater than thep-value,
one rejects the null hypothesis, and at any significance level
less than thep-value one accepts the null hypothesis. For ex-
ample, ifp-value is 0.04, one rejects the null hypothesis at a

 

 

Fig. 8 Gamma cumulative probability plots for a) MLP2 and b) MLP5 simulated streamflow 

  

Fig. 8. Gamma cumulative probability plots for(a) MLP2 and(b)
MLP5 simulated streamflow

significance level of 0.05, and accepts the null hypothesis at
a significance level of 0.01. The null hypothesis of Wilcoxon
test can be defined at:

H0 : µ1 − µ2 = 0 (6)

Ha : µ1 − µ2 6=0 (7)

Non-parametric test for the equality of two population
variances

The equality of two population variances can be tested us-
ing Levene’s test. The hypothesis for the Levene’s test can
be defined as (Khan et al., 2006):

H0:σ1 = σ2 = ... = σk (8)

Ha :σi 6=σj 6=...6=σk for at least one pair(i, j) (9)

www.hydrol-earth-syst-sci.net/13/411/2009/ Hydrol. Earth Syst. Sci., 13, 411–421, 2009
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In performing Levene’s test, a variableX with sample size
N is divided intok subgroups, whereNi is the sample size of
theith subgroup, and the Levene test statistic is defined as:

W =

(N − K)
k∑

i=1
Ni(Z̄i − Z̄)2

(k − 1)
k∑

i=1

Ni∑
j=1

(Zij − Z̄i)2

(10)

whereZij is defined as:

Zij =
∣∣Xij − X̄i

∣∣ (11)

whereX̄i is the median of theith subgroup,Z̄i is the group
mean of the Zij andZi is the overall mean of the Zij . The
Levene’s test rejects the hypothesis that the variances are
equal if

W>F(α,k−1,N−k) (12)

where W>F(α,k−1,N−k) is the upper critical value of theF
distribution withk − 1 andN − k degrees of freedom at a
significant level ofα.

Non-parametric test for equality of CDFs of two popula-
tions

Kolmogorov–Smirnov (K-S) non-parametric test
(Conover, 1980) is used to compare cumulative distri-
bution function (cdf) of observed and simulated streamflow
series. Suppose,F1(x) and F2(x) are cdfs of two sample
data of a variablex. The null hypothesis and the alternative
hypothesis concerning their cdfs are:

H0:F1(x) = F2(x) for all x

Ha :F1(x) 6= F2(x) for at least one value ofx
and the test statistics,Z is defined as

Z = sup
x

|F1(x) − F2(x)| (13)

which is the maximum vertical distance between the distri-
butionsF1(x) andF2(x). If the test statistic is greater than
the critical value, the null hypothesis is rejected.

To evaluate the performance of MLP networks, we apply
the tests in two cases. First, the observed and simulated
streamflow time series are compared for the overall valida-
tion test. For the second case, the percentiles of observed
and simulated streamflow time series are compared in order
to check the validation of ANNs for the prediction of high,
medium and low streamflows. The streamflow time series
are divided into the first 0–25% (P1), the second 25–75%
(P2) and the third 75–100% (P3) percentiles.

Table 3 indicates the results of non-parametric tests at 95%
significance level for the first case. It is evident that none of

 

 

 

Fig. 9 Normal (a) and Gamma (b) cumulative probability plots for simulated streamflow by regression 
model 

  

Fig. 9. Normal(a) and Gamma(b) cumulative probability plots for
simulated streamflow by regression model

the networks can simulate statistical characteristics of the ob-
served streamflow except multi-layer perceptron with 4 hid-
den layers (MLP4) because all estimatedp-values are less
than 0.05 except for the MLP4 network.

Although thep-value of the K-S test is close to 0.05 for
MLP4 network, the Kolmogorov-Smirnov test does not ver-
ify the equality of the CDFs of the observed and ANN simu-
lated streamflow. Table 3 confirms the dissimilarity in the
probability plot of the observed and simulated streamflow
by different ANN networks and regression model (see also
Figs. 7, 8 and 9).

For comparing high, medium and low flow in the second
case, the streamflow time series are divided into three per-
centile groups and the above non-parametric tests are applied
for each group. Table 4 represents the global statistics of
the networks for each percentile group. Those values high-
lighted in bold in this table indicate the “best” model out of
the five models when assessed using each particular evalua-
tion metric. For example, according to IoAD criterion, the
MLP4 network gives the best performance for the third per-
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Table 4. Performances indices for MLP and regression models and different percentile groups (P1, P2 and P3).

