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Abstract. Rainfall erosivity is a major causal factor of soil
erosion, and it is included in many prediction models. Maps
of rainfall erosivity indices are required for assessing soil
erosion at the regional scale. In this study a comparison
is made between several techniques for mapping the rain-
fall erosivity indices: i) the RUSLE R factor and ii) the av-
erage EI30 index of the erosive events over the Ebro basin
(NE Spain). A spatially dense precipitation data base with
a high temporal resolution (15 min) was used. Global, local
and geostatistical interpolation techniques were employed to
produce maps of the rainfall erosivity indices, as well as
mixed methods. To determine the reliability of the maps sev-
eral goodness-of-fit and error statistics were computed, us-
ing a cross-validation scheme, as well as the uncertainty of
the predictions, modeled by Gaussian geostatistical simula-
tion. All methods were able to capture the general spatial
pattern of both erosivity indices. The semivariogram analy-
sis revealed that spatial autocorrelation only affected at dis-
tances of∼15 km around the observatories. Therefore, local
interpolation techniques tended to be better overall consid-
ering the validation statistics. All models showed high un-
certainty, caused by the high variability of rainfall erosivity
indices both in time and space, what stresses the importance
of having long data series with a dense spatial coverage.

1 Introduction

Soil erosion has become a major environmental threat due to
the growth of the World’s population, and is one of the main
consequences of projected land use and climate change sce-
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narios (Gobin et al., 2004). Studies on soil erosion started in
the first decades of the 20th Century, and have increased in
number and variety since then. Isolating the role of differ-
ent natural and management factors on soil erosion has been
one of the major research topics. The combination of those
factors in the form of a parametric model allowed the devel-
opment of tools such as the USLE (Wischmeier and Smith,
1978; Kinnell and Risse, 1998), which can be used for pre-
dicting the effect of different management strategies on soil
erosion rates. The development of parametric models opened
a new area of research, devoted to analyze the spatial vari-
ability of erosion causal factors. Maps showing the spatial
distribution of natural and management related erosion fac-
tors are of great value in the early stages of land manage-
ment plans, allowing identify preferential areas where action
against soil erosion is more urgent or where the remediation
effort will have highest revenue. With the advent of Geo-
graphic Information Systems (GIS), studies of this kind have
become more and more frequent.

Among the natural factors affecting soil erosion, rainfall
erosivity has a paramount importance. Precipitation is a ma-
jor cause of soil erosion, given the extraordinary importance
of soil detachment processes due to drop impact and runoff
shear. Compared to other natural factors such as the relief
or the soil characteristics, rainfall erosivity has very little or
null possibility of modification by humans, so it represents
a natural environmental constrain that limits and conditions
land use and management. In the context of climate change,
the effect of altered rainfall characteristics on soil erosion is
one of the main concerns of soil conservation studies.

It is well known that a few, very intense rainfall events
are responsible for the largest part of the soil erosion and
sediment delivery (González-Hidalgo et al., 2007). Hence,
the estimation of rainfall erosivity may contribute to a better
prediction of soil erosion. Rainfall erosivity can be quan-
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tified by several erosivity indices which evaluate the rela-
tionship between drop size distribution and kinetic energy
of a given storm. Numerous works have assessed the role
of drop size distribution of both natural and simulated rain-
fall at the field plot scale on soil detachment. These mea-
surements are difficult to perform, and because of that they
are very rare both in space and time. In addition, natural
rainfall properties measurements are scarce for comparisons
with simulated rain (Dunkerley, 2008). This has motivated
researchers to undertake studies relating more conventional
rainfall characteristics such as the maximum intensity during
a period of time to rainfall energy or directly to soil detach-
ment rates. Examples of such indices of rainfall erosivity are
the USLE R factor, which summarizes all the erosive events
quantified by the EI30 index occurred along the year (Wis-
chmeier, 1959; Wischmeier and Smith, 1978; Brown and
Foster, 1987; Renard and Freimund, 1994; Renard et al.,
1997), the modified Fournier index for Morocco (Arnoldus,
1977), the KE>25 index for southern Africa (Hudson, 1971)
and the AIm index for Nigeria (Lal, 1976).

Mapping rainfall erosivity at regional and basin scale is
still an emerging research question. Such maps allow for
a better comprehension of the processes with geographical
imprint as well as the application of these methodologies
to large spatial areas. They are also an important step for
large-scale soil erosion assessments, soil conservation man-
agement of natural resources, agronomy and agrochemical
exposure risk assessments (Winchell et al., 2008). Early ex-
amples are the rainfall erosivity maps for the whole USA in
the form of isoerodentmaps or maps of the RUSLE R fac-
tor (Renard and Freimund, 1994). Other researchers have
used regression techniques to elaborate spatially continuous
maps of rainfall erosivity on the basis of other available data
such as daily and monthly records of rainfall depth (ICONA,
1988).

With the advent of GIS packages and the generalization
of spatial interpolation techniques, maps of environmental
parameters such as those relevant for soil erosion have be-
come frequent. For example, several authors have used
GIS‘techniques to map the factors of the RUSLE equation
by means of interpolation methods (Shi, 2004; Lim, 2005;
Mutua, 2006; Ĺopez-Vicente et al., 2008). There are a num-
ber of statistical methods available, such as regression mod-
els; local interpolators such as the inverse distance weighting
(IDW) or thin-plate splines, or geostatistical techniques such
as kriging (Burrough and McDonnell, 1998). Recent studies,
mostly in the field of Climatology (e.g., Ninyerola and Pons,
2000; Vicente-Serrano et al., 2003; Beguerı́a and Vicente-
Serrano, 2006), highlighted the interest of finding the method
with the best adjustment to the observed data.

