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Abstract. A multi-objective genetic algorithm, NSGA-
II, is applied to calibrate a distributed hydrological model
(WetSpa) for prediction of river discharges. The goals of
this study include (i) analysis of the applicability of multi-
objective approach for WetSpa calibration instead of the tra-
ditional approach, i.e. the Parameter ESTimator software
(PEST), and (ii) identifiability assessment of model parame-
ters. The objective functions considered are model efficiency
(Nash-Sutcliffe criterion) known to be biased for high flows,
and model efficiency for logarithmic transformed discharges
to emphasize low-flow values. For the multi-objective ap-
proach, Pareto-optimal parameter sets are derived, whereas
for the single-objective formulation, PEST is applied to give
optimal parameter sets. The two approaches are evaluated
by applying the WetSpa model to predict daily discharges
in the Hornad River (Slovakia) for a 10 year period (1991–
2000). The results reveal that NSGA-II performs favourably
well to locate Pareto optimal solutions in the parameters
search space. Furthermore, identifiability analysis of the
WetSpa model parameters shows that most parameters are
well-identifiable. However, in order to perform an appro-
priate model evaluation, more efforts should be focused on
improving calibration concepts and to define robust methods
to quantify different sources of uncertainties involved in the
calibration procedure.

1 Introduction

Genetic algorithms (GA) have become increasingly popular
for solving complex multi-objective optimization problems
because of their better performance compared to other search
strategies (Fonseca and Fleming, 1995; Valenzuela-Rend’on
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and Uresti-Charre, 1997). After the first pioneering stud-
ies on evolutionary multi-objective optimization in the mid-
1980s (Schaffer, 1984; Fourman, 1985), these algorithms
were successfully applied to various multi-objective opti-
mization problems (e.g. Ishibuchi and Murata, 1996; Cunha
et al., 1997; Valenzuela-Rend’on and Uresti-Charre, 1997;
Fonseca and Fleming, 1995). There have also been signifi-
cant contributions on application of GAs for multi-objective
optimization in water resources research (Ritzel et al., 1994;
Cieniawski et al., 1995; Reed et al., 2001; Reed and Minsker,
2004).

Conceptual rainfall-runoff (RR) models, aiming at predict-
ing stream flow from the knowledge of precipitation over a
catchment, have become basic tools for flood and drought
forecasting, catchment basin management, spillway design,
and flood protection. Calibration of RR models is a process
in which parameter adjustment are made so as to match (as
closely as possible) the dynamic behaviour of the RR model
to the observed behaviour of the catchment. Because of
the multi-objective nature of RR calibration processes, au-
tomatic calibration methodologies have been shifted from
single-objective towards multi-objective formulation in re-
cent years. Gupta et al. (1998) discussed for the first time
the advantages of multiple-objective model calibration and
showed that such schemes are applicable and desirable. Sub-
sequently, more research has been focused on multi-objective
approaches for calibration of RR models (Yapo et al., 1998;
Seibert, 2000; Cheng et al., 2002; Boyle et al., 2000; Mad-
sen, 2000; Vrugt et al., 2003).

Over past recent years, population-based search algo-
rithms have shown to be powerful search methods for multi-
objective optimization problems and have been applied for
multi-objective RR calibration, especially when there are a
large number of calibration parameters (Boyle et al., 2000;
Madsen, 2000; Vrugt et al., 2003; Khu et al., 2005). Tang
et al. (2006) comprehensively assessed the efficiency, effec-
tiveness, reliability, and ease-of-use of three multi-objective
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Fig. 1. Hydrologic network of the Hornad catchment with topography of Margecany sub-catchment and location of gauging and meteoro-
logical stations.

evolutionary optimization algorithms (MOEAs) for hydro-
logic model calibration. Another comprehensive compari-
son between other optimization algorithms was dealt with by
Wöhling et al. (2008). Moreover, some researchers have ap-
plied MOEAs to develop automatic multi-objective calibra-
tion strategies for distributed hydrological models (Madsen,
2003; Ajami et al., 2004; Muleta and Nicklow, 2005a, b;
Vrugt et al., 2005; Bekele and Nivklow, 2007).

This paper presents an application of a MOEA, Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et
al., 2002), for multi-objective RR calibration of a distributed
hydrological model (WetSpa; Wang et al., 1997). In the
past, calibration of this model has been performed by clas-
sical least squares minimization with the Parameter ESTima-
tor software (PEST; Doherty and Johnson, 2003), e.g. Liu
et al. (2005); Bahremand et al. (2007). Usually, the single-
objective to be minimized is the sum of squared differences
between observed and estimated river discharges. However,
this criterion is known to be biased for high-flows. An alter-
native approach is to use log-transformed discharges to em-
phasize low-flows, but this can lead to quite different optimal
parameter values, creating a dilemma for the user which pa-
rameter set to prefer. In this paper, we apply a multi-objective
approach to calibrate the WetSpa model using both criteria in
order to find out whether a compromise is possible with equal
attention to both high- and low-flows. We aim at (i) investi-
gating the difference between single- and multiple-objective
model calibration approaches in terms of how the optimal re-
gions of model parameters vary over the search space, and
also (ii) assessment of the identifiability of these parameters.

