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Abstract. Two of the most relevant components of any flood
forecasting system, namely the rainfall-runoff and flood in-
undation models, increasingly benefit from the availability
of spatially distributed Earth Observation data. With the ad-
vent of microwave remote sensing instruments and their all
weather capabilities, new opportunities have emerged over
the past decade for improved hydrologic and hydraulic model
calibration and validation. However, the usefulness of re-
mote sensing observations in coupled hydrologic and hy-
draulic models still requires further investigations. Radar re-
mote sensing observations are readily available to provide
information on flood extent. Moreover, the fusion of radar
imagery and high precision digital elevation models allows
estimating distributed water levels. With a view to further ex-
plore the potential offered by SAR images, this paper inves-
tigates the usefulness of remote sensing-derived water stages
in a modelling sequence where the outputs of hydrologic
models (rainfall-runoff models) serve as boundary condition
of flood inundation models. The methodology consists in
coupling a simplistic 3-parameter conceptual rainfall-runoff
model with a 1-D flood inundation model. Remote sens-
ing observations of flooded areas help to identify and sub-
sequently correct apparent volume errors in the modelling
chain. The updating of the soil moisture module of the hy-
drologic model is based on the comparison of water levels
computed by the coupled hydrologic-hydraulic model with
those estimated using remotely sensed flood extent. The po-
tential of the proposed methodology is illustrated with data
collected during a storm event on the Alzette River (Grand-
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Duchy of Luxembourg). The study contributes to assess the
value of remote sensing data for evaluating the saturation sta-
tus of a river basin.

1 Introduction

Over the last decade, many studies demonstrated that spatial
information on the distributed physiogeographical character-
istics and hydrologic responses of river basins can be gained
from remote sensing observations. Taking into account satel-
lite data in flood forecasting systems has the potential of sig-
nificantly improving model performances. Indeed, the list of
Earth Observation-derived products that are potentially use-
ful in watershed modelling is long, including, most notably,
precipitation fields, land use maps, digital elevation models,
maps of snow cover, soil moisture, flood extent, vegetation
cover and evapotranspiration. The requirements, with re-
spect to imaging frequency, spatial resolutions and accuracy,
strongly depend on the hydrologic variables to be monitored
and the basin characteristics to be mapped. Whereas some
basin characteristics such as land use and topography can be
retrieved from a limited amount of images, the temporal vari-
ations of soil moisture, flood extent and snow cover implicate
that the corresponding data need to be provided at a daily or
at least weekly basis in order to be routinely used in forecast-
ing systems.

Recent studies on integrating remote sensing observations
of floods with hydrodynamic models investigated the poten-
tial for calibrating friction parameters in flood models (e.g.
Aronica et al., 2002; Mason et al., 2003; Werner et al., 2005).
In the same general context, Schumann et al. (2007a) demon-
strated the potential of Earth Observation data to understand
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and improve model structures by comparing remote sensing-
derived water stages along a river reach with simulated water
surface lines.

Here we intend to introduce a new approach which con-
sists in calibrating and sequentially updating a coupled
hydrologic-hydraulic model using remotely sensed flood in-
formation. Surface water monitoring via remote sensing of
flooded areas allows assessing the ratio between storm runoff
and total rainfall, thereby providing a means for correcting
volume errors in hydraulic models. The latter stems from
forcing term errors (i.e. streamflow at the boundaries of the
model domain). Andreadis et al. (2007) and Pappenberger
et al. (2006) showed that the uncertainties associated with
boundary conditions have a significant impact on inunda-
tion prediction accuracy. Moreover, they showed that remote
sensing-derived water stages were useful to correct inflow
data, thereby improving the skill of the hydraulic models.
The dominant practice in hydraulic modelling consists in us-
ing recorded hydrographs as boundary conditions. In that
case the uncertainty of the boundary condition depends on
the accuracy of the stage-discharge relationship. In ungauged
catchments, the associated uncertainty is increased signifi-
cantly because hydrologic models need to estimate stream-
flow at the upstream boundary. In order to be able to sim-
ulate hydrographs accurately, these models need to predict
the partitioning of precipitation into infiltration and storm-
flow adequately. This distribution largely depends on an-
tecedent moisture conditions. Pfister et al. (2003) showed
in a case study in a humid temperate region that stormflow
coefficients may vary significantly depending on antecedent
moisture conditions. These considerations have motivated
many studies focusing on the remote sensing of soil moisture
as the key environmental variable to be monitored in order
to assess the saturation status of a river basin during storm
events. As a result of all these efforts, there is nowadays a
large variety of methods available to assess basin saturation
via remote sensing of soil moisture.

There is no doubt that in the active microwave domain,
Synthetic Aperture Radar (SAR) shows a high sensitivity to-
ward water content in the first few centimeters of the soil.
There are numerous studies that demonstrate this relation-
ship (e.g. Quesney et al., 2000; Le Hégarat-Mascle et al.,
2002; Zribi et al., 2005). In any discussion, it is, however,
essential to distinguish between remote sensing of soil mois-
ture at the plot and at the catchment scale. SAR backscat-
tering is highly dependent on topography, soil texture, sur-
face roughness, vegetation cover and soil moisture, meaning
that soil moisture inversion is extremely difficult. Even in an
ideal scenario where the effects due to topography, roughness
and vegetation cover can be estimated, SAR generally fails to
provide soil moisture variations at the plot scale (e.g. Wagner
and Pathe, 2004; Walker et al., 2004). Only the averaging of
the SAR signal over large areas seems to give acceptable esti-
mates of the soil mean response. If the soil moisture response
to the SAR backscatter can be separated from the vegeta-

tion contribution and assuming that soil roughness does not
need to be taken into account at catchment scale, one may
obtain robust estimations of watershed averaged soil mois-
ture indices (Le H́egarat-Mascle et al., 2002). But even with
such a scenario, remote sensing can only be used to retrieve
soil moisture in the first few centimeters of soil, whereas
runoff generation is also largely controlled by deeper lay-
ers. Despite the aforementioned limitations, some studies
(Pauwels et al., 2001; François et al., 2003; Matgen et al.,
2005; Brocca et al., 2009) indicate that the integration of
remote sensing observations of average basin soil humidity
under certain conditions allows increasing the performance
of rainfall-runoff models.

