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Abstract. The potential of multi parametric polarimetric
SAR (PolSAR) data for soil surface roughness estimation
is investigated and its potential for hydrological modeling
is evaluated. The study utilizes microwave backscatter col-
lected from the DEMMIN test site in the North East of Ger-
many during the AgriSAR 2006 campaign using fully po-
larimetric L-band E-SAR data. In addition to various mea-
surements of soil physical properties, soil surface rough-
ness was measured extensively using photogrammetric im-
age matching techniques for ground truthing. The resulting
micro-DSMs are analyzed to correlate a soil surface rough-
ness index to three well established polarimetric roughness
estimators. Good results are obtained forRe[ρRRLL] vs. RMS
Height for areas with a polarimetric alpha angelα<40◦,
which is thus used to produce multi temporal roughness data
of the test site. The proposed roughness inversion scheme
showed sufficiently accurate results (RMSE=0.1) to allow for
a first order assessment of soil-hydrological parameters (soil
porosity, void ratio), which are crucial for the initialization
and operation of hydrological surface models. While uncer-
tainties remain, the dependency of soil bulk density parame-
ters from surface roughness can be shown and thus highlights
the potential of the retrieval approach for hydrological model
applications.

1 Introduction

At the boundary between the atmosphere and the pedosphere,
soil surface roughness plays an important role in numerous
physical processes related to water, energy and nutrient flux
and exchange. This has been widely recognized in novel land
surface modeling efforts. On cultivated soils, many stud-
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ies have demonstrated that different roughness states influ-
ence runoff generation and formation due to soil sealing and
crusting effects (Fohrer et al., 1999). Furthermore, processes
like infiltration, evaporation, soil erosion by wind and water,
lateral and vertical matter fluxes, as well as the growth and
vitality of particular agricultural plants are all influenced by
soil surface roughness states and the resulting changes in soil
bulk density, respectively the soil void ratio in the upper few
centimetres of the soil column (Farres, 1980; Helming, 1992;
Le Bissionais et al., 1998; Fohrer et al., 1999; Cerdan et al.,
2001; Darboux et al., 2002; Zeiger, 2007).

Changes in soil surface roughness conditions are related
to agricultural practice or to precipitation and wind effects.
While meteorological impacts cause a smoothing of the soil
surface and an increase in bulk density, agricultural prac-
tice produces different roughness states depending on the
applied tillage tool and strategy. Allmaras et al. (1966)
defined two different roughness terms with regard to their
geometrical appearance: orientated and random roughness.
While orientated roughness is dependent on the tillage tool
or general slope effects, the random roughness is caused by
the fortuitous occurrence of peaks and depressions result-
ing from soil clods and organization of aggregates which
cannot be addressed to orientated roughness (Allmaras et
al., 1966). R̈omkens and Wang (1986) defined the random
roughness alongside other scale dependent roughness types
as the height deviations from a reference plain in the scale of
2–200 mm.

For soil surface roughness characterization on small plots
up to 16 m2, different roughness indices have been proposed
and successfully utilized (Allmaras et al., 1966; Bertuzzi,
1990; Taconet and Ciarletti, 2007; Zeiger, 2007). How-
ever, the direct measurement of soil surface roughness on
the field scale is not yet appropriately solved. This is lead-
ing to strong simplification and considerable uncertainty in
the description of spatial soil surface roughness conditions
in recent physically based runoff generation modeling efforts
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Fig. 1. Overview of DEMMIN-Görmin test site in the North East
of Germany.

on the catchment scale. While expensive and labor inten-
sive in-situ measurements are limited to small areas, remote
sensing techniques are able to cover larger areas at relatively
high frequency, which might offer the opportunity to measure
dynamic soil surface characteristics on larger scales (San-
tanello et al., 2007; Loew and Mauser, 2008). In this study,
the derivation of soil surface roughness information on field
scale is conducted and evaluated from multi temporal air-
borne PolSAR data. To investigate the application potential
in hydrological modeling, the deployment of multi temporal
soil surface roughness maps for the retrieval of soil physical
parameters, such as bulk density and void ratio, are presented
as first results of a feasibility study.

2 Methods and field data

The study was performed in the frame of the ESA-founded
campaign AgriSAR 2006, which was carried out from mid-
April to the end of July at the DEMMIN (Durable Environ-
mental Multidisciplinary Monitoring Information Network)
test site (Hajnsek et al., 2007). A major component of this
study was to generate an image and ground data base on
a weekly basis for the examination and validation of bio-
/geo-physical parameter retrievals and to simulate ESA’s fu-
ture Sentinel 1 and Sentinel 2 missions. Therefore, weekly
E-SAR flights, operated by the German Aerospace Centre
(DLR-HR), were accompanied by extensive in-situ measure-
ments.

Fig. 2. Location of sample points within the G̈ormin test site during
AgriSAR 2006.

