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Abstract. This paper stems from the fact that the topo-
graphic index used in TOPMODEL is not dimensionless. In
each pixeli in a catchment, it is defined asxi = ln(ai/Si),
whereai is the specific contributing area per unit contour
length andSi is the topographic slope. In the SI unit system,
ai/Si is in meters, and the unit ofxi is problematic. We pro-
pose a simple solution in the widespread cases where the to-
pographic index is computed from a regular raster digital ele-
vation model (DEM). The pixel lengthC being constant, we
can define a dimensionless topographic indexyi=xi − lnC.
Reformulating TOPMODEL equations to useyi instead ofxi

helps giving the units of all their terms and emphasizes the
scale dependence of these equations via the explicit use ofC

outside from the topographic index, in what can be defined as
the transmissivity at saturation per unit contour lengthT0/C.
The term lnC defines the numerical effect of DEM resolu-
tion, which contributes to shift the spatial meanx of the clas-
sical topographic index when the DEM cell sizeC varies. A
key result is that both the spatial meany of the dimensionless
index andT0/C are much more stable with respect to DEM
resolution than their counterpartsx andT0 in the classical
framework. This shows the importance of the numerical ef-
fect in the dependence of the classical topographic index to
DEM resolution, and reduces the need to recalibrate TOP-
MODEL when changing DEM resolution.

1 Introduction

TOPMODEL was originally introduced byBeven and
Kirkby (1979) as a conceptual rainfall-runoff model, describ-
ing the contributions of both saturation excess flow and base-
flow from the saturated zone to the catchment outflow. Sim-
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plifying assumptions, widely known as TOPMODEL’s as-
sumptions, allow one to relate the spatial distribution of the
water table depth to the one of a topographic index (TI), de-
pending in each point of the catchment upon local slope, up-
slope contributing area, and downslope contour length. This
distribution of the water table depth controls (i) baseflow ow-
ing to the physically-based Darcy’s law, and (ii) the extent
of the surface saturated area, thus the saturation excess flow,
owing to the variable contributing area concept first proposed
by Cappus(1960).

This model has been widely used, and not only as a
rainfall-runoff model. As high values of the TI reflect a high
potential for local saturation, maps of this index have been
used to delineate wetlands (e.g.Mérot et al., 1995; Curie
et al., 2007). Over the last decade, TOPMODEL’s concepts
have also been increasingly used in land surface models to
describe the influence of topography on the lateral hetero-
geneity of runoff, soil moisture, and the coupled surface en-
ergy balance, including evapotranspiration (e.g.Famiglietti
and Wood, 1994; Peters-Lidard et al., 1997; Stieglitz et al.,
1997; Koster et al., 2000; Ducharne et al., 2000; Chen and
Kumar, 2001; Decharme and Douville, 2006).

The high popularity of TOPMODEL arises from its sim-
plicity of use, especially since topography has become
widely described by digital elevation models (DEMs) from
which it is easy to compute the TI. A recurring issue, how-
ever, is that the TI distribution is markedly impacted by the
topographic information content of DEMs, which depends
both on the scale of the topographic map the DEM is derived
from (Wolock and Price, 1994), and on the DEM resolution,
as defined by the pixel size.

The first-order effect of DEM resolution is known as
the translation or shift effect, which consists in an increase
of mean TI when the DEM resolution decreases, i.e. with
coarser cell sizes. This shift effect has been underlined by
many studies, fromQuinn et al.(1991); Zhang and Mont-
gomery (1994); Bruneau et al.(1995) to Valeo and Moin
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(2000); Wu et al. (2007). This increase in mean TI has
important hydrological consequences since it imposes to si-
multaneously decrease the effective value of transmissivity
to preserve the hydrological performance of TOPMODEL,
as first showed byFranchini et al.(1996) and detailed in
Sect.4.1. In this framework, many efforts have dealt with
detailed geomorphological analyses to understand the com-
plex relationships between DEM resolution and the TI or its
components, namely the local slope and the specific upslope
contributing area (e.g.Wolock and Price, 1994; Sørensen and
Seibert, 2007), and to formalize these empirical relationships
into scaling functions (e.g.Saulnier et al., 1997b; Wolock
and McCabe, 2000; Ibbitt and Woods, 2004; Pradhan et al.,
2006).

This paper addresses the scaling issues related to the TI
from a different perspective. A reminder of the TOPMODEL
framework in Sect.2 leads us to the starting point of this anal-
ysis: the TI is not dimensionless but it is the logarithm of a
ratio dimensioned in meters. In Sect.3, we show how this ra-
tio explicitly depends on DEM resolution when topography
is described by a raster DEM, as in most present time ap-
plications of TOPMODEL. We further show how we can de-
fine a dimensionless TI, which is free from this mathematical
dependence, and how we can easily rearrange the equations
of TOPMODEL to use this dimensionless TI. This does not
change TOPMODEL at all, but this new formalism helps to
better understand the scale issues in TOPMODEL, as shown
in Sect.4, from a theoretical point of view, then based on
real-world case studies, then by comparison with published
rescaling techniques.

2 Classical TOPMODEL’s development

The following development of TOPMODEL equations from
its simplifying assumptions is not new and was inspired by
many papers, in particular fromBeven and Kirkby(1979),
Sivapalan et al.(1987), Franchini et al.(1996) andStieglitz
et al. (1997). All notations are defined in Table1 with their
SI unit.

2.1 Scope and assumptions

Let us consider a hydrological catchment of areaA. Let
us further assume that the topography of this catchment is
described by a raster DEM with a pixel lengthC so that
A=nC2, n being the number of pixels in the catchment.

To describe the evolution of the water table depth over time
and space, which is crucial to predict baseflow from this wa-
ter table and the extent of saturated areas thus saturation ex-
cess flow, TOPMODEL relies on four strong assumptions H1
to H4 regarding the behaviour of the modelled catchment:

H1: at each time step, the recharge to the water table,R(t),
is uniform in the catchment.