The paper is organized as follows. Section 2 provides ma-
terial and methods used in this paper, i.e. the study area,

WetSpa model, representation of the multi-objective opti-
mization algorithm (NSGA-II), description of the single-
objective optimization routine (PEST), and the framework of
the WetSpa model calibration within these two approaches.
Section 3 describes the models application results, corre-
sponding analyses, and discussions. Finally, conclusions
and recommendations for further research are presented in
Sect. 4.

2 Material and methods

2.1 Study area

The WetSpa hydrological model is applied to the Hornad
River, located in Slovakia. The drainage area of the river
up to the Margecany gauging station is 1.131 km2. Figure 1
shows the Hornad catchment, the topography until Marge-
cany, and the location of gauging and meteorological sta-
tions. The basin is mountainous with elevations ranging from
339 to 1556 m. The basin has a northern temperate climate
with distinct seasons. The highest amount of precipitation
occurs in the summer period from May to August while in
winter there is usually only snow. The mean annual precipi-
tation is about 680 mm, ranging from 640 mm in the valley to
more than 1000 mm in the mountains. The mean temperature
of the catchment is about 6◦C and the annual potential evap-
otranspiration about 520 mm. About half of the basin is cov-
ered by forest, while the other half consists mainly of grass-
land, pasture, and agriculture areas. The dominant soil tex-
ture is loam, which covers about 42% of the basin, and sandy
loam and silt loam about 24% and 23% respectively. Detailed
information about the study area along with the methodology
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Table 1. Global WetSpa model parameters to be calibrated: description, symbols, preset feasible range, range of Pareto optimal values
obtained with NSGA-II, and optimal values obtained with PEST (Solutions No. 1 and No. 2).

Description Parameter Units Feasible range
NSGA-II PEST solutions

Min Max No. 1 No. 2

Interflow scaling factor Ki – 0–10 1.83 1.88 2.082 2.105
Groundwater recession coefficient Kg d−1 0–0.05 0.0059 0.0087 0.0085 0.0064
Initial soil moisture factor Ks – 0–2 1 1 1.008 1.158
Correction factor for PET Ke – 0–2 1.16 1.33 1.16 1.48
Initial groundwater storage Kgi mm 0–500 44 46 43 20
Groundwater storage scaling factor Kgm mm 0–2000 133 545 133 1188
Base temperature for snowmelt Kt

◦C −1–1 −0.13 0.61 0.25 0.89
Temperature degree-day coefficient Ktd mm ◦C−1 d−1 0–10 0.87 0.97 0.89 1.34
Rainfall degree-day coefficient Krd

◦C−1 d−1 0–0.05 0.028 0.036 0.02 0.047
Surface runoff coefficient Km – 0–5 2.8 3.12 2.76 4.26
Rainfall scaling factor Kp mm 0–500 433 497 500 79

to extract required data for the WetSpa model has been pro-
vided by Bahremand et al. (2007). Observations of daily pre-
cipitation, temperature, potential evaporation, and discharge
are available for the period 1991–2000. The first 5 years of
the 10-year period is chosen for model calibration and the
second 5 years for model validation.

2.2 WetSpa hydrological model

WetSpa is a grid-based distributed hydrologic model for wa-
ter and energy transfer between soil, plants and atmosphere,
which was originally developed by Wang et al. (1997) and
adapted for flood prediction on hourly time step by De Smedt
et al. (2000, 2004), and Liu et al. (2003, 2004, 2005). For
each grid cell, four layers are considered in the vertical di-
rection, i.e. the plant canopy, the soil surface, the root zone,
and the groundwater zone (Fig. 2). The hydrologic pro-
cesses considered in the model are precipitation, intercep-
tion, depression storage, surface runoff, snowmelt, infiltra-
tion, evapotranspiration, interflow, percolation, and ground-
water drainage. The model predicts peak discharges and hy-
drographs, which can be defined for any numbers and loca-
tions in the channel network, and can simulate the spatial
distribution of basin hydrological variables. Interested read-
ers may refer to Liu et al. (2003) and De Smedt et al. (2004)
for detailed information about WetSpa and its methodology
to predict stream flow.