Criteria
MLP2 MLP3 MLP4 MLP5 Regression Model

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

AME 580.95 418.24 2246.52 607.66 361.82 1943.9 625.06 976.76 1429.71 620.9 976.76 2972.9423.19 28.91 1390.61
CE (%) 22 14 81 94 89 93 95 85 94 75 47 83 22 89 98
IoAd 0.1 0.69 0.95 0.31 0.97 0.98 0.39 0.96 0.99 0.17 0.81 0.95 0.78 0.99 0.99
MAE 273.89 118.44 251.33 73.35 37.75 118.29 48.23 32.07 105.73 158.69 32.07 179.9520.21 8.81 44.5
MARE 25.41 0.72 0.32 6.99 0.17 0.13 4.64 0.13 0.10 14.90 0.13 0.44 1.81 0.05 0.02
MdAPE 1330.22 35.15 22.83 356.66 9.42 7.17 227.11 6.90 6.27 765.54 6.90 11.2097.22 2.16 2.05
ME −273.89 −89.59 −243.08 −73.35 4.94 −36.03 −48.23 3.70 −20.99 −158.67 3.70 −149.39 −20.21 −4.51 43.11
MRE −25.41 −0.66 −0.32 −6.99 −0.07 −0.09 −4.64 −0.04 −0.05 −14.90 −0.26 −0.42 −1.81 −0.04 0.02
MSRE 1600.33 1.25 0.25 125.53 0.068 0.13 58.72 −0.04 0.03 558.01 0.05 11.79 7.81 0.007 0.001
PDIFF −532.95 −86.41 −1262.15 −559.66 −151.82 1296.85 −577.06 −872.76 −190.3 −572.9 −872.76 −1636.13 −19.86 8.12 657.19
PEP −761.24 −14.54 −24.18 −799.4 −25.55 16.67 −824.25 −146.92 −3.02 −818.31 −146.92 −33.77 −28.36 1.36 10.14
PI −42 6337.79 −11 251.92 −0.84 −3421.35 −1390.95 0.50 −18 043.25 −1917.65 0.52 −14 6902.42 −1917.65 −0.72 −2312.78 −61.3 −0.80
R2 0.40 0.72 0.96 0.42 0.95 0.97 0.42 0.92 0.98 0.32 0.69 0.94 0.93 0.95 0.98
RAE 18.10 0.89 0.61 4.84 0.28 0.20 3.18 0.24 0.18 10.48 0.24 0.34 1.34 0.06 0.08
R4MS4E 277.04 172.25 607.73 135.60 82.92 490.81 137.01 185.33 407.15 177.23 185.33 785.2120.30 13.2 310.77
RMSE 274.6 61.3 410 78.1 41.2 230 79.6 50.5 209 162.1 61.3 368 20.25 10.6 100.91
RVE −10.89 −0.28 −0.27 −2.91 0.016 −0.03 −1.91 0.01 −0.01 −6.31 −0.05 −0.15 −0.80 −0.01 0.038

Table 5. Test results (p-values) of non-parametric methods for the difference between observed and ANN and regression-simulated stream-
flow percentile groups at 95% confidence level.

Nonparametric
MLP2 MLP3 MLP4 MLP5 Regression Model

Method P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Wilcoxon 0.001 0.001 0.001 0.001 0.466 0.534 0.001 0.607 0.714 0.001 0.028 0.004 0.001 0.37 0.43
Levene 0.001 0.001 0.001 0.028 0.01 0.0040.545 0.301 0.44 0.016 0.001 0.045 0.001 0.063 0.47
K-S 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.021 0.011

centile compared with other networks while the regression
model gives the best results for all percentiles. It can also
be seen that the MLP4 network is the best model according
to PDIFF for the third percentile while the regression model
gives better results for the first and second percentile. As an
another example, according to the correlation coefficient, the
MLP3 network and regression model have the highestR2 for
the second percentile while for the third percentile the MLP4
network and regression model give the same results. There-
fore, it is difficult to select the best model based on one single
criterion.