2.1 Test site

DEMMIN is a consolidated test site in Mecklenburg-Western
Pomerania in North East Germany, approximately 150 km
north of Berlin (Fig. 1). The 3×8 km2 test site is located
in the young moraine area, characterized by smooth topog-
raphy and intensive agricultural cultivation on high produc-
tive soils. The altitudinal range within the test site is about
60 m with its maximum in the north and a minimum in the
southern part of the test site near the Peene river. Soil tex-
ture ranges from sandy loam to loamy sand. The main crop
rotation is winter wheat, winter rape and winter barley. Addi-
tionally, maize and sugar beet is sown in spring for livestock
feed. The mean field size is 225 ha. Due to very large fields
and intensive cultivation, wind, water or tillage induced ero-
sion patterns such as shortened soil columns can be observed
within the fields.

18 sample points were chosen to represent soil conditions
under the main crops in the test site during the campaign.
Figure 2 shows the locations of the sample points. Most
of the sampling points are situated in plain areas except for
sample points (ESU) 102-1 (SB) and 222-2 (M) which are
located in local sinks or in small drainage channels.

2.2 In-field measurements

2.2.1 Roughness characterization

For measuring soil surface roughness a photogrammetric ap-
proach was chosen due to its 3 dimensional output and highly
accurate estimates. A further advantage for choosing a pho-
togrammetric approach is its efficiency with regard to a de-
coupled acquisition and analysis compared to similar accu-
rate acquisition setups such as laser devices (Rieke-Zapp and
Nearing, 2005). To collect samples over a wide range of
roughness states, soil surface roughness measurements were
performed on 18 sample points (Fig. 2). Roughness condi-
tions ranged from smooth and crusted surfaces to ploughed
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Fig. 3. Camera system for photogrammetric image acquisition
(setup and signalized control point).

and harrowed fields. For sampling surface roughness on veg-
etated fields, plants were carefully cut off at the surface and
completely removed from the areas covered by photogram-
metric image acquisitions, without disturbing the soil sur-
face.

For image acquisition, a Rollei d7 metric camera with
known interior orientation was mounted on a tripod approx-
imately 118 cm above the soil surface. The self-developed
aluminum tripod (Fig. 3) accommodates 12 ground con-
trol points (GCP) whose three dimensional (xyz) coordi-
nates were manually determined, as described by Lascelles et
al. (2002), using a caliper rule with an accuracy of 1/10 mm.
The horizontal coverage of the sampling area is limited to
70×70 cm2 (approx. 0.5 m2). The camera and tripod setup
allows an image acquisition from 1180 mm above ground
with a baseline of 480 mm resulting in a height-to-base ratio
of 2.5 and an image overlap of approximately 65%, which
is appropriate for roughness measurements (Rieke-Zapp and
Nearing, 2005; Linder, 2006). Thus, the image block con-
sists of two images at which the acquired images have a spa-
tial resolution of 0.54 mm.

Digital Surface Models (DSM) were generated using Le-
ica Photogrammetry Suite (LPS 9.0). Exterior orientation
of the two images was established using the highly accu-
rate GCPs and bundle block adjustment techniques. There-
fore, additionally to the 12 known GCPs, tie-points were
derived and their three dimensional coordinates were calcu-
lated respectively. Best results in bundle block adjustment
were achieved by using an additional 12-parameter model
(Ebner, 1976). For DSM generation, LPS uses image match-

Fig. 4. Scheme of the roughness retrieval approach.

ing strategies which work in epipolar lines (LPS, 2006). For
different roughness states, adjusted matching strategies have
been developed, which only vary in the x direction and de-
liver a good fit to the known GCPs and the highly accu-
rate tie-points. The minimum correlation coefficient for the
matching process, calculated from a 11x11 kernel between
the two images, was set to 0.65, which is sufficient for epipo-
lar line based matching algorithms (Stojic et al., 1998, Lin-
der, 2006). In a final step, the generated DSMs were inter-
polated to a regular grid with a nominal resolution of 2 mm.
A low-pass filter using a 7×7 kernel was applied to remove
outliers.

In order to quantify soil surface roughness as a function
of soil geometrical properties, roughness indices can be cal-
culated from the derived DSM using different statistical ap-
proaches. Allmaras et. al (1966) and Currence and Lovely
(1970) propose different calculation procedures based on the
standard deviation of height values with additional terms to
remove general slope effects. Due to the tripod geometrics
perpendicular to the surface, a superimposition of general
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slope effects can be excluded. Thus the calculation of the
RMS Height can be simplified to:

s =

√√√√√ n∑
i=1

(Zi − Z̄)2

1 − n
(1)

Wheres is the RMS Height in (cm) andZ is the height
value in (cm).

Some authors (Currence and Lovely, 1970; Römkens and
Wang, 1986; Linden and Van Doren, 1986; Sommer, 1997)
have criticized these roughness indices for not maintaining
the spatial distribution of height measurements for physical
interpretation. Still, the RMS Height is the common and gen-
erally preferred index to describe soil surface roughness con-
ditions in radar remote sensing and is therefore applied in
this study (Oh et al., 1992; Hajnsek et al., 2003; Loew et al.,
2006).