This paper considers an alternative approach to the exist-
ing studies mentioned above. Given the current limitations
of active microwave sensors to map soil moisture, remote
sensing of flooded areas may be regarded as an inviting alter-
native to assess basin saturation implicitly. As microwaves
are reflected away from the sensor by smooth open water
bodies, flood area detection via microwave remote sensing
is rather straightforward (Smith, 1997). River stage can be
estimated at the land-water interface using remote sensing
derived flood boundaries in combination with topographic
maps (e.g. Oberstadler et al., 1997; Schumann et al., 2007b;
Hostache et al., 2006) even though associated uncertainties
can be high (Schumann et al., 2008b). The appraisal of sur-
face water storage within a given river reach can be done via
the subtraction of the floodplain topography from the water
surface. It can be argued that the surface water volume repre-
sents the aggregate response of a river basin to a storm event.
Our assumption is that time series of remote sensing images
of floods allow monitoring surface water volumes and, as a
matter of fact, help to estimate effective rainfall during storm
events (i.e. the part of total rainfall that is routed as storm-
flow towards the outlet). Knowing the total rainfall amount
in the contributing area, it appears sensible to use these data
sets for monitoring the time variation of runoff coefficients.

Our hypothesis will be tested by means of a case study
that focuses on an application to the Alzette River in Luxem-
bourg. Assuming that the study area is a data poor region, we
will assess the ability of this methodology to provide reason-
able estimates of discharge and flood extent with a limited
amount of data at hand. Moreover, we will use this test site
to establish the proof-of-concept of a routine remote sensing-
based flood monitoring service as a means to monitor the sat-
uration status of the river basin.

2 General approach

The methodology presented in this study aims at integrating
remote sensing-derived information in a coupled hydrologic-
hydraulic (H-H) model in order to improve model results
by identifying and correcting the bias that may result from
errors in the simulated inflow. The modelling sequence is
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performed by coupling a simplistic rainfall-runoff model and
a 1-D flood propagation model so that the output of the for-
mer serves as input to the latter.

The analysis is carried out using two possible calibra-
tion approaches whereby the value of remote sensing data of
floods in an aggregated modelling system will be assessed.
Initially, an “all-at-once” calibration scheme is conducted.
It consists in estimating both the hydrologic and the hy-
draulic model parameters in one go using SAR-derived wa-
ter stages. Afterwards, a sequential model-updating scheme
is performed in order to investigate the usefulness of remote
sensing data for monitoring the saturation status of the river
basin. This second approach first divides the parameters of
the coupled H-H model into constants (i.e. parameters repre-
senting basin and river characteristics that can be transferred
from one event to another) and time-varying (i.e. parameters
whose values are event dependent). It is worth noting that
the only time-varying parameter in this study is the storm-
flow coefficient, which implicitly represents the moisture sta-
tus of the drainage area since the basin’s antecedent mois-
ture condition influences the partitioning of the total rainfall
into infiltration and runoff. Then, model parameters are cal-
ibrated with field data collected during a well-documented
flood event (reference event A) and the constants are trans-
ferred to another flood event (reference event B). Finally, the
time-varying parameter, namely the stormflow coefficient,
the value of which is expected to change from event A to any
other event, is updated for event B using the SAR-derived
water stages.

For both approaches, the calibration procedure is based on
the Monte Carlo method that relies on repeated random sam-
pling of parameter sets from within specified ranges to com-
pute the results. Simulations of the coupled H-H model are
performed with each set of parameters. Then, outputs pro-
vided by each simulation are compared to recorded observa-
tions. Using this kind of calibration process, it is possible to
represent performances or errors of the model versus param-
eter values.

In order to establish the value of remote sensing-derived
flood information for model calibration and updating, the
outlined general approach will be applied in the framework
of a case study in the Alzette river located in Luxembourg.

3 Study area and available data

The area of interest is located in the Grand Duchy of Lux-
embourg and includes the upper part of the Alzette River
basin expanding from the head of the river, 4 km south of
the French-Luxembourg border, to Mersch. Since this study
deals with a loose H-H model sequence, two different sub-
study areas have been defined (Fig. 1): the drainage area to
the stream gauge located in Pfaffenthal (Luxembourg City)
and the river reach between Pfaffenthal and Mersch, respec-
tively.

Fig. 1. The two study sites in the Alzette river basin: the 356 km2

drainage area down to Pfaffenthal (green patch) and the 19 km river
reach between the hydrometric stations at Pfaffenthal and Mersch
whose geometry is represented by the cross sections (red lines).

The first study area covers a surface of 356 km2 and is
divided in cultivated land (50%), urban centers (22%) and
woodland (28%). The topography of the floodplain is char-
acterized by a natural sandstone bottleneck, located near
Luxembourg-city. Upstream of the bottleneck, the valley is
up to 2.5 km wide, while in the Luxembourg sandstone the
valley is only 75 m wide. Over the area, the geological sub-
stratum is dominated by marls on the left bank, while on the
right bank it consists of limestone and sandstone deposits.
Sand and gravel, as well as marls and clay alternate in the
alluvial deposits covering the substratum. For further details
about the physiogeographical characteristics of the Alzette
river basin we cross-refer to van den Bos et al. (2006). A
gauging station, operated since 1996, is located near the
village of Livange, which provides cumulated precipitation
amounts every 15 min.

The second study area is the 19 km reach of the Alzette
River between the gauging stations at Pfaffenthal and Mer-
sch. Here, the river meanders in a relatively large and flat
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Fig. 2. Flood extents derived from the ENVISAT image (blue) and
the ERS-2 image (light blue).

plain characterized by an average width of 300 m and a mean
slope of 0.08%. The average channel depth is 4 m.