There are few studies comparing among interpolation
techniques for rainfall erosivity indices. Millward (1999) cal-
culated the EI30 index at the monthly scale and the R factor
with geostatistics and IDW techniques for the Algarve re-
gion (Southern Portugal). Hoyos (2005) observed that a local

polynomial algorithm gave lower mean prediction errors than
the IDW in the Colombian Andes. Goovaerts (1999) dis-
cussed the relation between rainfall erosivity and elevation
in the comparison of three different geostatistical methods.
None of these works provided a comprehensive comparison
of mapping methods at the regional scale.

This work aims at comparing different interpolation meth-
ods to map the average EI30 index of the erosive events and
the RUSLE R factor in a large and climatologically complex
area: the Ebro basin, in North-Eastern Spain. Results of rain-
fall erosivity cartography can be used as a reference for soil
protection practices and discussion of the different interpola-
tion methods will be of interest to enhance regional and basin
cartography.

2 Materials and methods

2.1 Study area

The study area covers the north-east of Spain (Fig. 1). It
corresponds to the Ebro Basin, which represents an area of
about 85 000 km2. The Ebro valley is an inner depression
surrounded by high mountain ranges. It is limited to the
North by the Cantabrian Range and the Pyrenees, with maxi-
mum elevations above 3000 m a.s.l. The Iberian range closes
the Ebro valley to the South, with maximum elevations in
the range of the 2000–2300 m. To the East, parallel to the
Mediterranean coast, the Catalan Coastal Range closes the
Ebro valley, with maximum elevations between 1000 and
1200 m a.s.l.

The climate is influenced by the Cantabric and Mediter-
ranean Seas and the effect of the relief on precipitation
and temperature. The border mountain ranges isolate the
central valley blocking the maritime influence, resulting in
a continental climate which experiments aridity conditions
(Cuadrat, 1991; Lana and Burgueño, 1998; Creus 2001;
Vicente-Serrano 2005). A climatic gradient in the NW-SE
direction is remarkable, determined by the strong Atlantic in-
fluences in the north and north-west of the area during large
part of the year and the Mediterranean influence to the east.
Mountain ranges add complexity to the climate of the region.
The Pyrenees extend the Atlantic influence to the east by in-
creasing precipitation, whereas the Cantabrian Range, which
runs parallel to the Atlantic coastland in the NW, is a bar-
rier to the humid flows and has a noticeable climate contrast
between the north (humid) and the south (dry) slopes.

The precipitation regime shows strong seasonality (Gar-
rido and Garćıa, 1992), which involves not only the amount
of precipitation but also its physical cause (frontal or con-
vective). Precipitation in the inland areas is characterised by
alternating wet and dry periods as a consequence of the sea-
sonal displacement of the polar front and its associated pres-
sure systems. Inter-annual variability of precipitation can be
very high, and drought years can be followed by torrential
rain events which last for many days (Martı́n-Vide, 1994).
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Fig. 1. Location of the study area and the observatories used on this
study.

Close to the Mediterranean Sea the precipitation amount
also increases as a consequence of the maritime influence.
Nevertheless, the precipitation frequency, intensity and sea-
sonality are very different compared to the areas in the
North, where precipitation is frequent but rarely very intense,
with the exception of mountainous areas (Garcı́a-Ruiz et al.,
2000). The most extreme precipitation events are recorded
along the Mediterranean seaside (Llasat, 2001; Romero et
al., 1998; Pẽnarrocha et al., 2002). The Ebro Basin has a
long record of social, economic and environmental damages
caused by extreme rainfall events (Garcı́a-Ruiz et al., 2000;
Lasanta, 2003) due to its complex climatology, as a meteoro-
logical border region, and the contrasted relief.

2.2 Data base

The database consisted on 112 selected rainfall series from
the Ebro Hydrographical Confederation SAIH system – Au-
tomatic Hydrological Information Network (Fig. 1). Each
station provides precipitation data at a time resolution of
15 min. The system started in 1997, and is the only dense net-
work providing sub-daily resolution data in the region. We
used all available series data for the period 1 January 1997 to
31 December 2006.

The rainfall series were subjected to a quality control that
allowed identifying wrong records due to system failures.
These records were replaced by the corresponding ones from
a nearby station. This allowed creating an erosive events
database (EEDB). The erosive events were determined by
the RUSLE criterion: an event is considered erosive if at
least one of this conditions is true: i) the cumulative rain-
fall is greater than 12.7 mm, or ii) the cumulative rainfall has
at least one peak greater than 6.35 mm in 15 min. Two con-
secutive events are considered different from each other if the
cumulative rainfall in a period of 6 h is greater than 1.27 mm.