In addition, to quantify the non isotropic behavior of the
sampled surface, the RMS Height parallel and perpendicular
to the tillage direction was calculated separately. The mean
RMS Height parallel to the tillage direction is then defined
as:

sx(y) =

m∑
j=1

√
n∑

i=1
(Zi(y)−Z̄y )2

1−n

m
(2)

While the average RMS Height perpendicular to the tillage
direction is defined as:

sy(x) =

m∑
j=1

√
n∑

i=1
(Zi(x)−Z̄x )2

1−n

m
(3)

As a consequence, the ratios̄x(y)

/
s̄y(x) is a measure for

the directionality of the surface roughness, where for a value
of 1 the surface is an absolute isotropic scatter.

As roughness is a function of wavelength, its appearance
changes with different wavelengths. Using lower frequen-
cies, the illuminated targed appears much smoother than at
higher frequencies. To compensate this effect, the RMS
Height has to be scaled to the actual wavelength using the
wavenumberk within the following equation:

ks = s × k = s ×
2π

λ
(4)

Whereks is the RMS Height normalized to the wavenum-
berk andλ the wavelength (at the used L-band 23,054 cm).

As demonstrated by different authors (Davidson et al.,
2000; Verhoest et al., 2007, 2008) roughness parameters of-
ten change with the length of profile over which they are es-
timated. Davidson et al. (2000) observed an increase in the
RMS Height with an increasing profile length (1 and 10 m)

in range of 0.5 cm for rolled fields, 0.6 cm for harrowed and
1.2 cm for ploughed fields. While those investigations are
mainly focused on roughness data obtained by profile lasers
or mesh boards, the effect of larger sample coverage on the
RMS Height using 3d information is subject to only few stud-
ies. In their extensive work, Taconet and Ciarletti (2007)
investigated the accuracy of different roughness estimators
with changing sampling coverage. From an initial DSM with
0.77 m width and 2.95 m length they calculated different sub
DSMs ranging from 0.4 m to 2.95 m length and a width of
0.77 m and compared those estimated roughness values with
the true estimates. Within this study, the acquired sampling
area results in an accuracy of 90% for representing the true
roughness conditions for ploughed fields and 92.5% accuracy
for seedbed structures (Taconet and Ciarletti 2007).

2.2.2 Soil and vegetation parameters

In addition to those above mentioned roughness measure-
ments, a broad variety of focussed in-situ measurements
was carried out simultaneous to E-SAR flights. The main
sampling routine included soil physical characteristics (soil
moisture, roughness, bulk density) as well as vegetation pa-
rameters (wet/dry biomass, vegetation cover, plant height,
LAI, shoots per m2).

After photogrammetric image acquisition, soil samples
were taken for moisture, bulk density and texture analysis.
Soil moisture content was measured gravimetrically (oven
drying at 105◦C) using 100 cm2 Kopecky rings, at depth of
0–5 cm and 5–10 cm, with three repetitions each. From the
known volume of the Kopecky rings volumetric soil mois-
ture (Vol. %) as well as bulk density (g/cm3) was calculated
subsequently.

2.3 Radar acquisitions and processing

A total of 11 E-SAR flights were carried out on a weekly
basis, recording imagery in X-, C-, and L-band with an inci-
dence angle ranging from 25◦ to 55◦. The raw radar data was
preprocessed radiometrically and geometrically at DLR-HR.
The L-band radar data showed good quality with an absolute
error of −2 dB and a phase accuracy of 2◦ (Scheiber et al.,
2007).

Geocoded Single Look Complex (SLC) L-band data with
a spatial resolution of 2×2 m2 was chosen to retrieve rough-
ness information. As shown by Thiel et al. (2001) it is fea-
sible to use geocoded SLC E-SAR L-band data to perform
polarimetric image analysis. Prior to further image analy-
sis, the radar imagery was speckle filtered by applying a 7×7
window enhanced LEE-Filter (Lee et al., 1992), which cor-
responds to approximately 34 looks.

Cloude and Pottier (1996) developed a very useful de-
composition theorem which is based on the eigenvalue and
eigenvector decomposition of the coherency matrix [T]. On
base of the diagonalization of the [T] matrix, three important
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physical parameters arise. The first two parameters are de-
rived from the eigenvaluesλ1−λ3 and are namely the En-
tropy H and the AnisotropyA and give an overview about
the amount of different scattering mechanisms within a reso-
lution cell (Hellmann et al., 1999). The third parameter, the
polarimetric alpha angleα, is derived from the eigenvectors
of the coherency matrix [T], were each eigenvectorei can be
expressed in terms of five angles as shown in (5) (Cloude and
Pottier 1997).

ei =

 cosαi exp(iφ1i)

sinαi cosβi exp(iφ2i)

sinαi sinβi exp(iφ3i)

 (5)

The βi angles can be interpreted as the orientation angle
containing information of the rotation of the eigenvectorei

in the plane perpendicular to the scattering plane, whileφji

giving information about the phase relations between the ele-
ments ofei . To obtain information about the mean scattering
angleα Eq. (5) has to be transposed and the meanα angle can
by calculated using the probabilitiespi (Cloude and Pottier,
1996):

α = p1α1 + p2α2 + p3α3 → p1 + p2 + p3 = 1 (6)