In this study the well-documented flood events that oc-
curred in January 2003 and January 2007 have been inves-
tigated: the former, which is the focus of this study, is a high
magnitude flood event with an estimated return period of 10
years and a peak discharge of 0.78 mm/h; the latter is a rather
small (estimated return period of 4 years) flood event char-
acterized by a peak discharge of 0.59 mm/h recorded in Pfaf-
fenthal .

The hydrometric data were recorded at a 15-min time-step
at six stream gauges located in the villages of Pfaffenthal
(upstream), Walferdange, Steinsel, Hunsdorf and Lintgen,
but the stage hydrographs at Lintgen and Hunsdorf are only
available for low water depths because of a temporary mal-
functioning of the measurement system during high flows.
Moreover, during the flood event the coordinates (x,y) of 84
flood extent marks have been measured on the ground with

a GPS (about 5 m planimetric accuracy) and the maximum
water level has been measured using a theodolite (altimet-
ric accuracy around±2 cm) at 7 points distributed across the
floodplain. The altimetric data available are a LiDAR DEM
with a 2 m spatial resolution and a±15 cm mean altimet-
ric uncertainty, for the floodplain terrain elevations, and 200
bathymetric cross sections with a “theoretical” (some errors
of more than 30 cm have been found during ground control
survey) centimetric altimetric uncertainty, for the river chan-
nel elevations.

Two SAR images, acquired at two distinct stages of the
2003 flood event have been used in this study: one has been
acquired by the ERS-2 satellite during the rising limb of the
flood wave; the second image was acquired by the ENVISAT
satellite just after the flood peak. Figure 2 shows the flooded
area covered by both images and Table 1 summarize the tech-
nical characteristics of the SAR instruments on board the
satellites.

4 Methodology

4.1 Coupled H-H model set-up

As mentioned above, the modelling sequence consists of the
loose coupling of a lumped conceptual event-based rainfall-
runoff (R-R) model and a 1-D hydraulic model. The former
represents the rainfall-runoff transformation occurring in the
drainage area of the Alzette River up to Pfaffenthal and uses
the rainfall recorded at the rain gauge located in Livange
as input data. The latter simulates the propagation of the
flood wave across the river channel and floodplain between
the gauging stations in Pfaffenthal and Mersch. The link be-
tween the two models in the sequence is the discharge hy-
drograph computed by the R-R model since this is integrated
with the hydraulic model as upstream boundary condition.

4.1.1 Hydrologic component of the modelling sequence

In this study, the stormwater runoff is simulated by the hy-
drologic model developed by Nash (1960). This conceptual
model is based on two assumptions: the river basin can be
described by an ensemble ofn linear reservoirs in series, all
of them characterized by the same storage constantK; the
flood hydrograph due to a single pulse of rain (defined by the
Dirac conditions) is given by the Instantaneous Unit Hydro-
graph (IUH) Model (Sherman, 1932). Assuming an instanta-
neous unit rain pulse as input of the first reservoir, the output
will be the IUH represented in Eq. (1), where the timet , as
well as the storage constantK, is expressed in hours.

u(t) =
1

K
e−

t
K (1)

The latter will be used as input of the next reservoir of the
cascade, to whom the equation of mass balance will be ap-
plied in order to compute the output discharge. By iterating
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Table 1. Characteristics of the ENVISAT and ERS-2 images.

Satellite Frequency Band Polarization Incidence angle Pixel spacing Georeferencing error Acquisition date

ENVISAT 5.3 GHz C VV, VH 35 deg 12.5 m 1 pixel 2.01.2003, 21:57 GMT+1
ERS-2 5.3 GHz C VV 23 deg 12.5 m 1 pixel 2.01.2003, 11:00 GMT+1

the procedure until the end of the cascade of reservoirs, the
output discharge of thenth reservoir will be given by the fol-
lowing equation that represents the Nash IUH at the outlet of
the basin:

u(t) =
1

K0(n)

(
t

K

)n−1

e−
t
K (2)

In Eq. (2), 0 is the Gamma distribution function depending
on K andn. By differentiating Eq. (2) with respect tot and
equating to zero in order to consider the peak discharge,K is
obtained as follows:

K =
tp

n − 1
(3)

Therefore, the Nash IUH is described by two parameters,
namely the number of linear reservoirsn and the recession
time constanttp that determines the emptying of the reser-
voirs. As a matter of fact, the Nash IUH accounts for the
physical characteristics of the basin that influence the flood
generating processes (slope, morphology, vegetation cover,
average density of the drainage network, etc.). Finally, to
compute the total stormwater runoff at the outlet of the basin
in mm/h, it is necessary to multiply the hourly effective rain-
fall Reff (assumed to be uniformly distributed in space over a
defined period of time) by the Nash IUHu(t). In order to re-
trieve the effective rainfallReff, a third parameter needs to be
taken into account, namely the stormflow coefficientc, de-
fined as the ratio between stormflow and rainfall volumes, so
thatReff=cR. Hence, the total stormwater runoff is obtained
as follows:

Q(t) =

∫ t

0
cR(t − τ)u(τ)dτ (4)

The stormflow coefficient represents an event-dependent
parameter and its variability from one event to another is
very difficult to assess, particularly in ungauged catchments.
In humid temperate hydrologic regimes of north western
Europe, the dominant runoff-generating process is satura-
tion overland flow, caused by near-surface saturation con-
ditions. The rainfall-infiltration-runoff partitioning, repre-
sented in the simplistic 3-parameter model by the value ofc,
obviously largely depends on the antecedent moisture condi-
tions. Pfister et al. (2003) found a clear relationship between
the saturation level (documented by water balance values),
piezometric levels and runoff coefficients for the same catch-
ment, supporting that the ratio between stormflow and rain-
fall reflects the actual degree of saturation of the basin and it

is not significantly influenced by the rainfall structure once
the soil is saturated.