2.3 Rainfall erosivity index

The rainfall erosivity indices employed were the average
EI30 index events and the RUSLE R factor. These indices
have been widely used, making it possible to compare the re-
sults with those of other studies. The RUSLE model uses the
Brown and Foster (1987) approach for calculating the aver-
age annual rainfall erosivity,R (MJ mm ha−1 h−1 y−1):

R =
1

n

n∑
j=1

mj∑
k=1

(EI30)k (1)

wheren is the number of years of records,mj is the number
of erosive events of a given yearj , and EI30 is the rainfall
erosivity index of a singular eventk. Thus, the R factor is
the average value of the annual cumulative EI30 over a given
period. The event’s rainfall erosivity EI30 (MJ mm ha−1 h−1)
is obtained as follows:

EI = EI30 =

(
o∑
r=1

ervr

)
I30 (2)

whereer and vr are, respectively, the unit rainfall energy
(MJ ha−1 mm−1) and the rainfall volume (mm) during a time
period r, andI30 is the maximum rainfall intensity during
a period of 30 min in the event (mm h−1). The unit rainfall
energy,er , is calculated for each time interval as:

er = 0.29[1 − 0.72 exp(−0.05ir)] (3)

where ir is the rainfall intensity during the time interval
(mm h−1). In addition to the R factor, we also calculated
the average EI30 of the erosive events over the study period.

The average EI30, is calculated as the mean erosivity of
all rainfall events. Since the frequency distribution of EI30
is highly skewed (it follows a logarithmic law), the average
EI30 is in fact most correlated with the highest erosive events.
Maps showing the spatial distribution of the average EI30 in-
dex complement the information given by the R factor alone.

2.4 Spatial modelling

In many studies the rainfall erosivity calculation is reduced
to at-site analysis. An improvement focus on the reduction of
the risk of erosion in landscape management and conserva-
tion planning is to obtain continuous maps for large areas as
a preliminary step to evaluate the hazard. For this purpose a
common procedure is the mapping of at-site estimated rain-
fall erosivity index values by means of interpolation tech-
niques (e.g., Prudhome and Reed, 1999; Weisse and Bois,
2002).

In this article several interpolation methods including
global, local and mixed approaches, are compared in order to
determine which one describes better the spatial distribution
of the average EI30 index and the R factor. A leave-one-out
cross-validation technique was used for validating the good-
ness of fit (Efron and Tibshirani, 1997).
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For the regression-based models, a digital elevation model
(DEM) and a digital coverage of the Iberian Peninsula coast-
line were used. Both were obtained from the Ebro Hydro-
graphical Confederation (http://www.chebro.es/).

2.4.1 Global methods

The global method used was generalized least squares (GLS)
multiple regression. Regression is a global approach to spa-
tial interpolation, and it is based on finding empirical rela-
tionships between the variable of interest and other spatial
variables. Regression-based techniques adapt to almost any
space and usually generate adequate maps (Goodale et al.,
1998; Vogt et al., 1997; Ninyerola et al., 2000). The relation-
ships between climatic data and topographic and geographic
variables have been extensively analyzed throughout the sci-
entific literature, and regression-based models allow exploit-
ing this relationship to produce maps of the climatic param-
eters. Some authors have shown the advantages of incorpo-
rating the information provided by ancillary data on mapping
extreme rainfall probabilities (Beguerı́a and Vicente-Serrano,
2006; Casas et al., 2007). Regression methods can be es-
pecially adequate in large regions with complex atmospheric
influences, such as the Ebro Valley (Daly et al., 2002; Weisse
and Bois, 2002; Vicente-Serrano et al., 2003), or if the sam-
ple network is not dense enough for local interpolation meth-
ods (Dirks et al., 1998).

GLS is an extension of the most common ordinary least
squares (OLS) regression, which allows for autocorrelation
in the dependent variable (Cressie, 1993). When dealing with
spatial variables, it is common assumption that the observa-
tions are autocorrelated; this property forms, in fact, the ba-
sis of all geostatistical and mixed methods. The existence
of autocorrelation in the residuals violates one of the main
assumptions of OLS, thus making this technique not suit-
able for climatic variables with geographical imprint. This
problem can be easily solved by using alternative regression
techniques that account explicitly for spatial autocorrelation,
such as GLS (Beguerı́a and Pueyo, 2009). The differences
between both methods can be easily explained by introduc-
ing their mathematical background. From the common OLS
formula:

y = Xβ + ε (4)

wherey is the dependent variable,X is a matrix ofp inde-
pendent variables (model matrix),β is a vector ofp+1 model
coefficients to estimate, including a constantβ0, andε is a
vector of random errors. In OLS it is assumed that the er-
rors are normally distributed with mean 0 and varianceI :
ε∼N

(
0, σ 2I

)
. In GLS, on the contrary, it is generally as-

sumed thatε∼N (0, 6), where the error variance-covariance
matrix6 is symmetric and positive-definite. Different diag-
onal entries in6 correspond to non-constant error variances,
while nonzero off-diagonal entries correspond to correlated
errors. Since the error variance-covariance matrix6 is not

known, it must be estimated from the data along with the re-
gression coefficientsβ. Due to the high number of elements
of 6, it needs to be approximated by a parametric model. In
the case of spatial regression,6 can be adequately param-
eterized by a semi-variogram model. The semi-variogram
model explains the covariance between the errors based on
the distance between pairwise observations. Since the semi-
variogram constitutes the basis of geostatistical interpolation
methods, it is explained in depth in a further section (see
Sect. 2.4.3).