The WetSpa distributed model potentially involves a large
number of model parameters to be specified during the model
setup. Most of these parameters can be assessed from field
data, e.g. hydrometeorological observations, maps of topog-
raphy, soil types, land use, etc. However, comprehensive
field data are seldom available to fully support specification
of all model parameters. In addition, some model parame-
ters are of a more conceptual nature and cannot be directly
assessed. Hence, some parameters have to be determined
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Fig. 2. Schematic representation of the general model structure of
WetSpa: arrows represent hydrological processes, boxes represent
storage zones, symbols between brackets refer to WetSpa global
model parameters to be calibrated as explained in Table 1.

through a calibration process. The choice of parameters to
calibrate is based on earlier studies of the WetSpa model
(Liu et al., 2003; Liu and De Smedt, 2005; Bahremand et
al., 2007). The model parameters that have to be determined
through calibration (i.e. eleven parameters) are listed in Ta-
ble 1 and their impact on the different model components of
WetSpa is schematically depicted in Fig. 2. All other model
parameters, i.e. spatial hydrological properties related to soil
type, land-use, and topography, are automatically derived us-
ing GIS tools and need not to be adjusted through calibration.

2.3 Multi-objective optimization algorithm (NSGA-II)

Multi-objective genetic algorithms (MOGAs) and the Pareto
optimality concept (Pareto, 1896) have been widely applied
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in water resources studies. MOGAs are search algorithms
based upon the mechanics of natural selection, derived from
the theory of natural evolution. They represent the solutions
using strings (also referred to as chromosomes) of variables,
which are comprised of a number of genes (decision vari-
ables). The fitness of each chromosome is an expression of
the objective function value. A MOGA starts with a popula-
tion of initial chromosomes, which through genetic operators
such as selection, crossover, and mutation produce succes-
sively better chromosomes.

NSGA-II is one of the MOGAs, proposed by Deb et
al. (2002) as a significant improvement to the original NSGA
(Sirinivas et al., 1993) by using a more efficient ranking
scheme and improved selection to capture the Pareto front.
Zitzler et al. (2000) and Deb et al. (2002) have shown that
NSGA-II performs as well as or better than other algorithms
on difficult multi-objective problems. In NSGA-II, the selec-
tion process at various stages of the algorithm toward a uni-
formly spread-out Pareto optimal front is guided by assigning
fitness to chromosomes based on domination and diversity.
Domination is determined by ranking all chromosomes in the
population, where chromosomes with higher rank are consid-
ered to have better fitness. Chromosomes with the same rank
are compared based on their diversity which is defined based
on a crowding measure for each chromosome. Chromosomes
with larger values of crowding distance are preferred more
to be selected for next generations. Interested readers may
refer to Deb et al. (2002) for a detailed description of the al-
gorithm. A brief step-by-step description of NSGA-II, with
specific application to the calibration problem of this paper,
is as follows:

1. Start with a random generation of a parent population
(i.e. a set of parameter sets), followed by sorting based
on domination and crowding distance.

2. Create an offspring population of the same size as the
parent population through tournament selection with
tournament size of 2 (Goldberg and Deb, 1991).

3. Apply a single-point-cut crossover operator
(Michalewicz, 1994) to replace parts of designated off-
spring parameter sets with values from parent solutions.
The crossover probability (i.e. the percentage of entire
offspring population which is affected by crossover op-
erator) is 90%.

4. Perform a uniform mutation (Michalewicz, 1994) by al-
tering the value of one variable per parameter set, i.e.
the mutation probability is 1/s, wheres is the number of
parameters.

5. Combine parent and offspring populations, and rank the
parameter sets based on domination and diversity.

6. Transfer the top half best parameter sets to the next gen-
eration.

7. Repeat steps 2 to 6 till termination criteria are met.

The C-function, proposed by Zitzler and Thiele (1999), is
applied as stopping criterion. LetX andX′ be two sets of
Pareto parameter sets, of which the latter belongs to one gen-
eration after the former. The C-function maps the ordered
pair (X,X′) to the interval [0,1] based on how muchX is
better thanX′, as follows:

C(X,X′) :=

∣∣{a′
∈ X′

;∃a ∈ X : a ≺ a′
}|

|X ′|
, (1)

wherea and a′ are respectively individual components of
X andX′, and≺ is the sign of domination. The nomina-
tor in Eq. (1) indicates the number of parameter sets ofX′

which are dominated at least by one of the elements ofX,
and the denominator is the total number of elements inX.
The C-function is a measure of the improvement over the
iterations expressed as a value between zero and one. Value
C(X,X′) = 1 means that all solutions inX′ are dominated by
or are equal to all solutions inX. The oppositeC(X,X′) = 0
indicates that none of the solutions inX′ are dominated by
or are equal to solutions inX. The C-function measure has
been used by Zitzler and Thiele (1999) to compare the perfor-
mance of multiple methods. However, in this study, we apply
the C-function to see how much improvement is achieved in
the Pareto front of a particular generation compared to the
previous one. If the value remains equal to 1 for a number of
consecutive iterations (10 in this study), the search algorithm
has converged and can be terminated.