As far as here, we computed the discharge of stormwa-
ter (event flow term). However, with the purpose of apply-
ing the methodology described in this paper, we also must
take into account the discharge at the timet0 when rainfall
starts (pre-event flow term), in order to generate the whole
flood hydrograph. As a matter of fact, the water volume
that is obtained by merging the flood extent information ex-
tracted from remote sensing observations with the terrain to-
pography includes pre-event and event water, thereby allow-
ing the correction of the total runoff simulated by the model
via a sequential updating of the stormflow coefficient (total
runoff=pre-event runoff + event runoff,c).

4.1.2 Hydraulic component of the modelling sequence

Since in the area between Pfaffenthal and Mersch the flow
direction is mainly parallel to the channel, the 2-D flow field
that is typically related to riverbank overtopping can be ac-
curately approximated by a 1-D representation (i.e. velocity
components in directions other than the main flow direction
are not accounted for). Thus, with a view to reducing com-
putation time, the widely used Hydrologic Engineering Cen-
ter River Analysis System – HEC-RAS – was set-up for 1-D
river flow computation. However, it is worth mentioning that
the methodology can also be extended to rivers characterized
by a more complex geometry (which needs to be modelled
2-D), although further research needs to be done in this di-
rection. The HEC-RAS model (HEC-RAS 4.0, 2008), de-
veloped by the Hydrologic Engineering Center belonging to
the US Army Corps of Engineers, allows 1-D steady and un-
steady flow calculations. The unsteady flow equation solver,
UNET (Barkau, 1992), simulates 1-D unsteady flow through
a full network of open channels. Setting up HEC-RAS re-
quires a three-dimensional (3-D) geometry of the floodplain
and channel, initial as well as boundary conditions, and hy-
draulic parameters (e.g. friction coefficients). In the studied
river reach the channel and floodplain topography is repre-
sented by 172 3-D cross sections, placed perpendicularly to
the stream centerline, derived from the LiDAR DEM and the
bathymetric data. The boundary conditions of the model are
as follows:

– upstream: the flow hydrograph at the hydrometric sta-
tion in Pfaffenthal (R-R model output);
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– downstream: the normal depth (i.e. the slope of the
channel bottom in the vicinity of the downstream
boundary, which is often a good estimate of the slope of
the water surface also in the framework of an unsteady
flow analysis).

Furthermore, two tributaries, namely the Eisch and Mamer
rivers, have their confluences with the Alzette River between
two model cross sections, upstream of the town of Mersch.
Nevertheless, since their contribution is not relevant for the
flood extent information within the study area, the down-
stream boundary of the hydraulic model is defined upstream
of the confluences, in order to simplify the analysis and re-
strain the number of inflows.

The initial condition is calculated by the model as a steady
flow simulation using the discharge at Pfaffenthal gauging
station (upstream boundary) att0.

As mentioned above, the implementation of a hydraulic
model also requires the specification of roughness param-
eters: two Manning friction coefficients, one for the river
channel,nc, and one for the floodplain,nflp, are considered.
A single channel Manning coefficient is attributed to the en-
tire reach in the model, as the channel aspect appeared ho-
mogeneous along the study area during field observations.
Moreover, for the Alzette reach, Schumann et al. (2007a)
demonstrated that a high number of acceptable flood simu-
lations can be obtained at the reach-scale without spatially
distributing channel roughness.

4.2 Water level estimation from remote sensing observa-
tions

The water level estimation methodology is described in de-
tail by Hostache et al. (2006, 2009). It is composed of two
main steps: i) SAR image processing in order to extract the
flood extent limits that are relevant for water level estimation,
ii) estimation of water levels by merging the relevant limits
and a high resolution high accuracy Digital Elevation Model
(DEM) under hydraulic coherence constraints.

In the first step of this method, the flood extent is derived
from the SAR image using radiometric thresholding. This
SAR-derived flood extent may be prone to local misclassi-
fications that are mainly due to emerging objects that may
mask water. Thereby, some flood extent limits may be er-
roneous. Since the water levels are estimated by merging
the flood extent limits and the DEM, these erroneous limits,
when taken into account, induce errors on the resulting wa-
ter level estimates. As a consequence, we choose to remove
from the flood extent limits those parts that are located in
the vicinity of trees or buildings (mapped using aerial pho-
tographs and land use maps). The remaining limits, called
“relevant” limits hereafter, shaped as small patches spatially
distributed across the floodplain, will be used for water level
estimation.

In the second step the “relevant” limits are merged with
the underlying DEM in order to extract, for each pixel of
these limits, the terrain elevation. It is worth noting that
the DEM altimetric uncertainty (due to resolution and ac-
curacy) and the flood extent limits spatial uncertainty are
taken into account during this merging. The latter stem from
three main sources: the image processing (i.e. the choice
of the radiometric threshold values), the georeferencing and
the spatial resolution of the SAR image. Next, by affect-
ing the relevant limit pixels with cross sections of the hy-
draulic model geometry using a snapping distance equal to
the mean cross section spacing, it is possible to estimate,
for some model cross sections, water levels as intervals
IWLsat

i =

[
WLsat

min,i; WLsat
max,i

]
(since numerous pixels of

the relevant limits and thus numerous terrain elevation values
are affected to a cross section). These intervals constitute pri-
mary water level estimates. Furthermore, it has been shown
by Hostache et al. (2009) that these water level estimates
have to be hydraulically constrained for more efficiency in
the framework of hydraulic model calibration. Previously
introduced by Raclot and Puech (2003), the hydraulic co-
herence algorithm is based on the hydraulic law stating that
hydraulic energy decreases from upstream to downstream.
Under the assumption of low velocity, which is acceptable
in the Alzette floodplain, this statement can be simplified
into a decrease of water level in the flow direction. Applied
to the intervals of water level estimation, these constraints
force a decrease upon the maxima (WLsat

max,i) from upstream
to downstream and an increase upon the minima (WLsat

min,i)
from downstream to upstream. This provides constrained

water level estimatesIWLsat
i =

[
WLsat

min,i; WLsat
max,i

]
, called

SAR derived water levels hereafter, that will be integrated
with the calibration process.