We used a set of independent variables at a spatial reso-
lution of 100 m. Elevation is usually the main determinant
of the spatial distribution of climatic variables. Neverthe-
less, other variables such as the latitude and longitude, or the
incoming solar radiation may also have an influence on the
distribution of erosive rains. All variables were derived from
a DEM (UTM-30N coordinates). The incoming solar radia-
tion is a spatially continuous variable that depends on the ter-
rain aspect (northern and southern slopes have low and high
incoming solar radiation values, respectively). The annual
mean incoming solar radiation was calculated following the
algorithm of Pons and Ninyerola (2008). All these variables
were processed in the MiraMon GIS package (Pons, 2006).
Low-pass filters with radii of 5, 10 and 25 km were applied
to elevation, slope and incoming solar radiation in order to
measure the widest influence of these variables.

We used a Gaussian semivariogram model to parameter-
ize the spatial autocorrelation between regression errors. As
independent variables we used the spatial coordinates (longi-
tude and latitude) in km and their squares (km2), the eleva-
tion (m a.s.l.), and the incoming solar radiation (J d−1). The
R statistical analysis package (R Development Core Team,
2008) was used for the regression analysis.

2.4.2 Local methods

In global methods, local variations are dismissed as ran-
dom, unstructured noise, and the climatic map is created
on the basis of general structure of the variable at all avail-
able points (Borrough and McDonnell, 1998). Local meth-
ods, on the contrary, use only the data of the nearest sam-
pling points for climatic mapping. Since interpolated values
at ungauged locations depend on the observed values, local
methods strongly depend on a sufficiently dense and evenly
spaced sampling network.

Two local methods were used: inverse distance weight-
ing (IDW) and splines. The IDW interpolation is based on
the assumption that the climatic value at an unsampled point
z(x) is a distance-weighting average of the climatic values
at nearby sampling pointsz(x1), z(x2), . . ., z(xn). Climatic
values are more similar at closer distances, so the inverse dis-
tance (1/di) betweenz(xi) andz(x) is used as the weighting
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factor:

z (x) =

n∑
i=1

z (xi) d
−r
ij

n∑
i=1

d−r
ij

(5)

wherez(x) is the predicted value,z(xi) is the climatic value
at a neighbouring weather station,dij is the distance between
z(x) andz(xi), andr is an empirical parameter. Models with
r=1, r=2 andr=3 were tested.

The splines method is based on a family of continuous,
regular and derivable functions. Splines are similar to the
equations obtained from the trend surfaces or regression-
based methods, but they are fitted locally from the neighbour-
ing points around the candidate locationx. A new function is
created for each locationx, without lost of continuity proper-
ties among the curves. Smoothing or tension parameters can
be specified, resulting in more or less smoothed maps. The
predicted valuez(x) is determined by two terms:

z(x) = T (x)+

n∑
i=1

λjψj (ri) (6)

whereT (x) is a polynomial smoothing term, and the second
term groups a series of radial functions whereψj (ri) is a
known group of functions, andλj represents the parameters
(Mitasova et al., 1995):

ψ(ri) = −

[
ln
(ϕri

2

)
+ Ei

(ϕri
2

)
+ CE

]
(7)

whereφ is the tension coefficient,CE=0.577215. . . is the
Euler constant,Ei is the exponential integral function, andri
is:

ri =

√
(x − xi)

2
+ (y − yi)

2 (8)

The algorithms for fitting splines are quite complex but are
currently standard in GIS packages. In this paper several
spline interpolations were used as implemented in the Ar-
cGIS 9.3 software. Tension and smoothing parameters were
φ=400,φ=5000,T (x)=0 andT (x)=400.

2.4.3 Geostatistical interpolation methods

Kriging methods assume that the spatial variation of a con-
tinuous climatic variable is too irregular to be modelled by
a continuous mathematical function, and its spatial variation
could be better predicted by a probabilistic surface. This con-
tinuous variable is called a regionalized variable, which con-
sists of a drift component and a random, spatially correlated
component (Burrough and McDonnell, 1998). Hence, the
spatially located climatic variablez(x) is expressed by:

z(x) = m(x)+ ε′(x)+ ε
′′

(9)

wherem(x) is the drift component, i.e. the structural varia-
tion of the climatic variable,ε′ (x) are the spatially correlated

residuals, i.e. the difference between the drift component and
the sampling data values, andε′′ are spatially independent
residuals. The predictions of kriging-based methods are cur-
rently a weighted average of the data available at neighbour-
ing sampling points (weather stations). The weighting is cho-
sen so that the calculation is not biased and the variance is
minimal. A function that relates the spatial variance of the
variable is determined using a semi-variogram model which
indicates the semivariance (γ ) between the climatic values at
different spatial distances.