2.4 Single-objective optimization routine (PEST)

PEST is a non-linear parameter estimation and optimiza-
tion package, offering model independent optimization rou-
tines (Doherty and Johnston, 2003). Unlike evolutionary
algorithms such as NSGA-II, PEST uses a gradient-based
methodology (i.e. Levenberg-Marquardt algorithm) to search
for the optimal solution. The best set of parameters is se-
lected from within reasonable ranges by adjusting the values
until the discrepancies between the model generated values
and observations is reduced to a minimum in the weighted
least squares sense. Since its development, PEST has gained
extensive use in many different fields, as for instance auto-
mated calibration of surface runoff and water quality mod-
els (e.g. Baginska et al. 2003; Syvoloski et al., 2003). Liu
et al. (2005) and Bahremand et al. (2007) applied PEST for
calibration of the WetSpa model.

PEST minimizes the sum of squared residuals, i.e. nor-
mally the differences between observed and predicted dis-
charges, but PEST can also be applied on log-transformed
discharges to put more emphasis on low-flows. PEST also
provides useful information for parameter sensitivity analy-
sis and uncertainty assessment. In addition to the best pa-
rameter estimates,m, PEST also estimates the standard de-
viation, s, of the parameter estimates, so that confidence in-
tervals for each parameter are obtained asm± tα,ns, where
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tα,n is student’s t-distribution with probabilityα andn de-
grees of freedom (usuallyα=0.025, so that each parameter
is contained within the predicted confidence interval with a
probability of 1–2α, i.e. 95%).

2.5 Framework of the calibration problem

The main goal of the study is to evaluate the applicability of
a multi-objective calibration framework and to analyze the
impact of multiple objectives on the optimal regions of the
model parameters. The main components for the calibration
framework include objective functions and optimization pro-
cedures. There are different objective functions which can be
applied for calibration. As Madsen et al. (2000) have pointed
out, good agreement between simulated and observed peak
flows, as well as good agreement for low flows, are among
these objective functions. In general, trade-offs exist be-
tween different criteria used for calibration. For instance, one
may find a set of parameters that provide a very good simu-
lation of peak flows but a poor simulation of low flows, and
vice versa. Hence, in order to obtain a successful calibration,
it is necessary to formulate performance measures in a multi-
objective framework. The following objective functions are
used in the present study:

CR1 = 1−

N∑
i=1

(Qsi −Qoi)
2

/
N∑

i=1

(
Qoi −Qo

)2
(2)

CR2=1−

N∑
i=1

[ln(Qsi)−ln(Qoi)]
2

/
N∑

i=1

[
ln(Qoi)−ln(Q0)

]2

(3)

where,Qoi is the observed discharge at timei, Qsi the simu-
lated discharge at timei, the bar stands for average, andN is
the total number of time steps in the calibration period. The
first criterion,CR1, is the model efficiency (Nash and Sut-
cliffe, 1970) which evaluates the ability of reproducing all
stream flows, but is known biased for peak flows. The sec-
ond criterion,CR2, is the model efficiency for reproducing
log-transformed discharges, giving more emphasis to low-
flow values. Therefore, the goal of the multi-objective cal-
ibration (i.e. objective functions addressed in this study) is
to maximize bothCR1 andCR2. However, the result of the
optimization will not be a single unique set of parameters but
will consist of Pareto front solutions. For the single-objective
procedure, the two criteria will be assessed separately to de-
rive the best parameter sets with different emphasis on high-
and low-flows (i.e. working on normal and log-transformed
discharges, respectively).

The multi-objective calibration will be performed with
NSGA-II resulting in the optimal Pareto front, while the
single-objective optimization will be performed with PEST.
Because NSGA-II and PEST belong to different groups of
optimization techniques, we do not intend to compare them

Table 2. Objective functions values of the Pareto optimal solutions
(No. 1–15) obtained with NSGA-II and PEST solutions 1 and 2, for
the calibration and validation periods.

Description No.
Calibration period Validation period
CR1 CR2 CR1 CR2

N
S

G
A

-I
IP

ar
et

o
fr

on
ts

ol
ut

io
ns

1 0.752 0.685 0.682 0.757
2 0.759 0.637 0.673 0.750
3 0.714 0.722 0.668 0.736
4 0.744 0.708 0.665 0.745
5 0.705 0.724 0.655 0.741
6 0.748 0.698 0.667 0.743
7 0.758 0.651 0.669 0.757
8 0.756 0.664 0.670 0.743
9 0.735 0.714 0.664 0.746
10 0.760 0.616 0.674 0.752
11 0.760 0.558 0.675 0.741
12 0.690 0.725 0.620 0.736
13 0.760 0.585 0.675 0.748
14 0.726 0.719 0.673 0.741
15 0.753 0.675 0.688 0.754

PEST solution 1 0.746 0.568 0.703 0.747
PEST solution 2 0.671 0.682 0.584 0.699

in terms of efficiency or technical aspects. We only want
to compare the obtained parameter values and explore their
identifiability.