H2: the water table dynamics is approximated by a succes-
sion of steady states, so that in each pixel of the catch-
ment and at each time step, the local outflow from the
saturated zone equals the recharge from the contributing
area. Isolating one time step, over which the uniform
recharge rate isR, we can thus writeQi , the outflow
from the saturated zone at any pixeli in the catchment,
as

Qi = AiR (1)

whereAi is the local contributing area.

H3: in each pixeli, the local hydraulic gradient is approxi-
mated by the local topographic slopeSi .

H4: the saturated hydraulic conductivityKs is uniform in the
catchment but decreases with depth following an expo-
nential law:

Ks(z) = K0exp(−νz) (2)

wherez is the depth from the soil surface,K0 = Ks(z =

0) is the saturated hydraulic conductivity at the soil sur-
face, andν is the saturated hydraulic conductivity de-
cay factor with depth. BothK0 andν are uniform in the
catchment.

Assumption H4 has been relaxed byAmbroise et al.(1996)
andDuan and Miller(1997) regarding the shape of the verti-
cal profile of saturated hydraulic conductivity, and byBeven
(1986) regarding the uniformity ofK0. Assumption H2 has
been relaxed byBeven and Freer(2001a) using a kinematic
wave routing of subsurface flow. Assumption H3, pertaining
to the local hydraulic gradient, can also be relaxed, using the
concept of reference levels (Quinn et al., 1991). Assumption
H1, however, is essential to derive the simple relationship be-
tween the local and mean water depths which is at the crux of
TOPMODEL (Eq.13). The only way to relax it is to separate
different landscape or hillslope elements within the catch-
ment, as already proposed in the seminal paper byBeven and
Kirkby (1979) and further developed in the finely distributed
application of TOPMODEL ofPeters-Lidard et al.(1997).
For simplicity, we will stick in the following to the original
assumptions.

2.2 Towards TOPMODEL equations

From Darcy’s law and assumption H3, the local outflow from
the saturated zone at pixeli, across a downstream edge of
lengthLi , can be written

Qi = LiTiSi . (3)

In this expression,Ti is the local transmissivity defined as

Ti =

∫
∞

zi

Ks(z)dz (4)
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Table 1. Notations and units (pertaining to Sects.2 and3.1).

Variable SI unit Description

ai m Specific contributing area per unit contour length
aout m Specific contributing area per unit contour length at the outlet (aout= A/Lout)
A m2 Catchment area
Ai m2 Contributing area at pixeli
C m DEM resolution (pixel length)
hi m Local altitude at pixeli
Ks m s−1 Saturated hydraulic conductivity
K0 m s−1 Saturated hydraulic conductivity at the surface
Li m Downhill contour length at pixeli
Lout m Downhill contour length at the outlet pixel
n – Number of pixels in the catchment
ni – Local number of upslope pixels at pixeli

nout – Local number of upslope pixels at the outlet (n = nout)
pi m Local piezometric head at pixeli

Qi m3 s−1 Outflow from the saturated zone at pixeli

Qout m3 s−1 Outflow from the saturated zone at the outlet, or baseflow from the catchment
R m s−1 Uniform recharge rate in the catchment
Si – Local topographic slope at pixeli

Sout – Local topographic slope at the outlet
Ti m2 s−1 Local transmissivity of the saturated zone at pixeli

T0 m2 s−1 Local transmissivity at saturation, assumed uniform in the catchment (H4)
xi ln(m) Classical topographic index at pixeli

xout ln(m) Classical topographic index at the outlet
x ln(m) Catchment average of the classical topographic index
yi – Dimensionless topographic index at pixeli

yout – Dimensionless topographic index at the outlet
y – Catchment average of the dimensionless topographic index
zi m Local water table depth at pixeli

zout m Local water table depth at the outlet
z m Catchment average of the water table depth
ν m−1 Saturated hydraulic conductivity decay factor with depth

wherezi is the local depth to the water table. Combining
with Eq. (2), we get

Ti = K0

∫
∞

zi

e−νzdz =
K0

ν
exp(−νzi) = T0exp(−νzi) (5)

whereT0 = K0/ν is the transmissivity of the soil when it is
fully saturated (zi=0). Combining Eqs. (1), (3) and (5) leads
to

Qi = AiR = LiT0Si exp(−νzi). (6)

Under TOPMODEL’s assumptions, this holds everywhere in
the catchment, in particular at the outlet which drains the en-
tire catchment. The baseflow from the catchment is thus

Qout= LoutT0Soutexp(−νzout) (7)

where the only unknown iszout, the water table depth at the
outlet pixel where the local slope isSout. More generally,

the distribution of the local water table depthzi in the catch-
ment is used to deduce the surface saturated area, which is
defined by the pixels wherezi ≤ 0. Rewriting Eq. (6), zi can
be expressed as follows:

zi = −
1

ν
ln

(
AiR

LiT0Si

)
. (8)

Introducingai=Ai/Li , the specific contributing area per unit
contour length, we find the classical TOPMODEL equation,
where the fraction in the natural logarithm is dimensionless:

zi = −
1

ν
ln

(
aiR

T0Si

)
. (9)

Separating, in the natural logarithm, the variables that are
uniform in the catchment from the ones that are not, we get

zi = −
1

ν

(
ln

R

T0
+ ln

ai

Si

)
. (10)
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The variable term is defined in TOPMODEL as the topo-
graphic index (TI):

xi = ln
ai

Si

. (11)