The limits of applicability of the presented method are
mainly related to the topography of the river valleys. As
mentioned above, during the merging between the flood ex-
tension limits and the DEM, the uncertainties related to both
the DEM and the SAR image are transferred to the water
level estimates. Thus, hillslope areas imply important un-
certainties on water level estimates due to the larger spread
of possible elevation values inside the confidence interval of
remote sensing-derived flood boundaries. As a result, the wa-
ter level estimation method leads to reliable water level esti-
mates only for relatively large and flat floodplains. Indeed,
in the case of a narrow valley, uncertainties on the remote
sensing-derived water levels are important.

4.3 The value of SAR-derived water stages within an “all-
at-once” calibration scheme

As a first approach, the calibration of the modelling sequence
is performed using a Monte Carlo procedure: each randomly
sampled parameter set, containing three hydrologic (c, tp, n)
and two hydraulic parameters (nc, nflp), is used to perform a
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simulation. It must be borne in mind that all parameters ex-
cept the stormflow coefficient, which is event-dependent, are
closely related to basin characteristics and can be considered
constant.

The final output of the H-H model, i.e. the simulated
water levels, is compared to water levels estimated by
the SAR flood images. Each simulation is stopped at
time steptsat of the satellite overpass and simulated wa-
ter levels are considered as matching the observations if
they fall inside the interval of SAR-derived water levels
(WLsat

min,i<WLsim
i,tsat

<WLsat
max,i). For the sake of simplifica-

tion, all model runs inside the intervals are given a score of
1.

For each set of parameters the following performance cri-
terion has been defined:

Psat =
N∑

i=1

(
1WLi

N

)
where1WLi =

{
1 if WLsim

i,tsat
∈ IWLsat

i

0 if WLsim
i,tsat

/∈ IWLsat
i

} (5)

In Eq. (5), WLsim
i,tsat

is the simulated water level at the satel-
lite overpass,IWLsat

i =[WLsat
min,i ; WLsat

max,i ] is the interval of
the remote sensing derived water level on the model cross
sectioni, andN is the number of model cross sections where
a SAR-derived water level is available. This performance
criterion provides, for each model run (i.e. for each set of pa-
rameters), the number of cross sections (expressed as a frac-
tion of the total), at which the simulated water level matches
the observations.

4.4 The value of SAR-derived water stages within a se-
quential updating scheme

For the second calibration approach, variable parameters are
separated from those that are assumed not to vary from one
flood event to another. As a matter of fact, the parameters that
are related to constant basin characteristics are calibrated us-
ing field observations of a first flood event, then transferred to
another event for which SAR-derived water stages are avail-
able.

As mentioned earlier,c is the only variable parameter
within the hydrologic model since it depends on the soil
moisture conditions that control rainfall-infiltration-runoff
partitioning, whereasn and tp are related to the physiogeo-
graphical characteristics of the basin.

With respect to the hydraulic parameters, it is sensible
to assume that, from a certain water stage onward, channel
roughness does not vary in time, unless significant changes
occur inside the river bed.

4.4.1 Calibration of model parameters using field observa-
tions

Since the presented H-H model is based on a loose coupling,
it is sensible to use a first flood event to calibrate the hydro-
logic and the hydraulic model components independently.

The widely used Nash criterion (Nash and Sutcliffe, 1970)
is applied to assess the performance of the hydrologic model.
This criterion is well suited for a flood hydrograph evaluation
since, in this case, it gives more weight to the highest values
of discharge in the performance calculation. The flow hy-
drograph simulated by the Nash cascade at the outlet of the
study drainage area is compared to the flow hydrograph ob-
served in Pfaffenthal (with this definition the authors refer
to the flow hydrograph calculated using the observed stage
hydrograph and the rating curve).

Nash= 1 −

tend∑
t=t0

(Qsim (t) − Qobs(t))
2

tend∑
t=t0

(
Qsim (t) − Qobs

)2 (6)

In Eq. (6) Qobs(t) andQsim(t) are the observed and sim-
ulated discharges at timet , respectively, expressed in mm/h.
t0 andtend are the starting and ending simulation time;Qobs
is the observed mean discharge in mm/h betweent0 andtend.
The Nash criterion describes how the R-R model performs
as compared to a knowledgeless model that only reproduces
the mean of the observed streamflow. A positive number in-
dicates that it does better (1 is a perfect fit), while a negative
number indicates that it performs worse.

In order to calibrate the hydraulic model, the observed
flow hydrograph is used as the upstream boundary condi-
tion. The objective function for the hydraulic model is the
root mean squared error (RMSE) between the simulated and
observed water stages at six hydrometric stations along the
river reach.

RMSEglobal =

√√√√√√√N hs∑
i=1

(
tend∑
t=t0

(Hsim(t, i) − Hobs(t, i))
2

)
(tend− t0 + 1)N hs

(7)

In Eq. (7) Hobs(t, i) andHsim(t, i) are the observed and
simulated water levels at timet and hydrometric stationi,
respectively, expressed in m.t0 andtend are the starting and
ending simulation time, whileN hs is the number of hydro-
metric stations. The RMSE is equal to 0 if the observed and
simulated hydrographs fit perfectly and the more divergent
these hydrographs, the higher the RMSE.

4.4.2 Updating of the stormflow coefficient using SAR im-
ages

This step of the methodology aims at assessing the saturation
status of the river basin in order to reduce the volume errors
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in the simulated inflow, namely the flow hydrograph at Pfaf-
fenthal, using the remote sensing-derived water levels. To
achieve this goal the modelling sequence is set-up using the
values of the hydrologic parametersn and tp and the Man-
ning coefficients found for the event used in Sect. 4.4.1 and
the stormflow coefficient is updated for another event using
remote sensing observations.

The evaluation procedure is the same as the one described
in Sect. 4.3 and the performancePsat (see Eq. 3) represents,
for each value ofc, the number of cross sections (expressed
as a fraction of the total), at which the simulated water level
matches the observations.