The optimization procedure starts with identifying feasi-
ble parameter values. Model parameters ranges are chosen
according to the basin characteristics, as discussed in the
documentation and user manual of the WetSpa model (Liu
and De Smedt, 2004) and a previous study on the same area
by Bahremand et al. (2007). The preset feasible parameter
ranges are given in Table 1. Next, initial values of the pa-
rameters for multi- and single-objective algorithms need to
be selected. To generate the initial population of NSGA-II, a
Latin Hypercube Sampling (LHS) (Iman and Conover, 1980)
technique is used to explore the full range of all feasible pa-
rameter values. Thousand parameter sets are generated using
the LHS technique and WetSpa is run to evaluate the objec-
tive criteria. The solutions are subsequently ranked based
on the concept of Pareto dominance and the top 50 parame-
ter sets are selected to be the initial population of NSGA-II.
For PEST, as it only needs a single solution as the starting
point of the search process, we first rank the previously ob-
tained 1000 LHS samples based on the first criterion,CR1,
and the best parameter set is considered as starting values
for optimization with PEST using criteriaCR1; we will term
the resulting optimal parameter set “PEST solution 1”. Next,
the 1000 LHS solutions are ranked according to the second
criterion, CR2, and likewise, the best parameter set is used
as starting values for optimisation with PEST using criteria
CR2; the result will be termed “PEST solution 2”.

www.hydrol-earth-syst-sci.net/13/2137/2009/ Hydrol. Earth Syst. Sci., 13, 2137–2149, 2009
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Fig. 3. Convergence measure (C-Function) values versus number of NSGA-II iterations.

3 Results and discussion

3.1 Objective functions values

NSGA-II and PEST (i.e. multi- and single-objective routines)
are used according to aforementioned objective functions and
application framework to calibrate the WetSpa model. In
NSGA-II, CR1 andCR2 are maximized, while in PEST, the
goal is to maximizeCR2 only. An important issue in NSGA-
II application is the termination criterion. In this study, the
C-function is considered as the convergence measure, and
thus as stopping criterion of the NSGA-II algorithm. The
variation of this index over the iterations is shown in Fig. 3.
The C-function is low for the first iterations of NSGA-II, but
becomes larger as the algorithm proceeds approaching the
value of one. Often it becomes equal to one, but becomes
smaller again in next iterations. However, after 90 iterations
it becomes one and remains equal to 1 for 10 more itera-
tions. Hence, this means that there is no more improvement
to be found and consequently the algorithm is considered to
be converged and terminated after these 100 iterations. Us-
ing a population size of 50, the corresponding total number
of function evaluations is 5000.

After convergence of the NSGA-II algorithm, 15 Pareto
front solutions are obtained, of which the corresponding ob-
jective function values for the calibration and validation pe-
riods are given in Table 2. For the calibration period, the
model efficiencyCR1 ranges between 0.690 and 0.760, and
the low flow model efficiencyCR2 between 0.558 and 0.725.

The values obtained for the validation period are lower for
CR1, but generally better for the low flow efficiencyCR2.
The latter can be explained by the fact that the validation pe-
riod is generally dryer; accordingly, flows and residuals are
smaller leading to a better efficiency measure for low-flows.
All solutions listed in Table 2 are Pareto optimal for the cal-
ibration period, and therefore, are all worthy candidates for
model calibration depending upon the preferences of the user
and the goals of the model application.

The corresponding objective function values for the op-
timization with PEST are shown in the bottom part of Ta-
ble 2. Notice that PEST only calibrates the model based on
simple least squares. Hence, both objective functions have
afterwards been manually evaluated from the simulated dis-
charges. The results are similar, i.e. for the calibration period,
the better model efficiencyCR1 is about 0.746 for PEST so-
lution 1 andCR2 about 0.682 for PEST solution 2, while the
values obtained for the validation period are lower forCR1
but better forCR2.