The semivariogram describes the way in which similar ob-
servation values are clustered in space, in accordance with
Tobler’s first law of geography (Tobler, 1970). The semivari-
ogram is therefore a measure of the dissimilarity of data pairs
as the spatial separation between them increases (Deutsch
and Journel, 1998). The semivariance is calculated for
lagged sets of separation vectorshu as half the mean squared
pairwise difference between theN observed values within
the spatial lag,u:

γu (hu) =
1

2N (hu)

∑
N(hu)

[z (u)− z (u+ hu)]
2 (10)

To summarize the autocorrelation in space, a product-sum
covariance model was automatically fitted to the semivari-
ogram. First, only the sample semivariograms,γs,t (hs,0),
were considered. Valid semivariogram models were fitted
to them, estimating automatically the partial range (φu) and
sill (sillu) and adding a nugget discontinuity (τu) at the ori-
gin to reflect spatial uncertainty if required. Semivariogram
models must be selected from a set of allowable functions
that are conditionally negative definite (Mcbratney and Web-
ster, 1986), i.e. spherical, exponential or gaussian models
(Deutsch and Journel, 1998). There is some argument over
the correct way to proceed in semivariogram model fitting
(Diggle et al., 2002; Goovaerts, 1997); we favoured auto-
matically fitting by the OLS method, followed by adjustment
by eye, to reduce the effect of outliers. The Gaussian func-
tion adjusted best. Predictions may improve depending in
the number of neighbours included in the interpolation. Our
data were not very sensible to the number of neighbours. A
combination of 9 neighbours, including at least 3 fitted best.

Several types of kriging methods have been proposed, de-
pending on how the drift componentm(x) is modelled (see,
e.g., the reviews by Isaaks and Strivastava, 1989; Goovaerts,
1997; Burrough and McDonnell, 1998). Simple kriging (SK)
assumes a known constant trend (expected value),m(x)=0,
and relies on a covariance function. However, neither the ex-
pectation nor the covariance function are usually known, so
simple kriging is seldom used. In ordinary kriging (OK), the
most common type of kriging, an unknown constant trend
is assumed,m(x)=E(z(x)), and the estimation relies on a
semivariogram model which is estimated from the sample.

SK and OK both assume stationarity of the spatial field,
i.e. that the expected value of the variable does not change
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in space. This is often not the case with climatic variables,
which tend to show spatial trends due to differences in the
exposure to the atmospheric factors. Universal kriging (UK)
allows incorporating non-stationarity by assuming a general
linear trend model,

m(x) =

p∑
k=0

βkf (x) (11)

wherep defines the order of the polinomial model on the
spatial coordinates of the point,f (x). This process is often
called trend removal, and it is interesting because it can cap-
ture a real spatial structure present in the data. However, it in-
creases the complexity of the kriging model by adding more
parameters for estimation. A two-dimensional quadratic sur-
face, for example, adds five parameters beyond the intercept
parameter that need to be estimated. As it is well known,
the more parameters to be estimated, the more uncertain the
model becomes.

Spatial structure can also arise in climatic data due to co-
variation with other geographical factors such as the eleva-
tion or the solar incoming radiation. Co-kriging (CK) allows
considering the influence of external variables (co-variates)
by analysing the cross-correlation between the errors of the
different variables,ε′1(x), ε

′

2(x), etc.
Spatial correlation may occur at different distances when

different directions are considered; this characteristic is
calledanisotropy. Since the Ebro basin has a marked NW-SE
structure, the effect of including anisotropy in the model was
also evaluated.

In our study we compared OK, UK and CK methods. The
order of the trend removal component in UK was determined
by the lowest root mean square error, computed by a leave-
one-out bootstrap process. In the case of CK we used the
elevation, as determined by a digital terrain model (DTM), as
the spatially distributed co-variate; the kriging method used
was the best one from the previous methods, i.e. OK and UK.
All geostatistical analyses were done with the ArcGIS 9.3
software.

2.4.4 Mixed methods

Mixed methods, also called “hybrid” (Hengl et al., 2004), are
based on a combination of regression and local interpolation
techniques or kriging, exploiting the ability of regression to
relate the target variable to other spatially distributed vari-
ables and the spatial self-correlation acting at the local scale
on most spatial variables. Alternative forms of mixed meth-
ods have been proposed in the last years for mapping en-
vironmental variables (Odeh et al., 1994, 1995; Brown and
Comrie, 2002; McBratney et al., 2003; Hengl et al., 2004;
Ninyerola et al., 2007; Vicente-Serrano et al., 2007). These
and other studies have demonstrated that mixed methods usu-
ally allow for more precise and detailed representations of the
target variables.

There are several types of mixed interpolation methods
which vary upon their procedure. When regression residuals
(ε) are interpolated by means of kriging two methods can be
used: i) in kriging with external drift (KED), the drift com-
ponent is defined by regression upon some auxiliary vari-
ables and fitted together with the spatial distribution of the
residuals (Wackernagel, 1998; Chiles and Delfiner, 1999); ii)
in regresion-kriging (RK) the drift and the residuals are fit-
ted separately and then summed (Ahmed and Marsily, 1987;
Odeh et al., 1994, 1995). Other kind of mixed methods in-
terpolate residuals using local methods as the inverse dis-
tance weighting interpolation or splines (Vicente-Serrano et
al., 2003; Ninyerola et al., 2007).

In this study we used RK. To avoid misconceptions or
sub-optimal solutions (Hengl et al., 2004), regression predic-
tions were calculated by means of GLS (see Sect. 2.4.1.), and
then residuals surfaces were fitted by OK and added to the
GLS predictions. The R statistical analysis package (R De-
velopment Core Team, 2008) was used for RK.