Additionally, stormflow coefficients providing water lev-
els within the uncertainty interval of SAR-derived water
stages (IWLsat

i ) are plotted for each cross section over the
entire reach. This “local” evaluation gives an appreciation of
the variability of likely c values depending on which cross
section is considered and represents a helpful tool to better
understand the results obtained with the previous “average”
evaluation.

5 Results

5.1 Water level estimation from remote sensing observa-
tions

The water level estimation method presented in Sect. 4.2 has
been applied to the ERS and the ENVISAT images using the
LiDAR DEM as source of terrain elevation data. Ground
surveyed flood extent marks located in areas without trees
or buildings have been used to validate the flood boundaries
estimated using the ENVISAT image in the first step of the
procedure (see Sect. 3). It is worth mentioning that the field
campaign was undertaken close to the flood peak, that cor-
responds to the ENVISAT satellite overpass time. 92% of
the ground surveyed flood marks lie within the confidence
bounds of the SAR-derived flood boundary. Moreover, the
mean distance between the marks that lie outside this in-
terval and these limits is equal to 4 m. This is lower than
the coordinate accuracy of these points (accuracy of the GPS
used to calculate the flood extent marks is of approximately
5 m). To characterize the uncertainty of the water levels re-
sulting from the second step of the procedure, the half mean
rangemean(WLmax−WLmin)

2 of the intervals of water levels has
been calculated. This “mean uncertainty” is equal to±43 cm
for the ERS image and±54 cm for the ENVISAT image.
Furthermore, since the ENVISAT image has been acquired
close to peak discharge, the ENVISAT-derived water levels
have been compared to seven ground measured high water
marks (see Sect. 3). This comparison shows the reliability of
the water level estimation method, since all these high water
marks are included inside the possibilistic intervals of SAR-
derived water levels. This result validates the hypothesis of

the method stating that the real water level matches the SAR-
derived water levels.

5.2 The “all-at-once” calibration scheme

The aim of the first calibration approach was to verify the
possibility to calibrate the modelling sequence for the 2003
flood event in one go by means of remote sensing-derived
water levels.

To set up the hydrologic model, hourly rainfall data ob-
served in Livange between the 1st and 7th of January 2003
and the pre-event flow measured in Pfaffenthal at the begin-
ning of the storm event (0.11 mm/h) were used.

The hydraulic model was set up as proposed in Sect. 4
with the upstream boundary condition being output by the
hydrologic model and the downstream boundary condition
being the normal depth.

For the calibration procedure, 3000 sets of parameters
were randomly generated within the following intervals of
plausible values:

– for the stormflow coefficient:c∈ [0.1; 0.9];

– for the number of reservoirs:n∈ [1.1; 5];

– for the recession time constant:tp∈ [1; 30];

– for the channel Manning coefficient:nc∈ [0.01; 0.1];

– for the floodplain Manning coefficient:
nflp∈ [0.01; 0.2].

For each generated set of parameters, one run of the mod-
elling chain was performed for the period between the 1st
and 7th of January 2003.

A brief clarification about the choice of assigning floating
values to the parametern needs to be done: in this study
the authors do not mean to represent the basin as a physical
cascade of reservoirs, but rather to compute the discharge at
the outlet through the equations that are the basis of the Nash
hydrologic model.

The calibration was performed using both the ENVISAT
and the ERS-2 images. In both cases, the comparison be-
tween simulated and remote sensing-derived water levels did
not provide satisfactory results since none of the parame-
ters became identifiable. According to the equifinality con-
cept (Beven, 2006), the nonlinearity of the model structure
causes a compensation phenomenon between parameters,
which leads to multiple parameter combinations giving sim-
ilar performances with respect to the reference data at hand.
As a matter of fact, a decrease ofc leads to a decrease of
the discharge but at the same time an increase of the rough-
ness value leads to an increases of the water level. This re-
sult highlights the necessity to reduce the number of param-
eters to be calibrated. Two snap shots of flood extent derived
from satellite imagery do not contain enough information to
unambiguously calibrate a multitude of model parameters.
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Table 2. Results of the test for the transferability ofn andtp.

Flood event Total rainfall Peak discharge Pre-event flow Return period Nash coefficient
(mm) (mm/h) (mm/h) (years)

February 1997 54.48 0.592 0.055 4 0.949
November 1998 25.32 0.557 0.132 3 0.709
December 1999 (I) 65.7 0.549 0.031 3 0.916
December 1999 (II) 61.53 0.567 0.063 3 0.917
January 2001 47.85 0.685 0.112 8 0.903

Fig. 3. Observed and simulated flow hydrographs at Pfaffenthal for
the 2007 flood event.

This result is well in line with previous studies on the same
river reach demonstrating the equifinality phenomenon in hy-
draulic model calibration with remote sensing-derived flood
information (e.g. Hostache et al., 2006). To circumvent this
problem the number of flood images needs to be increased
and complementary data sets need to be considered for model
calibration.

5.3 The sequential updating scheme

The second approach focuses on estimating the saturation
status of the river basin by distinguishing between event-
dependent and constant parameters. As a matter of fact the
values ofn and tp calibrated using the 2007 event can be
transferred to the 2003 test event, as well as the calibrated
values of the roughness, whereas the parameterc needs to
be updated, as it is event-specific and expresses indirectly
the soil moisture conditions during the 2007 flood event. To
validate the hypothesis ofn and tp being invariant in time,
a test has been done with the rainfall-runoff data recorded
during five additional events. The Nash cascade algorithm
was run for each test event using the samen andtp found for
2007 and varying onlyc in order to optimize the model re-

sults. The analysis of the performances obtained comparing
the observed and the simulated flow hydrographs (see Ta-
ble 2) leads to the conclusion that it is sensible to support the
transferability ofn andtp from one event to another.

The Nash cascade was set up using as input the hourly rain
data observed in Livange between the 17th and the 25th of
January 2007 and a value of pre-event flow in Pfaffenthal of
0.06 mm/h. Then, 10 000 sets of hydrologic parameters were
randomly generated within the same intervals as those used
for the all-at-once scheme and for each set, one run of the hy-
drologic model was performed. Then, for each run, the com-
puted flow hydrograph is compared with the one observed in
Pfaffenthal using the Nash coefficient as a measure of model
performance. The parameter set giving the best fit (Fig. 3)
with a Nash efficiency of 0.95 providesc=0.73,n=1.71 and
tp=12.11 h.