In order to visualize the results of Tables 2, a bi-criterion
CR1-CR2 plot of Pareto front solutions and PEST solutions 1
and 2 for the calibration period are shown in Fig. 4. It is ob-
served that the spread or trade-off of NSGA-II solutions be-
tween criteriaCR1 andCR2 is quite uniform. Moreover, this
trade-off is properly distributed in-between the two PEST so-
lutions. This illustrates the applicability of multi-objective
calibration to better explore the optimal region and to ob-
tain more optimal solutions, which provides stake-holders
with flexibility to make decisions. Comparison between the
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Fig. 4. Bi-criterion CR1–CR2 plot of Pareto optimal solutions ob-
tained by NSGA-II and PEST solutions 1 and 2, as given in Table 2
for the calibration period.

results obtained by NSGA-II and by PEST shows that some
Pareto front solutions have resulted in a good performance
of the simulation model, in terms ofCR1 andCR2 values. In
particular, some of the Pareto solutions are better than PEST
solution 1 for criterion CR1 and also better than PEST solu-
tion 2 for CR2. This does not prove that NSGA-II is more
efficient than PEST but rather indicates that NSGA-II per-
forms well and is capable of searching the parameter space
to obtain optimum results. The less performance of PEST in
this respect lies, in essence, in its restriction to locally search
the parameter space in the neighbourhood of initial starting
points. If PEST had been used with more initial parameter
starting values, probably better solutions would have been
obtained, though at a higher computations cost. In general,
it can be concluded that the multi-objective calibration of
the WetSpa model, i.e. using NSGA-II, performs favourably
well compared to the traditional single-criterion calibration
as with PEST.

3.2 Model parameters values

The optimal parameter values obtained with NSGA-II and
PEST are presented in Table 1. For NSGA-II, only the range
(i.e. minimum and maximum) of the 15 Pareto optimal val-
ues for each parameter is given, whereas for PEST, optimal
parameter values are listed for both solutions 1 and 2. These
optimum parameter values, along with the 95% confidence
intervals of the PEST solutions, are also graphically depicted
in Fig. 5, whereby the values are normalized according to
the preset initial range of the parameters as given in Table 2.
Figure 5 demonstrates that there is a relatively high consis-

tency between the results obtained with both techniques, be-
cause the parameters values obtained with NSGA-II either
fall within or are close to the range reported by the two PEST
solutions. This is generally the case for all parameters except
for Kt where the range obtained by NSGA-II partly cov-
ers the distance between the two PEST solutions, which is
a sign of the high uncertainty and model insensitivity asso-
ciated with this parameter. If the range between the PEST-
obtained solutions is considered as a measure of the distance
between two optimal regions of the search space with dif-
ferent attentions to high- and low-flows, it can be concluded
that NSGA-II can properly explore this range. This is also in
line with the distribution of objective function values shown
in the previous section.

It is highly important to point out here that the range of op-
timum parameters values provided within the multi-objective
framework are only a reflection of the population size, as
well as the considered objective functions. Consideration
of a larger population size and/or other objective functions
would definitely help to better explore the search space and
obtain more accurate parameter sets. However, there are lim-
itations to population size and objective functions, which are
primarily related to computational cost, algorithmic issues,
and feasibility or reliability of obtained solutions.

3.3 Uncertainty evaluation

Along with calibration to identify a set of optimal param-
eter sets giving the best performance of a simulation model,
there are other important issues such as uncertainty and iden-
tifiability of the parameters which should be taken into ac-
count for a proper model evaluation. Among various ap-
proaches developed over past years to deal with different
sources of uncertainty specifically in RR modelling, multi-
objective calibration can be considered as one of these meth-
ods, as implied by Gupta et al. (2005), because it takes into
account the imperfection of the model structure to reproduce
all aspects of hydrograph equally well within a single pa-
rameter set. Thus, the outcome is a set of models that are
constrained (by the data) to be structurally and functionally
consistent with available qualitative and quantitative infor-
mation and which simulate, in an uncertain way, the observed
behaviour of the watershed (Gupta et al., 2005).

Figure 6 shows a graphical comparison between calculated
and observed daily flow at Margecany for the year 1991 of
the calibration period, and Fig. 7 for the year 2000 of the
validation period. Figures 6a and 7a show the model out-
come obtained with the optimal parameter sets of NSGA-II,
while Figs. 6b and 7b give model results obtained with the
optimal parameter sets of PEST. The model results obtained
with the 15 Pareto front solutions are shown as a range of
simulated discharges as a grey shaded area, and similarly
the range of discharges obtained with the two PEST solu-
tions are also shown as a shaded area (generally the upper
one is solution 1 and the lower one solution 2). Observed
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  Fig. 5. Normalized optimal parameters values obtained by PEST solution 1 and 2, and their 95% confidence intervals, along with the
normalized parameters range of the 15 Pareto front optimal solutions obtained by NSGA-II.

discharges are shown as a dashed line. It is observed that
there is consistency between the results of these two ap-
proaches and that the ranges are rather narrow. However,
both the stream flow estimations in the calibration period and
the stream flow predictions in the validation period display
systematic errors with respect to the observations. These de-
viations are likely due to inconsistencies associated with the
input data, model structure, and/or inaccuracies in the ob-
served discharges. The limitation of multi-objective calibra-
tion approach to take these uncertainties into account is that
it does not articulate an identifiable error model, and conse-
quently it becomes difficult to provide uncertainty bounds on
the parameter estimates as these are strongly related to spe-
cific error models (Kavetski et al., 2002). Hence, as well as
improving the calibration routines, it is also required to im-
prove the model structure or to provide suitable methods to
appropriately quantify model and parameters uncertainties.