The polarimetric alpha angle ranges from 0◦ to 90◦. It can
be used to represent and differentiate between a wide vari-
ety of scatter mechanisms (Cloude and Pottier, 1996, 1997).
An alpha angle ofα=0◦ can be interpreted as surface scatter-
ing. With an increase inα the surface becomes anisotropic
due to the presence of small plants or non isotropic tillage
patterns. At an alpha angle ofα=45◦ the illuminated target
acts like a dipole where either theHH or VV backscatter is
zero. With a further increase ofα the surface is characterized
by an anisotropic dihedral scattering where theHH 6=VV and
the phase difference is 180◦. At its maximum ofα= 90◦, one
can obtain an isotropic double bounce scattering mechanism
(Cloude and Pottier, 1997). As a consequence, the polari-
metric alpha angle, jointly used with the Entropy, gives a first
impression of the dominant scattering mechanisms (Cloude
and Pottier, 1997; Hellmann et al., 1999).

Cloude (1999), Cloude and Lewis (2000) as well as Ha-
jnsek et al. (2003) first introduced the Anisotropy as a poten-
tial roughness estimator, which is only dependent from the
geometrical properties of a given surface and independent
from its dielectric properties as well as the local incidence
angle. The Anisotropy (A) is defined as:

A =
λ2 − λ3

λ2 + λ3
(7)

It ranges from zero to one, where the eigenvalues of the co-
herency matrix [T] areλ1≥λ2≥λ3≥0.

As obvious from (7), the Anisotropy defines the relation
between the second and third eigenvalues and is therefore a
measure of the secondary scattering mechanisms. As a con-
sequence the Anisotropy is a very noisy parameter due to

the measurement of the weak third eigenvalueλ3 close to the
system noise floor (Schuler et al., 2002; Hajnsek et al., 2003).

For low Anisotropy values, two equally strong scattering
processes are present, while a high Anisotropy indicates the
presence of only one strong secondary scattering process
with a negligible third scattering mechanism (Cloude and
Pottier, 1997).

However, the deployment of the Anisotropy comprises
some constraints which are related to its physical meaning.
Under the presence of vegetation, the Anisotropy decreases,
due to an increase in importance of the third eigenvalue, and
results therefore in an overestimation of roughness (Hajnsek
et al., 2003). As a consequence the Anisotropy is only ap-
plicable for surface scatter regions, e.g. bare soil areas or ar-
eas with sparse vegetation with one strong scattering mech-
anism (Cloude and Pottier, 1997; Cloude, 1999; Hajnsek et
al., 2003). Another limitation is given by an insensitiveness
of A for roughness values aboveks=1 where A saturates and
is therefore almost decorrelated (Hajnsek et al., 2003).

Dependent on the roughness conditions the Anisotropy A,
can be inverted using two different linear approaches. For
smooth areas Cloude and Lewis (2000) suggest:

ks = 1.25− 2A (8)

while for rougher surfaces Cloude (1999) recommends:

ks = 1 − A (9)

As shown by Mattia et al. (1997), using PolSAR data over
the Matera test site (Italy) and the Chickasha test site (USA),
the magnitude of the complex circular coherence (|ρRRLL|)
is sensitive to roughness and insensitive to dielectric proper-
ties, respectively soil moisture of the illuminated target. The
magnitude of the complex circular right-right left-left coher-
ence is defined as (Mattia et al., 1997):

|ρRRLL| =

〈∣∣SRRS∗

LL

∣∣〉√〈
|SRR|

2〉 〈
|SLL|

2〉 (10)

with SRR=right-right handedness, SLL=left-left handedness
of the rotation of the electric field vector about the line of
sight. By definition|ρRRLL| ranges similar as the Anisotropy
from zero to one. In their investigations, Mattia et al. (1997)
proved a nearly linear increase of|ρRRLL| with a decrease
in roughness. For rough fields, they measured values of
|ρRRLL| in a range of 0.2 to 0.05 while smooth fields showed
values of|ρRRLL| in a range of 0.6 to 0.5.

In further investigations Schuler et al. (2002) approved this
sensitivity of|ρRRLL| but established a stronger relationship
between the soil surface roughness and the real part of the
circular coherence (Re[ρRRLL]) for a wide range of natural
soil surfaces and different frequencies. The real part of the
circular coherence is defined as (Schuler et al., 2002):

Re[ρRRLL] =

[〈
|SHH − SV V |

2〉
− 4

〈
|SHV |

2〉〈
|SHH − SV V |

2〉
+ 4

〈
|SHV |

2〉
]

(11)
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The advantage of using only the real part of the circular co-
herence as compared to the complex coherence is due to the
fact that the imaginary part is very sensitive to unsymmetrical
scattering contributions caused by vegetation (Schuler et al.
2002). Its insensitivity to the dielectric constant has further
been proven in several investigations (Schuler et al. 2002,
Thiel 2003). However for an azimuthal symmetric surface
both estimators are the same, e.g.|ρRRLL| is real and equals
thereforeRe[ρRRLL]. UsingRe[ρRRLL] rather than|ρRRLL|

has both advantages and disadvantages. When azimuth ter-
rain slopes are present, the magnitude ofRe[ρRRLL] is re-
duced and thereforeRe[ρRRLL] is sensitive to large scale az-
imuthal slopes (Schuler et al., 2002). However these effects
are correctable by using an external digital elevation model
(DEM) (Lee et al., 2000). For this investigation an already
terrain corrected SAR product (GTC) is utilized, therefore
a further correction of large scale azimuth slopes is not re-
quired.