The hydraulic model was set up using the 2007 flood event
data. For the calibration, 1000 parameter sets were randomly
generated within the friction intervals defined in Sect. 5.2.
Next, for each generated set of parameters, one hydraulic
model run was performed for 2007 and the results were com-
pared with field observations. For this flood event, stage
hydrograph records in Pfaffenthal (upstream), Walferdange,
Steinsel, Hunsdorf and Lintgen were available. As a per-
formance criterion, a global RMSE, taking into account all
five hydrometric stations, was used. The hydraulic param-
eters set giving the best fit at the majority of the stations
(see Fig. 4) wasnc=0.047;nflp=0.184. These estimates are
supported by an evaluation based on an empirical approach
suggested by Arcement and Schneider (1984) for 1-D open
channel flow. The methodology is based on a step-by-step
procedure, where a base value of roughness is assigned and
some adjustments for various roughness factors are made in
order to obtain a final value. As it is assumed that the river
bed did not change significantly over the last years, it is sen-
sible to retain the roughness values of the 2007 event for the
2003 test event.

After calibrating the coupled H-H model on the 2007
event, the parameter values obtained are transferred to the
2003 event, except forc, as it is event-specific and needs to
be updated using the SAR-derived water stages:

– hydrologic parameters:n=1.71,tp=12.11 h;
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Fig. 4. Relationship between the channel Manning coefficient and
the model RMSE calculated for all hydrometric stations.

– hydraulic parameters:nc=0.047,nflp=0.184.

1000 values ofc were randomly generated within the inter-
val [0.1; 0.9] and for each value one run of the modelling se-
quence was performed for the January 2003 event (1–7 Jan-
uary).

The plots (a) and (b) in Fig. 5 show the water lines sim-
ulated by the model for the whole range of stormflow coef-
ficients and the water levels estimated using the ENVISAT
and the ERS-2 images, respectively. For both images, the
uncertainty related to the SAR-derived water levels has the
same order of magnitude than the spread of water surface
lines simulated with different values ofc.

The dotty plots (a) and (b) in Fig. 6 show the performance
Psat of the model (see Eq.5) for the ENVISAT and ERS-
2 images, respectively. In these pictures, each dot corre-
sponds to the evaluation of the model result over the entire
river reach for one value ofc. The higherPsat, the higher the
number of cross sections providing simulated water stages
matching the observations. Due to the uncertainty related to
the remote sensing-derived water levels, both plots are not
peaky but almost flat at the top. In other words, a straightfor-
ward evaluation and identification of a “best” value ofc is not
really possible. However, using this “average” evaluation, it
is possible to significantly constrain the range of likely values
of c with respect to the whole interval of physically plausible
values. When comparing the water levels derived from the
ENVISAT image with those simulated by the model, the val-
ues of c within the interval [0.80; 0.81] all give the best score
(Psat=0.84). Using the ERS-2 image, the performances de-
crease drastically, but it is still possible to identify the range
of c giving the best result: [0.68; 0.86] withPsat=0.58.

To validate these results the actual value of the stormflow
coefficient was calculated by simply dividing the volume of
runoff by the volume of rainfall, obtainingcact=0.71. With
respect to this value, the evaluation based on the ENVISAT
image leads to an overestimation of the stormflow coefficient

Fig. 5. Comparison between the water surface lines simulated by
the model and the water levels estimated using the ENVISAT and
the ERS-2 images, respectively plots(a) and(b).

(cbest=[0.80; 0.81] vs.cact=0.71), although the model perfor-
mance corresponding tocact (Psat=0.80) is still very close to
the maximum. Using the ERS-2 image, the range of c giving
the best performance is less constrained with respect to that
obtained by ENVISAT, and the actual value ofc falls inside.

In order to better understand the previous results, a “lo-
cal” (cross section by cross section) evaluation has been per-
formed: the plots (a) and (b) in Fig. 7 show the ranges of
likely c values estimated over each single cross section using
the ENVISAT and the ERS-2 images, respectively. From a
visual analysis of the plots, two peculiarities are observable.

i) For almost all cross sections, the range of stormflow co-
efficients giving simulated water levels that are within the
uncertainty interval of SAR-derived water level estimates is
quite wide. This is a consequence of the fact that the spread
of the water lines simulated using different values ofc has the
same order of magnitude than the uncertainty interval related
to the estimation of the water levels from the SAR images
(see Sect. 5.1).
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Fig. 6. Relationship between the stormflow coefficient and the
model performance calculated over the entire river reach, for the
ENVISAT and the ERS-2 images, respectively plots(a) and(b).

ii) Comparing the ranges of stormflow coefficients corre-
sponding to different cross sections, the intervals do not over-
lap over the entire reach whereas they should unless major
inflows were not considered. As a matter of fact, these re-
sults might appear incoherent because in theory there should
be a single value of stormflow coefficient. These incoher-
ences are probably due to local errors and uncertainties in
the model and/or in the dataset.

6 Discussion and conclusions

In the framework of this study, we tried to answer the follow-
ing question: assuming there is a need to provide prediction
of flood extent in an ungauged catchment, what minimum
amount of data do we need to collect in order to come up
with useful and reliable predictions? To this we would an-
swer the following:

Fig. 7. “Local” evaluation using the ENVISAT and the ERS-2 im-
ages, respectively plots(a) and(b): the blue lines represent the val-
ues ofc giving simulated water levels within the uncertainty interval
of SAR-derived water stages for each cross section.