Note that relaxing the assumption thatK0 is uniform leads
to another index of lateral heterogeneity (Beven, 1986), the
soil-topographic index ln(ai/TiSi). In any case, the ratio on
which the natural logarithm is applied is not dimensionless.
The mean water table depthz is introduced to eliminate the
uniform term:

z = −
1

ν

(
ln(

R

T0
)+x

)
(12)

so that

zi −z = −
1

ν
(xi −x) (13)

wherex is the average ofxi over the catchment. This equa-
tion, which states that the spatial variations of the water table
and the TI are proportional, is probably the most important in
the TOPMODEL framework. It is used to deduce the surface
saturated area from the distribution ofxi in the catchment
and the mean table depthz. Applied to the outlet pixel, with
local water table depth and TIzout andxout, it also gives

zout= z−
1

ν
(xout−x) (14)

which, substituted in Eq. (7), leads to

Qout = LoutT0Soutexp(−νz+xout−x)

= LoutT0Soutexp(ln
aout

Sout
)exp(−νz−x)

= aoutLoutT0exp(−νz−x)

Qout = AT0exp(−νz−x). (15)

Using SI units,AT0 is in m4 s−1, but Qout is in m3 s−1.
This results from the fact that exp(−x) is in m−1, sincexi

is the natural logarithm of a ratio dimensioned in m. Even
if Eqs. (10), (12), (13) and (15) are homogeneous, using the
logarithm of a non-dimensionless quantity as an index might
be confusing. We thus introduce a dimensionless TI, which
solves this dimension issue and helps to understand the scale
issues related to DEM resolution, as developed in the follow-
ing.

3 Introducing a dimensionless TI

3.1 Topographic analysis using single-flow direction
algorithms

Many methods are available for deriving the slopesSi , up-
slope contributing areasAi , and downhill contour length
Li , from a regular raster DEM. The most simple ones are

the single-flow direction (SFD) algorithms, according to
which one pixel contributes to only one downslope pixel (e.g.
Wolock and Price, 1994). These algorithms rely on the digi-
tal terrain analysis (DTA) methods introduced byJenson and
Domingue(1988) and are still very popular (e.g.Wolock and
McCabe, 2000; Kumar et al., 2000). In this framework, hav-
ing definedC as the DEM cell size thus pixel length, we can
write thatLi=C andAi=niC

2, whereni is the number of
pixels in the contributing area. This leads to

xi = ln
niC

Si

. (16)

The pixel lengthC being a constant, we can thus introduce a
dimensionless topographic index

yi = ln
ni

Si

(17)

which simply relates toxi

xi = yi + lnC. (18)

Dimensionless does not mean scale independent and bothyi

and xi depend on DEM resolution, which controlsni and
Si (e.g.Wolock and McCabe, 2000; Sørensen and Seibert,
2007). Equation (18), however, shows that the classical TIxi

is subjected to an additional influence from DEM resolution,
explicited by the term lnC. This term is responsible of the
numerical effect detailed in Sect.4.1, which contributes to
shift the mean classical TIx when DEM resolution varies.

Section3.2will show how Eqs. (17) and (18) can be gener-
alized to the more complex cases where multiple-flow direc-
tion algorithms (e.g.Quinn et al., 1991) are used to compute
ai , Li andSi . In any case, Eq. (10) becomes

zi = −
1

ν

(
ln(

CR

T0
)+yi

)
(19)

where the natural logarithm is applied to two dimensionless
terms. In addition, the DEM resolution is explicited viaC.

From there, we can follow the same development with this
index as in TOPMODEL withxi and introduce the mean wa-
ter table depthz to eliminate the uniform term:

zi −z = −
1

ν
(yi −y) (20)

wherey is the average ofyi over the catchment. Applied to
the outlet pixel, it gives

zout= z−
1

ν
(yout−y) (21)

which, substituted in Eq. (7), leads to

Qout = CT0Soutexp(−νz+yout−y)

= CT0Soutexp(ln
nout

Sout
)exp(−νz−y)

= noutCT0exp(−νz−y)
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Qout =
AT0

C
exp(−νz−y). (22)

This expression is of course perfectly equivalent to Eq. (15),
except that it relies on a dimensionless TIy, and that the
scale dependence of this expression explicitly appears via the
DEM cell sizeC.

3.2 Generalization to multiple-flow direction
algorithms

Since their introduction byQuinn et al.(1991), multiple-flow
direction (MFD) algorithms have been widely used to com-
pute the TI and regularly improved (e.g.Holmgren, 1994;
Quinn et al., 1995; Seibert and McGlynn, 2006). Their ba-
sic difference with SFD algorithms is that they distribute the
contribution from the upslope contributing area between all
the contiguous downslope cells, proportionally to the corre-
sponding slopes.

In this framework, the expression of the specific area
drained per unit contour length is not as simple as the one
used with SFD methods, what leads to the following general
expression of the TI:

xi = ln

(
Ai∑nd

d=1Sd
i Ld

i

)
, (23)

wherend is the total number of downhill directions,Sd
i is the

slope between the local pixeli and the neighbouring pixel
in the dth downhill direction, andLd

i is the contour length
normal to this direction. Note that this expression also holds
for nd = 1, which corresponds to the SFD case.

There are many other variations around the general ba-
sis provided by the SFD and MFD methods (e.g.Mendicino
and Sole, 1997; Tarboton, 1997). Alternatives also exist re-
garding the way to account for channel or creek pixels (e.g.
Saulnier et al., 1997a; Mendicino and Sole, 1997; Sørensen
et al., 2006) or the way to determine flow direction and slope
in flat areas (e.g.Wolock and McCabe, 1995; Pan et al., 2004;
Gascoin et al., 2009). Several papers addressed the compar-
ison of the various DTA methods to derive the TI (Wolock
and McCabe, 1995; Mendicino and Sole, 1997; Pan et al.,
2004; Sørensen et al., 2006). They all demonstrate the sensi-
tivity of the TI distribution (including the mean TIx) to these
methods, but their conclusions regarding the relative perfor-
mances of the different methods are not consistent, apart
from a consensus about the superiority of MFD algorithms
for divergent hillslopes.