2.5 Local uncertainty assessment

Spatial modelling involves uncertainty associated to the con-
tinuous estimated surface. Estimating the standard error of
the predictions is necessary for completing the spatial mod-
elling. In the case of spatial variables the problem is more
complex, since the standard error of the predictions is also
a spatial variable (Goovaerts, 2001). In this study we have
used the technique called Gaussian geostatistical simulation
(GGS). GSS generates multiple, equally probable represen-
tations of the spatial distribution of the attribute under study.
A normal score transformation is performed on the data so
that it will follow a standard normal distribution (mean=0
andσ 2=1). Conditional simulations are then run on this nor-
mally distributed data, and the results are back-transformed
to obtain simulated output in the original units. Given a high
enough number of simulations, its average will tend to equal
the surface estimated by SK. The standard deviation of the
simulations is taken as an estimator of the standard error of
the estimated surface, from which confidence bands can be
constructed. These representations provide a way to measure
uncertainty for the unsampled locations taken all together in
space rather than one by one (as measured by the kriging
variance). We performed a series of 1000 conditioned sim-
ulations from an initial SK model with second order trend
removal. GGS was performed with the ArcGIS 9.3 software.

2.6 Validation statistics

The resulting maps were compared by using a set of valida-
tion statistics. A leave-one-out procedure was used, consist-
ing in fitting the modeln-1 times –n being the number of ob-
servations in the data set, each time one observation is left out
of the fitting sample. These observations are used to calculate
the model residuals, i.e. the difference between the predicted
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Table 1. Computation of several goodness of fit statistics used on
this study.

Statistical critera Definitions:

N : no. of observations
O: observed value

O: mean of obs. values
P : predicted value

P ′
i
=P−

i
O

O ′
i
=O−

i
O

Mean bias error (MBE) MBE=N−1
N∑
i=1
(Pi −Oi)

Mean absolute error (MAE) MAE=N−1
N∑
i=1

|Pi −Oi |

Willmontt’s D D=1 −

N∑
i=1
(Pi−Oi )

2

N∑
i=1

(∣∣P ′
i

∣∣+∣∣O ′
i

∣∣)2

and the observed values. Cross-validation techniques are pre-
ferred to more traditional split-sample procedures for esti-
mating generalization error, since they allow an independent
validation without sacrificing an important amount of data
(Weiss and Kulikowski, 1991). Cross-validation is compul-
sory when comparing exact interpolators such as IDW or
splines, which by definition give an exact value at the lo-
cations used for fitting the model, i.e. all residuals at these
points are zero.

We used a set of goodness of fit statistics not to rely on
a single one (Table 1). These include: i) the mean bias er-
ror (MBE), which is centred around zero and is an indica-
tor of prediction bias; ii) the mean absolute error (MAE),
which is a measure of the average error; and iii) the agree-
ment indexD (Willmott, 1981), which scales the magnitude
of the variables, retains mean information and does not am-
plify the outliers. We avoided using the root mean square
error (RMSE) because it is highly biased by outlier obser-
vations, and also because it is difficult to discern whether it
reflects the average error or the variability of the squared er-
rors (Willmott and Matsuura, 2005).

3 Results

The spatial structure of the data was initially assessed by em-
pirical semivariograms, (Fig. 2). Spatial autocorrelation was
present for both variables at relatively short distances (less
than 15 km). Above this distance the spatial autocorrelation
disappeared, as it was also visible in the fitted Gaussian semi-
variogram models.

All interpolation methods were able to capture the re-
gional distribution of the two rainfall erosivity parame-

Fig. 2. Empirical semivariograms (circles) and fitted semivariogram
Gaussian models (lines) of the rainfall erosivity indices:(A) R fac-
tor; (B) EI30 index. Range parameters are: 10.98 km (R factor) and
13.05 km (EI30 index).

ters (Figs. 3 and 4). Differences between interpolation
methods were more evident for the EI30 index than for
the R factor. The R factor was highest – from 1200 to
4500 MJ mm ha−1 h−1 y−1 – in two areas: i) in the Pyre-
nees Range at the north, especially in the central part; and
ii) in the south-east mountainous part, corresponding to the
Iberian Range and the southern east region. The lowest val-
ues – from 40 to 800 MJ mm ha−1 h−1 y−1 – appeared in
the north-west of the area and in the centre of the Ebro
River valley. The spatial distribution of the EI30 index was
slightly different, showing a gradient from the north-west
(Cantabric Sea) to the south-east (Mediterranean Sea), mod-
ified to a certain extent by the relief. The highest values –
from 70 to 190 MJ mm ha−1 h−1 – were found in the south-
east corner, along the coast. Lower values – from 8 to
40 MJ mm ha−1 h−1 – are found close to the Cantabric Sea.
This pattern is similar to the distribution of the extreme rain-
fall events in the region (Beguerı́a et al., 2009), and is an
indicator of the EI30 index being closely related to the most
intense rainfall events.

3.1 Spatial distribution of the rainfall erosivity indices

The spatial distribution of both indices over the study area
can be explained to a large extent by the proximity to – or iso-
lation from – the water masses (the Cantabrian and Mediter-
ranean seas). The relief, with mountain ranges to the north,
south and east of the region, modify this general pattern by
increasing rainfall in those areas. Another effect of the relief
is the isolation of the central area from the main precipitation
sources, i.e. creating a zone of rain shadow.