In their investigations Schuler et al. (2002) carried out an
extensive comparison of|ρRRLL| and A. They concluded
that both soil surface roughness estimators are in general not
the same, however in present of azimuth symmetric scatter
the estimators lead to the same results. This condition of az-
imuthal symmetry is true for some natural scenes and can be
illustrated as follows. For the special case of azimuth sym-
metric scatter the coherency matrix [T] is diagonal and the
eigenvalues can be expressed as (Hajnsek 2001):

λ1 =
〈
|SHH + SV V |

2〉
λ2 =

〈
|SHH − SV V |

2〉
λ3 = 4

〈
|SHV |

2〉 (12)

The fact thatA and|ρRRLL| are the same for this case can
be easily observed by incorporating (12) in (7) which is than
equivalent to (11).

Indeed, for ks<0.5,Re[ρRRLL] is more sensitive to rough-
ness thanA which is related to the noisy third eigenvalue,
especially for those smooth areas with low backscatter close
to the system noise floor (Schuler et al., 2002). As a conse-
quence, for smooth areas and/or areas covered with vegeta-
tion, Re[ρRRLL] is the preferable roughness estimator.

For the spatial derivation of micro-scale soil surface
roughness, the Anisotropy,|ρRRLL| andRe[ρRRLL] were cal-
culated by applying a 5×5 boxcar filter on the despeckled
L-band single look complex data.

3 Results

3.1 In-field roughness measurements

As described in Sect. 2.2.1, in-field micro-scale soil surface
roughness was obtained from micro-DSMs, determined by
photogrammetric image analysis. As can be seen from Fig. 5
it is possible to easily distinguish between different soil clods

Fig. 5. Correlation coefficients of the matching process for two
different sample points (101-1/222-2) and roughness states.

and even between small aggregates. The bundle block adjust-
ment revealed a sub millimeter precision for the object co-
ordinates. Triangulation resulted in a precisionz=0.8 mm in
the vertical direction andxy=0.37 mm in the horizontal direc-
tion related to the manually measured GCPs. The deployed
matching strategies lead to a successful matching rate (pixels
showing a correlation>0.65) of approximately 72% of all
possible matches in all stereo pairs. Mismatches mostly ap-
pear in areas where three main factors occur: low image con-
trast, soil clod obstruction in both images and strong height
difference between adjacent pixels. In regions where these
factors are valid, the matching algorithm fails or leads to
low correlation coefficients (see Fig. 5). However, the aim
of the presented study was to develop an easy-to-apply stan-
dard procedure which allows for a rapid image acquisition
near time the radar data recordings. Nevertheless, the de-
rived DSMs showed good agreement with the highly accu-
rate reference points with a mean absolute error of 1.2 mm
and a RMSE of 1.6 mm in vertical direction. Compared to
literature, these accuracies are sufficiently high (Rieke-Zapp
and Nearing, 2005; Wegmann et al., 2001; Warner, 1995;
Taconet and Ciarletti, 2007).

From the obtained micro-DSM, the RMS Heights are cal-
culated for each sample point and date using Eqs. (1)–(3).
Table 1 summarizes the main statistics of the calculated in-
field RMS Heights for each field separately, while Figs. 6–9
give an overview of the obtained roughness values for each
field and campaign date separately. As can be seen from
Fig. 6 and Table 1, the highest values fors occur on the maize
field 222, while the fields under winter resistant vegetation
(101, 250 and 440) are much smoother withs ≈1 cm. To as-
sess the directionality of the in-field roughness,s̄x(y)

/
s̄y(x)is

calculated and the results are displayed in Fig. 9. As can
be seen most sample points are dominated by an anisotropic
roughness pattern with a direction perpendicular to the tillage
pattern.

As roughness changes with its length/area over which it is
estimated (see Sect. 2.2.1), we assessed its under- or over-
estimation by calculating for each DSM different sub-DSMs
for both directions. Therefore we reduced subsequently each
DSM by 0.2 mm in the x direction (respectively y direction)
and calculated for each reduced DSM the RMS Heights par-
allel (s̄x(y)) and perpendicular (s̄y(x)) to the tillage direction.
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Table 1. Mean statistical characteristics of RMS Height measurements.

101 (WR) 102 (SB) 222 (M) 250 (WW) 440 (WB) 460 (SB)

s 0.84 1.07 1.74 0.9 0.9 1.29
s STD 0.14 0.25 0.57 0.13 0.1 0.38
sx 0.61 0.56 0.77 0.52 0.53 0.65
sx STD 0.14 0.25 0.36 0.24 0.23 0.28
sy 0.72 0.81 1.45 0.72 0.71 1.04
sy STD 0.19 0.42 0.69 0.33 0.31 0.52
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Results of three representative DSMs (smooth, medium and
rough) are given in Fig. 10. It is obvious, that the size of the
proper DSM is dependent from the direction of the tillage
pattern. As the RMS Height perpendicular to the tillage di-
rection saturates almost after 15–20 cm, the RMS Height par-
allel to the tillage pattern shows no saturation effects and is
nearly random over the acquired area, meaning that the cho-
sen sampling area is to small to represent the roughness in
parallel to the tillage direction. However, this needs to be
further investigated in future.