In any case, one can always write thatAi = αiC
2 andLd

i =

βd
i C, whereαi andβd

i are dimensionless factors. This leads
to the general form of the TI

xi = ln

(
αi C∑nd

d=1Sd
i βd

i

)
(24)

which can be reduced to the dimensionless TI

yi = ln

(
αi∑nd

d=1Sd
i βd

i

)
= xi − lnC (25)

owing to the fact that the pixel lengthC is constant in regular
raster DEMs.

3.3 Generalization to alternative transmissivity profiles

Ambroise et al.(1996) generalized TOPMODEL to use lin-
ear and parabolic transmissivity profiles, which, according to
the analysis of recession curves byTallaksen(1995), may be
better suited in some cases than the classical exponential pro-
file (Eq. 5). Duan and Miller(1997) built upon this work to
propose a fully generalized power function for the transmis-
sivity profile, that can be formulated as follows:

Ti = T0

(
1−

ν

b
zi

)b

. (26)

The only new variable isb, which is is a non-dimensional
parameter, uniform throughout the catchment, introduced to
generalize the solution ofAmbroise et al.(1996). In this
framework, the decrease ofT0 with depth is controlled by
the ratioν/b rather than byν. This generalized power func-
tion contains the full range of potential transmissivities, from
linear whenb=1 to exponential whenb → ∞. The classical
topographic index becomes

xi =

(
ai

Si

)1/b

, (27)

the local water table depthzi follows

1−
ν
b
zi

1−
ν
b
z

=
xi

x
, (28)

and the baseflow at the outlet of the catchment is

Qout = AT0

(
1−

ν
b
z

y

)b

. (29)

A dimensionless index can also be defined in this generalized
framework:

yi =
xi

C1/b
, (30)

and the expressions of the local water table depth and base-
flow become

1−
ν
b
zi

1−
ν
b
z

=
yi

y
(31)

and

Qout =
AT0

C

(
1−

ν
b
z

x

)b

, (32)

which again shows up the saturated transmissivity per unit
contour lengthT0/C.
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4 Implications regarding scale issues in TOPMODEL

4.1 Attribution of scale effects on the TI distribution
and TOPMODEL parameters

Following Zhang and Montgomery(1994), Franchini et al.
(1996) showed that the increase inx when DEM resolution
gets coarser had hydrological consequences, as it had to be
offset by larger calibrated transmissivities in TOPMODEL.
In a given catchment, two DEMs with different cell sizes
C2 > C1 correspond to different mean TIsx2 > x1, what is
known as the shift effect. If the calibrated value of TOP-
MODEL’s transmissivity isT0,1 for cell sizeC1, the shift
effect can be compensated by a simple recalibration of this
transmissivity toT0,2, such as to maintain the relationship
between the mean water table depthz∗ and TOPMODEL’s
baseflowQ∗:

Q∗
= AT0,1exp(−νz∗ −x1) = AT0,2exp(−νz∗ −x2). (33)

Following Franchini et al.(1996), we assume constantν for
simplicity. This leads to the following relationship, which
explains the interplay between the calibrated transmissivities
and mean TIs:

T0,2 = T0,1exp(x2−x1). (34)

The dimensionless indexy is very much inspired by this
pioneering work ofFranchini et al.(1996). It also offers a
deeper insight on this important interplay between mean TI
and calibrated transmissivity. Applying Eq. (18) reveals the
direct influence of the change inC onto the change in mean
classical TIs:

(x2−x1) = ln
C2

C1
+(y2−y1). (35)

It also allows one to explicitly describe this direct DEM in-
fluence in Eq. (34), otherwise unchanged:

T0,2 = T0,1
C2

C1
exp(y2−y1), (36)

what leads to generalize this relationship to the transmissivity
per unit contour length:

T0,2

C2
=

T0,1

C1
exp(y2−y1). (37)

Of course, (y2 − y1) also depend on DEM resolution.
Equations (35) and (36) thus show that the changes in mean
classical TIx and calibratedT0 when the DEM resolution
varies arise from two different causes, as also summarized in
Table2:

– a numerical effect, because the DEM cell size mathe-
maticallyC enters into the expression ofai . Using the
dimensionless TI allows one to identify this numerical
effect (Eq.35), which changesx by ln(C2/C1) andT0
by the scaling factorC2/C1;

– a terrain effect, owing to the influence of DEM resolu-
tion on both the local slopesSi and the shape of the hy-
drographic network, thusni andai . Following Wolock
and McCabe(2000), this terrain effect can itself be sep-
arated in two components: a discretization effect, which
arises from dividing the terrain in different numbers of
grid cells; and a smoothing effect, related to decreased
variability of the local slopes when using coarser reso-
lution DEMs, what filters the terrain roughness (Valeo
and Moin, 2000).

These terrain effects, which concern both the classical
and dimensionless TI, have consequences on the shape
of the TI distribution and on its mean. The effect on the
mean contributes to the shift effect, and its consequence
on the calibratedT0 is isolated in the term exp(y2−y1)

of Eq. (36). Note that this effect also influences the
transmissivity per unit contour lengthT0/C, owing to
the interplay between the latter and the mean dimen-
sionless TI (Eq.37).

To summarize this theoretical analysis, the influence of DEM
resolution on the shape of the TI distribution is shared by the
classical and dimensionless TIs. In contrast,y and the trans-
missivity per unit contour lengthT0/C are probably less sen-
sitive to DEM resolution than their counterparts in the clas-
sical formulation,x andT0, because the former only depend
on the terrain effects, whereas the latter also depend on the
numerical effect. This is further investigated based on real-
world case studies.