Despite the general spatial pattern, differences were evi-
dent between the models. The maps produced by the local
methods – IDW and Spline with tension – were very much
influenced by individual observations. In most cases, local
variance can be associated with the occurrence of anomalous
events or very specific conditions, and might not reflect the
general pattern adequately. The maps produced by these two
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Fig. 3. Rainfall erosivity maps (RUSLE R factor) for the Ebro
Basin: (a) inverse distance weighting surface;(b) spline with ten-
sion (φ=5000);(c) smoothing spline (φ=400);(d) ordinary kriging;
(e) ordinary kriging with anisotropy;(f) universal kriging;(g) co-
kriging; (h) regression model (GLS);(i) regression-kriging.

methods varied slightly depending on the value of the r and
ψ parameters (maps not shown), but in all cases they had this
characteristic. The smoothed splines method, which includes
a smoothing function to reduce excessive influence of local
observations, produced a more regularized output.

Geostatistical methods – OK, OK with anisotropy and CK
– produced much more smoothed results than the local meth-
ods, yet retaining a good degree of detail. Anisotropy mod-
ified only slightly the results from OK by orienting the es-
timated surface in the direction NW-SE. The R factor map
resulting from UK – detrending the data by a second order
polynomial – was very similar to the surfaces generated by
local interpolators, i.e. it showed a high influence of local ob-
servations. The result of CK – OK with elevation as a covari-
ate – showed only a marginal increase in detail with respect
to OK.

The surface generated by GLS regression was similar to
the CK surface. The regression models were significant at
α=0.05, although the coefficient of determination (r2) of the
models was not high (0.212 for the R factor and 0.218 for the
EI30 index). The only significant variables atα=0.05 were
the spatial coordinates, and just for the R factor, revealing
the poor explanatory capacity of other auxiliary variables –
elevation and solar radiation (Table 2). This was also evi-
dent by the low values of the beta coefficients of these two
variables.

In the maps obtained by regression-kriging (RK) the influ-
ence of the interpolation of the residuals was evident. The
predicted map was very similar to the UK surface, especially
in the case of the R factor. In the EI30 index maps the influ-
ence of elevation and radiation could be eye noticed.

Fig. 4. Rainfall erosivity maps (average EI30 index of the erosive
events) for the Ebro Basin:(a) inverse distance weighting surface;
(b) spline with tension (φ=5000);(c) smoothing spline (φ=400);(d)
ordinary kriging;(e) ordinary kriging with anisotropy;(f) universal
kriging; (g) co-kriging; (h) regression model (GLS);(i) regression
kriging.

Table 2. Results of the generalized least squares regression of the
R factor and the EI30 index: regression coefficients, standardized
coefficients and significance level for each independent variable.

Variable Beta Standardized Significance
coeff. beta coeff. level

R factor
longitude 14.411 2.658 0.023∗

longitude2 −21.803 −2.582 0.219
latitude −0.010 −2.380 0.041∗

latitude2 0.003 2.744 0.191
elevation 0.087 0.047 0.579
solar radiation −201.853 −0.031 0.732

EI30 index
longitude 0.255 1.132 0.304
longitude2 −0.849 −2.418 0.239
latitude −0.0001 −0.861 0.432
latitude2 0.0001 2.166 0.291
elevation 0.003 0.045 0.593
solar radiation 0.691 0.003 0.977

∗ variable is significant at confidence levelα=0.05.

3.2 Validation

All methods underestimated the standard deviation of the
R factor and the EI30 indices, resulting in relatively poor
predictions (Tables 3 and 4). The observed standard devi-
ation was 621.7 for the R factor, which varied in the range
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Table 3. Accuracy measurements for the R factor models: mean
and standard deviation of the observed and predicted values, and
cross-validations statistics.

Validation statistics

Mean Standard MBE MAE Willmott’s
deviation D

Observed 891.40 621.77

Predicted

Inverse Distance Weighting (r=1) 896.64 292.49 5.24 355.26 0.534
Inverse Distance Weighting (r=2) 891.75 346.59 0.350 356.33 0.577
Inverse Distance Weighting (r=3) 896.85 420.40 5.44 367.40 0.595
Smoothed splines [T (x, y)=400] 895.86 275.70 4.45 354.99 0.521
Splines with tension (φ=400) 896.74 268.30 5.33 357.45 0.497
Splines with tension (φ=5000) 890.21 324.54 −1.19 348.27 0.573
Ordinary kriging (OK) 885.37 252.11 −6.03 357.76 0.491
Ordinary kriging with anisotropy 890.06 244.41 −1.34 356.45 0.491
Universal kriging (UK) 890.60 359.08 −0.806 355.79 0.584
Co-kriging (OK + elev) 877.69 318.02 −13.71 369.52 0.513
Regression (GLS) 900.53 292.64 9.13 386.31 0.468
Regression-Kriging 910.60 292.02 19.20 385.16 0.480
(GLS + residuals kriging)

40–4500 MJ mm ha−1 h−1 y−1, and 23.8 for EI30, which
varied in the range 8–190 MJ mm ha−1 h−1. Compared with
that, the standard deviation of the estimations ranged be-
tween 244.4 and 420.4 forR and 11.6 and 16.2 for EI30.
Consequently, all models had relatively large absolute er-
rors, which were higher than 30% of the mean predicted
value for most of them. Similarly, the values of the Will-
mott’s D statistic were low. These facts reflect the high
random character of both rainfall erosivity indices. The
low performance of the models was mostly due to their in-
ability to predict the highest values, especially those above
2000 MJ mm ha−1 h−1 y−1 for R and 100 MJ mm ha−1 h−1

for EI30, respectively. This can be clearly seen in the good-
ness of fit plots (Figs. 5 and 6).