For the first percentile, or the low flows, MLP4 network
performs better than other networks based on most of the cri-
teria. However, for some criteria such as AME, PDIFF and
PEP, the MLP2 is better than other MLP networks. These
criteria illustrate the error of the highest output between the
modeled and the observed dataset which is not suitable for
low flow error measurement. For the second percentile, the
same results can be seen for MLP4 and MLP3 networks.
However, for the third or the upper percentile which shows
the efficiency of the model for estimating high flows, the
MLP4 is the best network. Jain and Srinivasulu (2004) also
mentioned that the high flows can be effectively modeled by
MLP networks. However, they concluded that for medium
and low flow simulation by ANNs, the use of genetic algo-
rithm (GA) may be advantage because the watershed condi-
tion is much more complex and dynamic for low flows than
high flows.

On the other hand, the regression model seems to be more
effective than MLP networks for rainfall-runoff modeling ac-
cording to almost all criteria and different percentiles. The
regression model scores well in terms of most of the metrics.
However, the MLP is still better than regression model in
terms of PDIFF and PEP. In other words, the MLP4 networks
estimate high flows more accurate than regression model
while the regression model performs better than MLP4 for
medium and low flows. The results of the total data (Table 2)
also indicated the better performance of MLP4 network over
regression model for high flows.

Table 5 presents the results of non-parametric tests for
three percentile groups. It is found that MLP2 is still an
insignificant model for rainfall-runoff relationship modeling
for the Plasjan River because allp-values are below 0.05.

The MLP3 network can reproduce the mean of observed
streamflow for the second and third percentiles but the net-
work is weak in simulating standard deviation and the prob-
ability distribution of the observed streamflow because the
p-values are below 0.05. The MLP4 network indicates the
best simulation results for the mean and standard deviation
of the observed streamflow similar to the MLP5, it also fails
to reproduce the mean and standard deviation of the observed
streamflow. On the other hand, the regression model is simi-
lar to the MLP4 network.
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However, the Kolmogorov-Smiornov test demonstrates
that neither the ANNs nor the regression model can repro-
duce the probability distribution of streamflow in the valida-
tion phase of the modeling. Although the MLP4 network and
regression model are able to simulate the mean and standard
deviation of the observed streamflow but they could not re-
produce the probability distribution of the observed stream-
flow.

7 Conclusion and summary

Artificial neural networks are powerful tool for modeling
nonlinear relationships in hydrology such as rainfall-runoff
relationship. The validation phase of the neural network
modeling plays an important role in the efficiency testing
of the modeling. The global statistics are common methods
used in this phase. However, the findings reported in this pa-
per show that the global statistics broadly reflect the accuracy
of the model but are insufficient indicators of the best ANN
because they do not capture the mean, standard deviation and
probability distribution of the observed streamflow. This pa-
per also illustrate s the dangers of relying on one metric alone
to evaluate and select different models.

Although the multi layer perceptron with four hidden lay-
ers was selected as the best neural network based on the
global statistics, it failed to reproduce the probability dis-
tribution of observed streamflow. The MLP4 network also
gives better results than regression model for entire testing
data set.

However, it is important to reproduce streamflow statistics
such as the mean, standard deviation and probability distri-
bution for high, medium and low flows. According to the
objectives of the ANN, i.e. flood or low flow simulation or
forecasting, it is very important to check the accuracy of the
ANN output separately in future studies. For example, the
best ANN in this study, MLP4, gives better estimation for
high flows than for low flows. But the MLP4 network is
not able to reproduce the probability functions of different
percentiles according to the Kolmogorov-Smirnov test. Al-
though the regression model is better than ANNs based on
different criteria, it is also inadequate to reproduce probabil-
ity distribution of the observed streamflow.

In general, the findings of this study conclude that, for
validation phase of ANN, the common global statistics
are not sufficient and relying on one measurement is not
relevant. A multi-criteria assessment based on different
global and non-parametric tests is essential for verifying
and selecting an optimum ANN. One should use a range
of methods to evaluate the methods. This study also shows
the advantage of the application of empirical, physical or
conceptual models together with ANN because some of
these models may give better results with more simple
modeling procedure than ANNs.

Edited by: J. Liu

Appendix A

Abbreviations for global criteria used in this study

AME: Absolute maximum error
CE: Coefficient of efficiency
IoAd: Index of agreement
MAE: Mean absolute error
MARE: mean absolute relative error or
RME Relative mean error
MdAPE: Medium absolute percentage error
ME: Mean error
MRE: mean relative error
MSRE: mean squared relative error
PDIFF: Peak difference
PEP: Error in peak
PI: coefficient of persistence
R2: Correlation of determination
RAE: Relative absolute error
R4MS4E: Fourth root mean quadrupled Error
RMSE: Root Mean squared error
RVE: Relative volume error
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