4.2 Importance of the numerical effect in real-world
case studies

In the extensive literature devoted to the influence of DEM
resolution onto the classical TI distribution and the perfor-
mances of TOPMODEL, we could find six papers allowing
us to calculate the mean of the dimensionless indexy for dif-
ferent DEM cell sizesC. The six corresponding case stud-
ies are briefly summarized in Table3. Note that the Mau-
rets catchment (Saulnier et al., 1997b) is a subcatchment of
the experimental research catchment of the Réal Collobrier
(Franchini et al., 1996), and that mean TIs from two differ-
ent DTAs, namely the SFD and MFD algorithms, are avail-
able in the sub-catchment W3 of the Sleepers River (Wolock
and McCabe, 1995).

In the six case studies, TOPMODEL was calibrated for
each of the different tested DEM resolutions, to optimize the
fit between predicted and observed discharge. The goodness-
of-fit criterion was theNash and Sutcliffe(1970) efficiency,
except in the Ŕeal Collobrier where it was the correlation
coefficient between the simulated and observed discharge.
The calibration always addressed the surface saturated hy-
draulic conductivityK0, but was not systematic for the other
parameters, namelyν, the decay factor ofK0 with depth, and
SRmax, the water capacity of the interception and root zone
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Table 2. DEM resolution effects in the classical TOPMODEL framework: separation of the different effects on the TI distribution, and
quantification of the related changes in mean TIx vs. transmissivityT0. Following Eqs. (36) and (35), the grid cell size is assumed to vary
from C1 to C2, with subsequent changes in the mean dimensionless TI fromy1 to y2.

DEM resolution effects Influence on TI distribution Quantified effect on
Shape x x T0

(Shift effect)

Numerical × ln(C2/C1) C2/C1

Discretization × ×

Terrain y2−y1 exp(y2−y1)

Smoothing × ×

Table 3. Main features of the selected case studies. DTA means Digital Terrain Analysis, and SFD and MFD stand for single and multiple-
flow direction algorithms. NA=Not Available.

Catchment Reference Location Area Altitude Map scale Min(C) Max(C) DTA method
(km2) range (m)

Sleepers-W3 Wolock and McCabe(1995) Vermont, USA 8.4 621 1:24 000 30-m 90-m SFD and MFD
Réal Collobrier Franchini et al.(1996) France 71 700a NA 60-m 480-m MFD
Maurets Saulnier et al.(1997b) France 8.4 561 1:25 000 20-m 120-m MFD
Bore Khola Brasington and Richards(1998) Nepal 4.5 1290b 1:5000 20-m 500-m MFD
Haute-Mentue Higy and Musy(2000) Switzerland 12 236c 1:25 000 25-m 150-m MFDc

Kamishiiba Pradhan et al.(2006) Japan 210 1400d NA 50-m 1000-m SFD

a from Obled et al.(1994)
b from Brasington and Richards(2000)
c from Iorgulescu and Jordan(1994)
d from Lee et al.(2006)

storage, which controls the recharge term in TOPMODEL
(Table4). Important common features of the six calibration
exercises are that similar goodness-of-fit were achieved for
all DEM resolutions, and thatK0 was always the most effec-
tive parameter to compensate the DEM resolution changes,
as shown by the small variation ranges, if any, ofν and SR-
max in Table4.

These case studies confirm that, once chosen the DTA
method to compute the TI, the mean of the classical index
x increases with DEM cell sizeC (Table5), a rule that we
could not find invalidated in the literature. Based on the val-
ues gathered in Table5, the mean classical TIx exhibits vari-
ation rates between 0.005 and 0.02, the related unit being
ln(m) m−1. In contrast, positive variation rates are not sys-
tematic for the mean dimensionless TIy. This analysis also
holds for the correlation coefficients of the mean TIs with
DEM resolution, which are not systematically positive and
high withy, whereas they are significantly so withx.

More importantly, these variation rates show that the mean
dimensionless TIy varies much less with DEM resolution
than does the mean classical TIx, in all the seven studied
cases. This result is further illustrated in Fig.1, where the

trajectories followed byy span smaller ranges than the ones
followed byx under the same DEM resolution changes. Of
course, the units are different and there is no point compar-
ing x andy for the same DEM resolution. Their changes
when DEM resolution varies, however, are important as they
motivate the rescaling of transmissivity (Sect.4.1).

Figure1 also shows that the variations ofx due to DEM
resolution are primarily logarithmic, and exceed the ones re-
lated to the DTA methods and the location of the catchments,
which controls their specific topographical features. As a re-
sult, one cannot isolate the different locations from the vari-
ability induced onx by the DEM resolution. In contrast, one
can separate the projections of the different trajectories on
the vertical axis representingy, what shows that the mean
dimensionless TI can efficiently discriminate the different lo-
cations, regardless of DEM resolution.

This is illustrated by the correlations between the alti-
tude range and the mean TIs of the six selected catchments
(Fig.2). Fixing the DEM resolution, this correlation is highly
negative with the mean of both TIs, what probably results
from the fact that local slopes are higher in catchments with
an important altitude range. The comparison of the two
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Table 4. Summary of the calibration method and results in the six selected case studies (see Table 3). The goodness-of-fit criterion is
the Nash and Sutcliffe (1970) efficiency, except in the Réal Collobrier where it is the correlation coefficient between the simulated and
observed discharge. In each case, bold figures indicate the parameters that were calibrated to compensate for the DEM resolution changes.
NCP=Number of calibrated parameters, NA=Not Available.