– a continuously recording raingauge (an alternative
would be to rely on the outputs of atmospheric models
to provide the forcings, but with the associated uncer-
tainty expected to be very high);

– a constant value of pre-event flow (in this study we
used the discharge measured at Pfaffenthal at timet0 be-
cause we had this information at our disposal; alterna-
tively one can use specific discharge recorded at another
streamgauge within the region, or an average mean win-
ter discharge of a sample of gauges within the region);

– the geometry of the river channel and the associated
floodplain (although LiDAR techniques are nowadays
a useful tool to acquire fine topographic and bathy-
metric information without intensive field work, here
the alternative would be the use of a global remote
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sensing-derived DEM such as the SRTM, cf. Schumann
et al., 2008a);

– a single flood event recorded via streamgauges in order
to provide the data that allows calibrating both the hy-
drologic and the hydraulic components of a flood fore-
casting system;

– remote sensing observations of floods in order to mon-
itor effective rainfall amounts, thereby providing a se-
quential update of the stormflow coefficient of the hy-
drologic model.

In other words, once the sequence of models is calibrated
using a well-documented flood event, only precipitation (via
raingauges), a constant value of pre-event flow (via stream-
gauges located outside the area of interest, i.e. the flood-
plain) and flood extent (via remote sensing observations) are
needed to provide flood forecasts. Thus, we argue that our
approach can be applied to a poorly instrumented catchment
where no streamgauges are permanently installed and rain-
fall is the unique information that is continuously recorded.
This argument allows us presenting our methodology as a
step in the direction of the PUB initiative of the IAHS (In-
ternational Association of Hydrological Sciences), although
we admit that the link is disputable since PUB refers to pre-
diction of streamflow, which is not based on the availability
of measured data (PUB Sciences and Implementation Plan,
2003). One might wonder why the use of discharge to up-
date the state of hydrologic models has been left out of the
discussion. There is no doubt that, in presence of perma-
nent stream gauges at the outlet of the basin, the assimila-
tion of discharge data would be preferable with respect to a
hydrologic-hydraulic model coupling and that it would pro-
vide better results (e.g. Aubert et al., 2003), but it does not
fall within the working hypothesis of this study. As a mat-
ter of fact, we suppose that in our test area the discharge
data are available only for a single well-documented flood
event (the discharge data calculated during the case study
event that had occurred on January 2003 were only used to
validate the model results). We demonstrate that once we
measured the discharge at the upstream boundary of the hy-
draulic model for one flood event and used the corresponding
data to calibrate both the hydrologic and the hydraulic model
components, we do not need this information anymore and
the approach can be applied to any other flood event that is
observed with SAR imagery. Hence, this approach must not
be viewed as an alternative to the use of discharge data, but
rather as a helpful methodology in case of a lack of discharge
time series.

Hereby, we would like to highlight the innovative ap-
proach we used in this paper to calibrate a loosely coupled
hydrologic-hydraulic (H-H) model taking advantage of SAR-
derived water stages. Instead of using water stage data from
spaceborne radar to calibrate effective roughness coefficients

for the hydraulic model as has been done in previous stud-
ies, this study introduces a stepped scheme for calibrating
coupled H-H models with SAR water stages whereby an ag-
gregated variable of the basin saturation status, namely the
event-dependent stormflow coefficient, can be sequentially
updated. The results show that this approach is preferable to
a more conventional “all-at-once” calibration approach since
the SAR-derived flood information at hand does not allow
by itself unambiguously calibrating a multitude of model pa-
rameters because the “mean u ncertainty” related to the water
level estimation (see Sect. 5.1) is too high for this purpose.
Moreover, it is shown that, although an “average” evaluation
over the entire river reach does not lead to the identification
of one “best” value of the stormflow coefficient, it allows to
estimate a constrained range of values all giving equally high
performance and being reasonably close to the true value as
it was obtained from in situ rainfall and streamflow measure-
ments. Furthermore, it is believed that multiple images of the
same event acquired at different times help to cross-validate
the results.

In this paper we intended to test an alternative approach
with respect to the studies on the value of remote sensing soil
moisture for hydrologic modeling. By using remote sens-
ing data to monitor open water storage, we exploited a direct
way for assessing the ratio between incident and effective
rainfall. For a given precipitation amount, flood extent im-
plicitly represents the readiness of a basin to generate runoff,
thus we can state that the surface water volume represents
the response of the river basin to a storm event. As a matter
of fact, we updated an aggregated hydrologic variable (i.e.
the stormflow coefficient) with remote sensing-derived water
levels. This is the major advantage of the presented method-
ology with respect to more conventional methods based on
the updating of hydrologic models by the means of remote
sensing-derived soil moisture. As a matter of fact, the soil
moisture is not directly related to the effective rainfall, thus
this approach can lead to incorrect results stemming from pa-
rameters and forcing term errors, other than errors in the soil
moisture retrieval using satellite imagery.

Among the shortcomings affecting the methodology pre-
sented in this paper, there is the fact that a quasi-continuous
surface water monitoring requires a particular topographi-
cal scenario where changes in streamflow imply significant
changes in flood extent. Moreover in complex river systems
the source of errors leading to incorrect results is not known a
priori, since they could be due to a wrong estimation of both
inflows and channel roughness.

The suggested methodology might be seen as a first
step toward a systematic remote sensing-based surface wa-
ter monitoring system that may quasi-continuously provide
valuable information for sequentially updating coupled H-
H models. The authors believe that they introduced a po-
tentially useful calibration scheme for more complex mod-
elling sequences where highly complex parameter interac-
tion dictates the way models need to be calibrated. More

Hydrol. Earth Syst. Sci., 13, 367–380, 2009 www.hydrol-earth-syst-sci.net/13/367/2009/



M. Montanari et al.: SAR data in coupled hydrologic-hydraulic models 379

traditional calibration may fail and thus more application-
and model-specific schemes are required. It is now widely
recognised that (spaceborne) remote sensing offers ways to
advance our understanding of natural processes and models
and their evaluation. There is also little doubt that newly
launched higher resolution satellites will further increase this
support. However, more research is needed to better under-
stand (i) how model parameters really interact and lead to an
aggregated response (which we observe) and (ii) what infor-
mation content in remotely sensed images is really needed to
help achieve this.
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