3.2 Derivation of soil surface roughness on the field scale

Figure 11 shows the comparison of the calculated potential
roughness estimators, based on Eqs. (7), (10) and (11), for
19 April 2006. As theory predicts, the AnisotropyA appears
much noisier than|ρRRLL| and Re[ρRRLL], due to its cal-
culation from the second and third eigenvalues (see Eq. 7)
(Cloude, 1999; Hajnsek, 2001; Schuler et al., 2002). The
Re[ρRRLL] reveals the highest level of detail and does not ap-
pear as noisy as the others.

Schuler et al. (2002) and Mattia et al. (1997) showed in
their investigations that the polarimetric coherence decreases
with an increase in surface roughness. Thus, smooth areas
with large enough backscatter intensities appear in bright
colours in|ρRRLL| images (see Fig. 11, middle). Contrary
to |ρRRLL|, the images ofRe[ρRRLL] appear different: the
values forRe[ρRRLL] increases with an increase of surface
roughness (Thiel, 2003). Note that in contrast toA and
|ρRRLL| values ofRe[ρRRLL] are in the range of -1 to +1.
Following the approches of Cloude (1999) as well as Cloude
and Lewis (2000), high values for the AnisotropyAindicate
smooth areas while lower Anisotropy regions show rougher
areas. As taken from Fig. 11 all three estimators allow to
distinguish between different roughness states within and be-
tween several fields.

For the derivation of soil surface roughness on field scale,
correlation coefficients have been calculated for each field
and each campaign date between the RMS Heights and the
calculated radar parameters (Figs. 12–13). As can be seen
from Fig. 12, the correlation coefficients for all fields over
the whole campaign are quit low with a maximum for the
Anisotropy on field 102 withr=0.44. Note the positive sign
of the correlation for the whole fields (except field 250) and
A, which indicates a proportional relationship and is contrary
to the proposed inversion schemes by Cloude (1999) as well
as Cloude and Lewis (2000). For|ρRRLL| the mean cor-
relation coefficient isr=0,2 which indicates a weak positive
relationship, which is similar toA. Indeed, the theoretical de-
scription by Mattia et al. (1997) as well as the investigation of
Schuler et al. (2002) showed a negative relationship, mean-
ing that high coherence values indicate a smooth surface. For
the real part of the complex circular coherenceRe[ρRRLL] no
consistent correlation for the different fields can be observed.
Even for the two sugar beet fields (102 and 460) opposite
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Fig. 10. Variation of RMS Heights in dependency from the size of
the sampling area.(a) smooth DSM withs=0.6 cm,(b) medium
DSM with s=1.3 cm and(c) rough DSM withs=3.3 cm.
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Fig. 11. Calculated roughness estimators (Anisotropy, Circular Co-
herence and Real Part of the Circular Coherence) for 19 April 2006.

signs are given for the correlation coefficients. This could be
related to the presence of vegetation which cause an overes-
timation ofksand superimposes therefore the good correla-
tion coefficients betweenksand the radar parameters on bare
soil fields (see Fig. 15). As investigations of Thiel (2003)
have shown, there is in general a positive proportional rela-
tionship betweenksandRe[ρRRLL] which is also observable
within Fig. 10.

To study the effect of vegetation on the roughness re-
trieval we calculated for the bare soil fields (102, 222 and
460) for each campaign date the mean correlation coeffi-
cient which are shown in Fig. 13. WhileRe[ρRRLL] and
|ρRRLL| show a very similar trend over the whole campaign,
the AnisotropyA changes its sign nearly random, which led
us to conclude that it is not suitable for roughness retrieval.
Indeed, especially for the first three campaign dates, a strong
correlation betweenRe[ρRRLL], |ρRRLL| andks in range of
r=0.65 tor=0.97 can be observed. As theory reveals, for
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Fig. 13. Correlation coefficientsr betweenks and polarimetric
roughness estimators and mean polarimetric alpha angle for the
summer vegetation field at each campaign.

an azimuthal symmetric surface both estimators are the same
and yield in the same values for r. The small discrepancies
can be explained due to the non isotropic behaviour of the
fields (Fig. 9) which reduces the similarity of both estima-
tors (Schuler et al., 2002). However, with development of
vegetation the correlation between both estimators andks is
reduced showing its minimum at the eighth campaign date
and then increases with an opposite sign for both estimators
revealing the effect of vegetation on the derivation.
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Fig. 15. Scatterplot forks andRe[ρRRLL] for areasα<40◦ at the
first three campaign dates.