Catchment Calibration method Calibration results

Period Time DEM NCP K0 range ν range SRmax Efficiency
step resolution (m/h) (m−1) range range
(h) range (m) (mm)

Sleepers-W3 1 year 24 30–90 2 0.018–0.034 3.3–3.6 NA 0.88–0.89
Réal Collobrier 3 months 1 60–480 1 35–700 58.8 22 0.96*
Maurets 11 storms of 0.5 20–120 3 82–1402 38.5–40 19–21 0.83

10 to 24 days
Bore Khola 1 month 0.5 20–500 3 18–198 14–19.2 3.6–5.8 0.72–0.74
Haute-Mentue 28 days 1 25–150 2 27–118 22.8–29.2 20 0.79–0.82

with 2 storms
Kamishiiba 1 storm NA 50–1000 1 86–2858 1.43 1 0.96

of 120 h

* Correlation coefficient

Fig. 1. Relationships between mean TI and DEM resolution, in the classical and dimensionless TOPMODEL frameworks. Values come
from Table5, which also gives the corresponding correlation coefficients.

panels in Fig.2, however, shows that if care is not taken
to use the same DEM resolution when comparing mean TIs
between catchments, the relationship between mean TI and
altitude range is completely hidden withx whereas it is de-
tectable withy.

The above results are linked to the fact that, at least in
the selected catchments, the shift effect onx is largely dom-
inated by the logarithmic numerical effect, which is absent
by construction when using the dimensionless TI. The DEM
effects that remain in the variations ofy are the terrain ef-
fects (Sect.4.1), so that it is advisable to study them on this
dimensionless TI rather than on the classical one, where they
are largely hidden by the numerical effect. This is illustrated
in the right panel of Fig.1, which shows that these terrain ef-

fects have contrasted signatures in the different catchments,
with a positive dependence on DEM resolution in only half
of them (Sleepers-W3, Ŕeal Collobrier, Kamishiiba).

The case studies also reveal thatT0/C varies much less
with DEM resolution than its counterpartT0 in the classical
framework (Fig.3 and Table6). This is a direct consequence
of the interplay between mean TI and transmissivity (Eq.36),
given that the terrain effects, quantified by exp(y2−y1), are
small enough compared to the numerical effectC2/C1 to be
neglected at first order. As a result, Eq. (37) can be approxi-
mated by

T0,2

C2
'

T0,1

C1
. (38)
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Table 5. Mean TIsx (in ln(m)) andy (dimensionless) for six different catchments and different DEM resolutions (cell sizes in m). The
reported values come from the literature (see Table3). The last two columns give: the mean variation rates ofx andy with DEM resolution,
in ln(m) m−1 and m−1, respectively; the Spearman’s rank correlation coefficientsρ between the mean TIs and DEM resolution, the star
indicating a significant correlation at the riskα=0.05.

Sleepers-W3 (Wolock and McCabe, 1995)

Resolution 30 60 90 1/1C ρ

x 6.56 7.31 7.73 (SFD) 0.020 1.00*
y 3.16 3.22 3.23 (SFD) 0.001 1.00*
x 7.30 8.02 8.41 (MFD) 0.019 1.00*
y 3.90 3.93 3.91 (MFD) 0.000 0.50

Réal Collobrier (Franchini et al., 1996)

Resolution 60 120 180 240 360 480 1/1C ρ

x 7.31 8.01 8.60 9.01 9.77 10.18 0.006 1.00*
y 3.22 3.22 3.41 3.53 3.88 4.00 0.002 1.00*

Maurets (Saulnier et al., 1997b)

Resolution 20 40 60 80 100 120 1/1C ρ

x 6.18 6.60 6.93 7.20 7.42 7.70 0.015 1.00*
y 3.18 2.90 2.84 2.82 2.82 2.91 −0.002 −0.37

Bore Khola (Brasington and Richards, 1998)

Resolution 20 40 60 80 100 200 300 400 500 1/1C ρ

x 6.12 6.67 6.78 7.03 7.26 7.88 8.40 8.70 8.87 0.006 1.00*
y 3.12 2.98 2.69 2.65 2.65 2.58 2.70 2.71 2.66 −0.001 −0.36

Haute-Mentue (Higy and Musy, 2000)

Resolution 25 30 50 60 75 80 100 110 125 130 1501/1C ρ

x 7.98 8.16 8.47 8.67 8.68 8.91 9.03 9.15 9.25 9.45 9.45 0.011 0.99*
y 4.76 4.76 4.56 4.58 4.36 4.53 4.42 4.45 4.42 4.58 4.44−0.000 −0.52

Kamishiiba (Pradhan et al., 2006)

Resolution 50 150 450 600 1000 1/1C ρ

x 6.08 7.42 9.22 9.62 10.35 0.005 1.00*
y 2.17 2.41 3.11 3.22 3.44 0.000 1.00*

Note that this does not imply thatT0/C is independent from
DEM resolution. Among the four catchments where it makes
sense to quantify the correlation betweenT0/C and DEM
resolution (catchments with more than three calibratedT0),
two of them exhibit a positive and significant correlation. In
one of them, the Maurets catchment, this cannot be simply
attributed to the terrain effects, as there is no significant cor-
relation between the mean dimensionless indexy and DEM
resolution (Table5). The dependence ofT0 on DEM resolu-
tion is actually more complicated than the one ofx or y, as
it is a calibrated parameter, with an important related uncer-
tainty. As shown using the GLUE (Generalized Likelihood
uncertainty Estimation) methodology for instance, calibra-
tion does not allow one to identify a unique optimal set of pa-
rameters, and in the special case ofT0, equally good results
can be achieved with values ranging over orders of magni-
tude (e.g.Beven and Binley, 1992; Freer et al., 1996; Beven
and Freer, 2001b; Gallart et al., 2007). Yet, using the di-

mensionless framework reduces the need to recalibrate TOP-
MODEL when DEM resolution varies, asT0/C becomes an
explicit parameter, namely the transmissivity at saturation
per unit contour length (Eq.22), which depends much less
on DEM resolution thanT0 despite the above uncertainties.