Another interpretation of the model predictions shown in
Figs. 6 and 7 might be related to the concept of equifinal-
ity introduced by Beven (1993), i.e. the fact that there may
be different parameter sets equally suitable to reproduce the
observed behaviour of the system. Hence, the hydrograph

ranges obtained by the NSGA-II Pareto front solutions can be
a reflection of equifinality in WetSpa calibration. Although
it may be argued that this issue is not really a problem for
practical models applications, because any of these parame-
ter sets may be applied (Lindstorm, 1997), it is, nevertheless,
desirable to address the prediction uncertainty due to these
parameter sets (i.e. quantitative analysis of discharge ranges
for validation period). Although multi-objective equivalence
of parameter sets is different from the probabilistic represen-
tation of parameter uncertainty, the Pareto set of solutions
defines the minimum uncertainty in the parameters that can
be achieved without stating a subjective relative preference
for minimizing one specific component of the hydrograph at
the expense of another (Vrugt et al., 2003). Combination
of deterministic multi-objective calibration (i.e. such as the
approach addressed in this study) and probabilistic methods
might be a promising approach to analyze different sources
of uncertainty. In line with this, research aimed at improv-
ing the WetSpa model and development of a methodology to
quantify model and parameter uncertainties is ongoing by the
authors.
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Fig. 6. Observed hydrograph (dashed line), calculated hydrograph
with (a) optimal NSGA-II Pareto solutions (shaded area in the up-
per panel as the range of simulated discharges), and(b) two PEST
solutions (shaded area in the lower panel), at Margecany for the year
1991 of the calibration period.

3.4 Identifiability analysis

The purpose of identifiability analysis in RR modelling is
the identification of the model structure and a corresponding
parameter set that are most representative of the catchment
under investigation, while considering aspects such as mod-
elling objectives and available data (Wagener et al., 2001).
Assuming a particular model structure, e.g. the WetSpa
model addressed in this study, estimation of a suitable pa-
rameter set as the result of calibration would complete the
model identification process. In order to investigate the iden-
tifiability of the WetSpa model’s parameters within the multi-
objective calibration procedure of this study, the range of pa-
rameters values associated with the Pareto front was taken
into account. The normalized values of different parameters
are depicted in Fig. 8 versus number of NSGA-II iterations,
i.e., all parameter values of the solutions contained in Pareto
fronts of different iterations are shown. These values are nor-
malized based on their initially preset feasible minimum and
maximum values as given in Table 1. Initially, as there is no
a priori information about optimal values for each parameter,
the values were generated randomly within the feasible pa-
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Fig. 7. Observed hydrograph (dashed line), calculated hydrograph
with (a) optimal NSGA-II Pareto solutions (shaded area in the up-
per panel as the range of simulated discharges), and(b) two PEST
solutions (shaded area in the lower panel), at Margecany for the year
2000 of the calibration period.

rameters space. But over the iterations, Pareto optimal solu-
tions are obtained with better parameter values, located in op-
timal regions of the parameter space. As seen in Fig. 8, most
WetSpa parameters (i.e.Ki,Kg,Ks,Ke,Kgi,Ktd , andKm)

are well identified because the range of values of the Pareto
optimal solutions quickly become much more bounded com-
pared to their initial range. However, some parameters are
poorly identifiable (i.e.Kgm,Kt ,Krd , and Kp) exhibiting
ranges that do not converge.

Considering Figs. 6 and 7, the range of Pareto solutions
seems to have little impact on the predictive flows. This
could be due to the relatively small difference between for-
mulations of objective functionsCR1 andCR2 translated into
the simulations of flow, but also points out that WetSpa is
more sensitive to well-identifiable parameters (i.e. these will
occupy a relatively small range in the optimal region of the
parameter space) than poorly-identifiable parameters.

Table 3 gives the correlation between the different WetSpa
model parameters for all Pareto front solutions. The cor-
relation between most of the parameters is typically low,
further confirming that most of the WetSpa parameters are
well defined. Hence, it can be concluded from the results
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Fig. 8. Plot of normalized values of the WetSpa model parameters versus number of iterations of the NSGA-II search algorithm; shown are
all parameter values of all Pareto front solutions through 100 iterations.
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Table 3. Correlation between the WetSpa model parameters derived from the Pareto front solutions of all NSGA-II iterations.