To define a threshold to which a derivation is suitable, we
tested several vegetation dependent indices. As argued by
Hajnsek (2001) theHV/VV-ratio <0.07 (−11 dB) is a good
measure for the separation of vegetated and bare soil sur-
faces. However, we could not confirm this threshold (data
not shown). As a measure of the different scattering mech-
anisms, the polarimetric alpha angle is a good indicator of
the different phenological stages. Therefore we plotted the
α angle against the correlation coefficients as displayed in
Fig. 13. As can be seen with an increase inα, a decrease
of r for Re[ρRRLL], |ρRRLL| and ks can be observed until
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Fig. 16. Modeled versus measuredks values for all sample plots
with α<40◦. Hollow rhombuses indicate sample points with strong
directional effects.

its sign changes. An appropriate threshold seems to be anα

angle<40◦, which is related to the surface scatter criterion
proposed by Cloude and Pottier (1997), however it is not that
strict and even allows high roughness values with an high
Entropy to be included in the derivation.

3.3 Multi temporal roughness derivation

To develop an inversion scheme, we defined for the first three
campaign dates an empirical relationship masking out all
the values withα>40◦, which allows us to calculate a re-
gression based on bare soil conditions under a wide variety
of roughness values. Scatterplots for both, theRe[ρRRLL]

and |ρRRLL| show a strong correlation toks and are dis-
played in Figs. 14 and 15. However the correlation coef-
ficient betweenks andRe[ρRRLL] is quite high and outper-
forms |ρRRLL|. Based on this correlation, we defined a
linear inversion scheme which allows us to invertks from
Re[ρRRLL]:

ks = 0.5154× Re[ρRRLL] + 0.477 (13)

Using this relationship, we derivedks from Re[ρRRLL] for
each campaign date on the remaining valid areas. A RMSE
of 0.1 indicates a very accurate inversion model. Figure 16
shows a scatterplot for the modeled and measuredks val-
ues. Highksvalues are slightly underestimated while several
other roughness values (in Fig. 16 indicated by hollow rhom-
buses) are also underestimated. However, these measuredks
values show a significant directional behavior leading to an
overestimation of the in-fieldks values, as can be obtained
from Fig. 9.
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Fig. 17. Spatial distribution ofs. Invalid areas withα>40◦ are
masked out black.

Finally, Fig. 17 shows the spatially derived values fors,
were invalid areas withα>40◦ (settlements, forests, vital
vegetated areas) are masked out for April 19, 2006. As can
be seen, the southern part of field 460 (sugar beet) appears
much rougher as the northern part, which is due to ongoing
agricultural practice during the first campaign date. While
in the southern part the seed bed was already prepared, the
northern part is still showing a crusted surface from the bare
winter period.

4 Potentials for hydrological model application – re-
trieval of soil bulk density parameters

This section discusses the potentials and limitations of the
proposed roughness retrieval for direct use in hydrological
models. As soil surface roughness play a crucial role in phys-
ically based soil erosion models, the assimilation of the de-
rived roughness values into such models is considered ben-
eficial to better describe the processes involved. However
due to the lack of precipitation a soil erosion assessment is
not reasonable. Results of a feasibility study on the use of
roughness information in physically based hydro-ecological
modeling will be presented.

In addition to soil texture (grain size), bulk density and
derived variables such as porosity and void ratio are key
parameters in hydrological modeling. Most widely used
pedo-transfer-functions (PTF) for the calculation of hydro-
ecological properties such as (un-)saturated conductivity are
based on these parameters (Cosby et al., 1984; Rawls and
Brakensiek, 1985; Woesten et al., 1999; Sobieraj et al.,
2001). Further, porosity as well as void ratio are important
indicators for the detection of mechanically compacted soils
in agricultural environments. Typically, bulk density can be
determined using Kopecky rings with known volume, while
soil porosity is mostly measured using an air pycnometer
(Schlichting et al., 1998; Sun et al., 2006). Alternatively,
soil porosity (n) as well as void ratio (ε) can be calculated

Fig. 18. Spatial derived void ratio for 19 April on both sugar
beet fields(102+460). Invalid areas with an alpha angleα>40◦ are
masked out black.

Table 2. Statistical characteristics for bulk density parameters.

ρs n [%] ε [–]

Mean 1.43 45 0.89
Min 1.01 36 0.56
Max 1.69 62 1.6
STD 0.11 4.2 0.15

from bulk density measurements using the following equa-
tions (Hartge and Horn, 1999):

n = 1 −
ρs

ρF

(14)

ε =
n

1 − n
(15)

Wheren denotes soil porosity in (%);ρs is the bulk den-
sity of the given soil (g/cm3) andρF is the bulk density of the
solid particles, where for quartzous soilsρF ≈2.65 g/cm3.

However, there are some drawbacks in using these classi-
cal methods. First, destructive measurements using Kopecky
rings or the air pycnometer do not allow for a multi tem-
poral analysis. Secondly, they are limited to a small area
(plot scale) and therefore time-, labor- and cost-consuming
for field scale assessments.

Sun et al. (2006) introduced the potential of using rough-
ness information, derived from a 3d laser device, to obtain
soil porosity. Using a linear fit, they predicted porosity from
RMS Heights for different roughness conditions of a silty
loam soil. The hypothesis is based on the assumption that
changing roughness due to tillage practice or precipitation
alters only volume but not mass of the soil column (Hartge
and Horn 1999) and thus introduces a change in soil porosity.