4.3 Comparison with alternative rescaling techniques

4.3.1 Rescaling of transmissivity

Given the interplay between mean classical TI and transmis-
sivity, Franchini et al.(1996) concluded that satisfactory per-
formances of TOPMODEL could be achieved when chang-
ing DEM resolution by rescaling the transmissivity using
Eq. (34). The above results show that a significant part of this
rescaling can be achieved without even analyzing the DEM
at the new resolution, by simply accounting for the numerical
effect (Eq.38).
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Table 6. Calibrated transmissivityT0 (in m2 h−1) and its ratio to pixel lengthT0/C (in m h−1) for six different catchments and different
DEM resolutions (cell sizes in m). The reported values come from the literature (see Table3). The last two columns give: the mean variation
rates of the parameters with DEM resolution, in m h−1 for T0 and in h−1 for T0/C; the Spearman’s rank correlation coefficientsρ between
the parameters and DEM resolution, the star indicating a significant correlation at the riskα=0.05.

Sleepers-W3 (Wolock and McCabe, 1995)

Resolution 30 60 90 1/1C ρ

T0 0.001 0.002 0.003 (SFD) 3. 10−5 1.00*
T0/C 3.2 10−5 3.7 10−5 3.8 10−5 (SFD) 1. 10−7 1.00*
T0 0.002 0.004 0.005 (MFD) 5. 10−5 1.00*
T0/C 7.0 10−5 6.3 10−5 5.7 10−5 (MFD) −2. 10−7

−1.00*

Réal Collobrier (Franchini et al., 1996)

Resolution 60 120 180 240 360 480 1/1C ρ

T0 0.60 1.19 2.55 3.40 7.65 11.90 0.027 1.00*
T0/C 0.010 0.010 0.014 0.014 0.021 0.025 0.000 0.94*

Maurets (Saulnier et al., 1997b)
Resolution 20 40 60 80 100 120 1/1C ρ

T0 2.05 4.60 11.23 21.00 21.37 35.05 0.330 1.00*
T0/C 0.10 0.12 0.19 0.26 0.21 0.29 0.002 0.94*

Bore Khola (Brasington and Richards, 1998)

Resolution 20 40 60 80 100 200 300 400 500 1/1C ρ

T0 0.95 1.36 1.67 1.95 2.46 7.07 7.83 11.86 14.03 0.027 1.00*
T0/C 0.048 0.034 0.028 0.024 0.025 0.035 0.026 0.030 0.028 −0.000 −0.23

Haute-Mentue (Higy and Musy, 2000)

Resolution 25 30 50 60 75 80 100 110 125 130 1501/1C ρ

T0 1.13 1.45 1.57 1.91 2.20 3.95 4.19 4.02 4.35 4.87 5.20 0.033 0.99*
T0/C 0.05 0.05 0.03 0.03 0.03 0.05 0.04 0.04 0.03 0.04 0.03−0.000 −0.13

Kamishiiba (Pradhan et al., 2006)

Resolution 50 150 450 600 1000 1/1C ρ

T0 6 200 0.204 1.00*
T0/C 0.12 0.20 0.000 1.00*

Fig. 2. Relationships between the altitude range (from Table3) and the mean TIs in the six selected catchments: classical TI on the left panel
vs. dimensionless TI on the right panel (values from Table5). The regression lines and correlation coefficients are computed from the mean
TIs at the 60-m resolution, used in all the catchments apart from the Kamishiiba catchment, where the 50-m resolution is used instead. For
the Sleepers-W3 catchment, we took the average of the mean TIs from the SFD and MFD algorithms. The vertical bars define the range of
mean TIs across the different DEM resolutions.
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Fig. 3. Relationships between transmissivityT0 or T0/C and DEM resolution, in the classical and dimensionless TOPMODEL frameworks.
Values come from Table6, which also gives the corresponding correlation coefficients. Note that two of the six selected catchments (Sleepers-
W3 and Kamishiiba) were excluded as their transmissivity values were outside the range covered in the other catchments (respectively much
smaller and much larger).

Yet, T0/C, the resulting rescaled transmissivity, is not
completely invariant when DEM resolution varies, because
of the calibration uncertainty on the one hand, and because
other scale effects are involved on the other hand. The first
one is that the mean TIs (whether classical or dimensionless)
are also sensitive to terrain effects (related to discretization
and smoothing), as analysed in Sect.4.1. The second one
is that the rescaling of transmissivity also compensates for
changes in the TI distribution, as shown bySaulnier et al.
(1997b) in the Maurets catchment (described in Table3).
These authors eventually proposed an efficient scaling fac-
tor for K0, deduced from the differences in TI cumulative
distributions when the DEM resolution changes.

The above scaling factors can be used to guide and facili-
tate the required recalibration of transmissivity when chang-
ing the DEM resolution, but it was later rather proposed to
directly rescale the TI distribution, such as to limit the need
to recalibrate the transmissivity.

4.3.2 Rescaling of the TI distribution

From a regression analysis using a sample of 50 quad-
rangles of 1◦×1◦ ('7000 km2) in the conterminous USA,
Wolock and McCabe(2000) proposed a linear relationship
to rescale the mean TIs obtained from a 1000-m resolution
DEM (x1000) to values that would correspond to a 100-m
resolution DEM (x100):

x100= −1.957+0.961x1000. (39)

This linear regression is characterized by a high determina-
tion coefficient (R2=0.93) and has been widely used (e.g.

Kumar et al., 2000; Ducharne et al., 2000; Niu et al., 2005;
Decharme and Douville, 2006). It can easily be extended to
the dimensionless TI:

y100= 0.525+0.961y1000, (40)

and the smaller y-intercept in Eq. (40) than in Eq. (39) con-
firms thaty depends less on DEM resolution thanx, owing
to the elimination of the numerical effect of DEM resolution.
Figure1 also suggests that a logarithmic relationship could
perform better.