Parameter Ki Kg Ks Ke Kgi Kgm Kt Ktd Krd Km Kp

Ki 1 0.25 0.20 0.23 0.44 0.12 0.00 0.42 0.12 0.21 0.01
Kg 1 0.34 0.09 0.43 0.05 0.13 0.70 0.05 0.21 0.03
Ks 1 0.02 0.29 0.14 0.01 0.47 0.12 0.08 0.00
Ke 1 0.32 0.57 0.05 0.36 0.08 0.08 0.07
Kgi 1 0.17 0.00 0.65 0.09 0.16 0.01
Kgm 1 0.04 0.33 0.14 0.00 0.09
Kt 1 0.02 0.00 0.01 0.03
Ktd 1 0.13 0.14 0.01
Krd 1 0.04 0.00
Km 1 0.22
Kp 1

presented in Fig. 8 and Table 3 that for this particular water-
shed and dataset, most WetSpa parameters can be reasonably
calibrated using multi-objective formulation. Obviously, this
conclusion is also based on particular algorithm, objective
functions, and initial solutions used in this paper. Thus, more
efforts to define better settings for these items will definitely
help to get more insight into parameters identifiability.

As a simple action to extend the identifiability analysis of
the WetSpa model parameters, multiple NSGA-II runs were
made considering different set of initial solutions, each of
which obtained by LHS. The resulting Pareto fronts from
different runs are fairly identical in terms of model perfor-
mance, and furthermore show that most of the optimized
parameters are located in the same region of their feasible
space. This is in line with the findings of previous paragraph.
The parameters which varied the most from one run to the
other are the ones that were previously shown to be poorly-
definable. Possibly, multi-modality of response surface of
the optimization problem and/or the concept of equifinality
might have been the reasons of these variations.

4 Conclusions

In this study, a multi-objective genetic algorithm, NSGA-
II (Deb et al., 2002), was applied to calibrate a hydro-
logical model (WetSpa). The objective functions were the
Nash-Sutcliffe model efficiency (i.e. ability to reproduce all
stream-flows), and the model efficiency for log-transformed
stream-flows to emphasize low-flow values. The concept of
Pareto dominance was used to solve the multi-objective op-
timization problem. In order to analyze the applicability of
the approach and to analyze the impact of multiple objec-
tive functions on optimal regions of the parameters space,
the single-objective local search technique of PEST (the clas-
sical method to calibrate the WetSpa model) was also used
to calibrate the model. PEST was applied in two modes:
(1) minimizing the sum of squared differences between ob-

served and predicted discharges, and (2) similarly but for log-
transformed discharges to enhance the importance of low-
flows. Furthermore, we also aimed to assess the identifiabil-
ity of the model parameters through multi-objective calibra-
tion. The two approaches, NSGA-II and PEST, were evalu-
ated through application of the WetSpa model to the Hornad
River located in Slovakia.

Based on the objective function values obtained from the
NSGA-II and PEST runs, it can be concluded that the multi-
objective approach proposed in this paper performs well.
Hence, it can be considered as an alternative way to cali-
brate the model instead of using PEST. Moreover, due to
the uniform spread of Pareto front solutions in the objec-
tives space, and also in the parameters space, it is possible
for stake-holders to select a particular parameter set based
on existing priorities. Hence, multi-objective calibration can
provide stake-holders with a proper decision support system.

The obtained results of the identifiability analysis also
clearly demonstrate that most of the WetSpa model param-
eters are well identifiable. For the parameters which are
poorly identified, which might be due to multi-modality of
the problem, application of more efficient calibration strate-
gies such as multi-population evolutionary algorithms or a
combination of these search methods together with mathe-
matical local search procedures might be highly useful, as
for instance the AMALGAM multi-objective evolutionary
search strategy of Vrugt and Robinson (2007). Research
aimed at further improvement of the optimization approach
proposed in this study is also ongoing.

According to literature on multi-objective calibration and
uncertainty analysis as well as what was shown in this paper,
this approach can define a minimum level of uncertainty as-
sociated with the model structure. This uncertainty is shown
in terms of parameters ranges of the Pareto front solutions,
and/or a band of model simulations. Nevertheless, it would
be desirable to adopt a more robust methodology to quantify
different sources of uncertainty such as input, parameters and
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model uncertainties. Possibly, a combination of probabilistic
principles and multi-objective evolutionary algorithms might
deal with this issue. In this respect, some approaches might
be (i) to use Markov Chain Monte Carlo samplers such as
MOSCEM-UA (Vrugt et al., 2003) to estimate the Pareto
front, or (ii) to adopt the Probabilistic Multi-Objective Ge-
netic Algorithm (PMOGA) proposed by Singh et al. (2008)
for rainfall-runoff calibration.
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