To verify the approach suggested by Sun et al. (2006), cor-
relation coefficients between the in-field roughness measure-
ments and the bulk parameters calculated from Eqs. (14) and
(15) are determined. To avoid any influence from vegeta-
tion, only bare fields were considered. Table 2 summarizes
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Table 3. Correlation between s and soil bulk density param-
eters (R2=coefficient of determination,r=correlation coefficient,
m=slope,b=axis intercept).

Parameter R2 r m b

ρs 0.55 −0.74 −0.32 1.90
n 0.55 0.74 12.14 28.28
ε 0.60 0.78 0.49 0.16

the statistics of measured bulk density values while Table 3
summarizes the results from this analysis.

A good relationship between the indicated parameters can
be noted, while the void ratio in the uppermost layer is cor-
related stronger tos than the bulk density and porosity (see
Table 3). This is in good agreement with the results of Sun
et al. (2006).

Applying a linear fit, we derived the spatial void ration
for 19 April, for the bare soil field 102 and 460, as shown
in Fig. 18. A first visual qualitative interpretation of the re-
sults indicates a well working algorithm. The still crusted
surface on field 102 as well as the crusted northern part of
field 460 show a very low void ratio while the already seed
bed prepared southern part of field 460 shows significantly
higher values. Result in form of an RMSE=0.17 g/cm3 indi-
cate promising results, however there is still some potential
for an enhanced bulk density parameter retrieval that has to
be investigated with a larger amount of data in future studies.

5 Summary and conclusions

This study presents an approach for the spatial derivation of
soil surface roughness using photogrammetry and radar re-
mote sensing. Therefore several polarimetric roughness es-
timators have been correlated to a wide range ofks values,
showing that the real part of the complex circular coherence
is outperforming all the other estimators. However, as theory
reveals, for azimuth symmetric bare soil surfacesRe[ρRRLL]

and |ρRRLL| are the same, while for asymmetric surfaces,
due to a directional behaviour of the surface, differences in
both occur. In presence of vegetation, the retrieval algo-
rithm leads to an overestimation of roughness and is therefore
not suitable for an operational use. However, using the po-
larimetric alpha angle (Cloude and Pottier, 1996) for mask-
ing out areas withα>40◦ seems to be a suitable threshold
for a robust roughness retrieval of various roughness condi-
tions even under (short or dry/ripe) vegetation leading to a
RMSE=0.1. However for highksvalues (ks≥0.8) an under-
estimation using the developed inversion scheme could be as-
certained. In investigations of Hajnsek (2001) and Schuler et
al. (2002), a random distribution ofRe[ρRRLL] and|ρRRLL|

for ks>1 is reported, which is in good accordance with our
results.

It is shown that the deployed photogrammetric method al-
lows a fast and adequate retrieval of roughness information.
However, the role of the scale dependent calculations of s
needs to be further investigated in future studies. Even if
earlier papers from Taconet and Ciarletti (2007) proved a
good representation of the roughness determination for the
deployed horizontal coverage (0.5 m2), uncertainties remain,
which are especially given in parallel to the tillage direction
were a larger sampling area is necessary. Future investiga-
tions, to assess this effect on roughness retrieval from SAR
data, are mandatory.

However, our results indicate that spatially determined soil
surface roughness from remote sensing can support the pa-
rameterization of spatially explicit hydrological models, in
this case by providing distributed values of driving variables.
It is shown in a first assessment that soil bulk parameters of
the upper few centimetres of the soil column, such as bulk
density, porosity and void ratio, can be discriminated from
surface roughness. However, even though a dependency of
these bulk parameters from roughness can be noted, the ap-
proach needs further research with regard to different uncer-
tainties:

– The correlation between roughness parameters and bulk
parameters is only strong for fresh harrowed fields. For
small values of s≤1 cm the bulk parameters are ran-
domly distributed.

– Using the regionalization approach suggested in this
study, error propagation will lead to large RMSE val-
ues. Therefore, a better roughness retrieval needs to be
achieved.

Besides those constraints, the approach is very promising.
For future investigations, an enhanced roughness retrieval
has to comprise four major improvements:

– To enhance the in-field roughness retrieval, the image
acquisition set up has to be improved by better illumi-
nation and to solve the appearance of obstructed areas
more than two image pairs could remediate (Luhmann,
2003; Wiggenhagen and Raguse, 2003). To solve the
problem of mismatches between adjacent pixels with
strong height differences, a broad variety of appropri-
ate matching strategies have to be developed to enhance
the matching process.

– The effect of directionality on roughness retrieval needs
to be investigated in more depth by comprising a larger
amount of roughness in-situ measurements to achieve a
better understanding of those effects.

– To reduce uncertainties in roughness measurements,
due to too small sampling areas the horizontal cover-
age of future measurement systems has to be increased
especially in the direction parallel to the tillage pattern.
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– For a better separation of vegetation effects different
decomposition theorems as well as the deployment of
PolInSAR techniques will be necessary.
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