Mendicino and Sole(1997) analysed the simulations of 11
flood events by TOPMODEL in the Turbolo Creek (29 km2,
in Italy), using a 30-m resolution DEM, aggregated to coarser
resolutions (90-m, 140-m and 270-m). They proposed a lin-
ear relationship between the mean TI and a spatial variabil-
ity measure (SVM), which describes the topographic infor-
mation content of the DEM followingShannon and Weaver
(1949), and which depends on DEM resolution by a simple
function of the number of grid cells.

This approach was further explored byIbbitt and Woods
(2004) in a 50-km2 catchment in New Zealand, with simi-
lar results. These authors also provided evidence of a linear
relationship betweenx(C) and log10(C), which is perfectly
consistent with the facts thaty = x − lnC (from Eq.18) and
that y undergoes negligible variations withC, as shown in
Sect.4.2. The relationship betweenx(C) and log10(C) is
thus verified in the catchments of Table5, the correlation co-
efficient exceeding 0.99 in all seven cases.

Combining the two linear relationships betweenx, SVM
and log10(C), Ibbitt and Woods(2004) could define the DEM
resolution that maximized the topographic information con-
tent: SVM(C) = 1 ⇒ C = 2 cm, which corresponds to the
scale of saturated conductivity measurements. Rescaling the
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TI distribution to such resolution could render possible to use
in situ measurements of the saturated hydraulic conductivity
K0, which is otherwise forbidden by the interplay between
the DEM resolution, the mean classical TI andK0.

Another method, aiming at rescaling the entire distribu-
tion of the classical TI instead of its mean, was proposed
by Pradhan et al.(2006, 2008) in the Kamishiiba catchment
(Table3). The TIxi,1 scaled at the target cell sizeC1 from a
coarser DEM with a cell sizeC2 can be expressed as

xi,1 = ln

(
ai,2IfR

C1

Si,1IfN
C2

)
. (41)

In this equation,IfN
andIfR

describe the terrain discretiza-
tion effects on the upslope contributing area and contour
length, respectively. They both depend on the two DEM cell
sizesC1 andC2, and on the numbers of pixels at the coarser
resolution in the upslope contributing area,ni,2, and in the
entire catchment,nout,2. Note thatIfR

was recently intro-
duced inPradhan et al.(2008) and is neglected inPradhan
et al.(2006). These authors also propose an interesting way
to deduce the local slopesSi,1 at the target resolution from
the coarser DEM and a fractal method to introduce steepest
slopes. Rearranging Eq. (41), by keeping in mind thatIfN

andIfR
vary within the catchment, leads to

xi,1 = ln

(
ni,2IfR

Si,1IfN

)
+ lnC1. (42)

This equation is very close to Eq. (18), as the first term in the
right-hand side can be seen as a scaled dimensionless TI. It
also reveals the three different DEM effects onto the classical
TI distribution, previously separated in Table2. The numeri-
cal effect, which has not been explicitly recognized byPrad-
han et al.(2006, 2008), is quantified by lnC1. The discretiza-
tion effect originates fromIfN

andIfR
, and the smoothing

effect from the rescaled slopesSi,1. Note that these scaling
techniques can be applied to the dimensionless as well as to
the classical TI.

5 Conclusions

Replacingxi , the classical TI of TOPMODEL, by the di-
mensionless TIyi = xi − lnC, leads to reformulate TOP-
MODEL’s main equations, then replaced by Eqs. (20) and
(22). The principles and results of TOPMODEL are totally
preserved in doing so but this reformulation offers several
advantages. It firstly helps giving the units of all the vari-
ables (see Table1), what is lacking in most papers about
TOPMODEL, including the most cited ones (e.g.Beven and
Kirkby, 1979; Sivapalan et al., 1987), probably by reluctance
to use the logarithm of a length as a unit.

More importantly, the dependence of TOPMODEL equa-
tions on DEM cell sizeC becomes explicit, whereas it is
hidden in the TI when using the classical formulation. This
is a good way to raise awareness of hydrologists about the

scale and resolution issues in the TOPMODEL framework.
The mathematical dependence of TOPMODEL equations on
C is then shifted from the classical TI, where it is related
to the upslope contributing area per unit contour length, to-
wards the equation of baseflow (Eq.22), viaT0/C which can
be defined as the transmissivity at saturation per unit contour
length.

Accordingly, the mean dimensionless TI is free from the
numerical effect, introduced in Sect.4.1 as the direct effect
of using the cell size in the definition of the classical TI. The
influence of DEM resolution on the distribution of the dimen-
sionless TI is thus restricted to the terrain effects, which re-
sult from terrain information loss at coarser resolutions, and
which can be addressed for instance using the scaling meth-
ods proposed byPradhan et al.(2006, 2008).

Nonetheless, based on six real-world case studies from the
literature, we provide evidence that the DEM resolution in-
fluence on the mean classical TIx is largely dominated by
the logarithmic numerical effect (Sect.4.2). This results has
important consequences, as:

– it sheds a new light upon the widely shared assump-
tion according to which the dependence of the classical
TI on DEM resolution mostly results from changes in
terrain information (e.g.Sørensen and Seibert, 2007),
which would probably be better identified by first re-
moving the first-order numerical effect;

– the mean of the dimensionless TI is less sensitive to
DEM resolution than the one of the classical TI, and
it can be used as an efficient indicator to compare the
topographic features of different catchments, almost re-
gardless of DEM resolution;

– the transmissivity at saturation per unit contour length
T0/C is also more stable with DEM resolution than
its counterpartT0 in the classical framework. The
need to recalibrate TOPMODEL when DEM resolution
changes is thus markedly reduced using the dimension-
less framework.

Finally, the dimensionless TI offers an interesting bridge
between the two rescaling strategies developed within the
classical TOPMODEL framework to reduce recalibration
when DEM resolution changes, namely the rescaling of
transmissivity and the rescaling of the TI distribution.
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