Differences between the models regarding the validation
statistics were narrow, but allowed for a comparison. Ac-
cording to the validation statistics the local methods ranked
best for both indices, showing highest Willmott’sD val-
ues, and lowest MBE and MAE. The R factor was best
predicted by inverse distance weighting withr=3, followed
by universal kriging, whereas the EI30 index was best fit-
ted by splines with tension (φ=5000), followed by IDW
with r=3. Geostatistical models yielded good results, es-
pecially Universal Kriging, equalled by Co-kriging (OK
plus elevation) in the case of the EI30 index. The result
of including anisotropy in OK was only marginally better.
Finally, regression based methods – GLS and RK – yielded
the lowest validation statistics.

3.2.1 Local uncertainty

The previous results evidenced the high level of uncertainty
of the predictions of both erosivity indices. The uncertainty
model, however, is also a spatial variable and can have strong
differences between regions in the study area. The results of
Gaussian geostatistical simulation (GGS) helped assessing
spatial differences in the uncertainty model (Fig. 7). From

Table 4. Accuracy measurements for the EI30 index models: mean
and standard deviation of the observed and predicted values, and
cross-validations statistics.

Validation statistics
Mean Standard MBE MAE Willmott’s

deviation D

Observed 44.32 25.85

Predicted

Inverse Distance Weighting (r=1) 44.23 12.17 −0.536 14.60 0.565
Inverse Distance Weighting (r=2) 43.69 13.40 −0.635 14.62 0.582
Inverse Distance Weighting (r=3) 43.82 16.22 −0.502 15.17 0.584
Smoothed splines [T (x, y)=400] 44.44 12.05 0.116 14.58 0.568
Splines with tension (φ=400) 44.48 11.68 0.156 14.62 0.553
Splines with tension (φ=5000) 44.11 13.40 −0.210 14.28 0.602
Ordinary kriging (OK) 44.18 11.57 −0.144 14.90 0.540
Ordinary kriging with anisotropy 44.23 11.60 −0.091 14.33 0.562
Universal kriging (UK) 43.93 13.38 −0.392 15.17 0.573
Co-kriging (OK + elev) 43.97 13.41 −0.357 15.18 0.573
Regression (GLS) 44.74 12.54 0.420 16.69 0.504
Regression-Kriging 45.18 12.51 0.853 16.62 0.515
(GLS + residuals kriging)

Fig. 5. Comparison between observed (ordinate axis) and predicted
(abscissa axis) values for the interpolation methods used for the spa-
tial distribution of the R factor, line of perfect fit (continuous) and
regression line (dashed).(a) inverse distance weighting (r=2); (b)
smoothing spline (φ=400); (c) splines with tension (φ=5000); (d)
ordinary kriging;(e) ordinary kriging with anisotropy;(f) universal
kriging; (g) co-kriging;(h) regression model (GLS);(i) regression-
kriging.

1000 equiprobable conditional simulations, mean and stan-
dard deviation surfaces were generated for the R factor and
the EI30 index. Both surfaces showed the general pattern of
their respective rainfall erosivity indices. Local uncertainty
was quite high as showed by the standard error maps, where
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Fig. 6. Comparison between observed (ordinate axis) and pre-
dicted (abscissa axis) values for the different interpolation meth-
ods used for the spatial distribution of the EI30 index, line of per-
fect fit (continuous) and regression line (dashed).(a) inverse dis-
tance weighting (r=2); (b) smoothing spline (φ=400); (c) splines
with tension (φ=5000); (d) ordinary kriging; (e) ordinary kriging
with anisotropy;(f) universal kriging;(g) co-kriging;(h) regression
model (GLS);(i) regression-kriging.

the magnitude of the error ranged between 10 and 100% of
the mean value. The standard error increased rapidly for re-
gions located more than∼15 km away from any observatory,
indicating that the range of the spatial influence of the ob-
servations was quite small. This was already suggested by
the preliminary analysis of the semivariogram. From that
distance, which was larger for the EI30 index than for the
R factor, uncertainty distributed randomly.

4 Discussion and conclusions

Rainfall erosivity is an indicator of the precipitation ag-
gressiveness, and depends on the rainfall energy (raindrop
size distribution and kinetic energy) and the intensity of the
storm event. Rainfall under Mediterranean climate is char-
acterized by high temporal variability and a flashy character.
This last characteristic affects especially the rainfall erosiv-
ity, which depends on the occurrence of few, very intense,
events (Gonźalez-Hidalgo et al., 2007).

In this study we used the RUSLE R factor and the average
EI30 index of the erosive events to assess the spatial distribu-
tion of rainfall erosivity on the northeast sector of the Iberian
Peninsula. Both variables are characterized by a high tem-
poral variability, especially in the Mediterranean area and

Fig. 7. Local uncertainty modeled by Gaussian geostatistical sim-
ulation (GGS) for the R factor and the EI30 index: (a) mean of
R factor;(b) mean of EI30 index;(c) standard error of R factor;(d)
standard error of EI30 index.

in geographically complex regions (Leek and Olsen, 2000;
Gonźalez-Hidalgo et al., 2007). During the initial stage of
the analysis it was evident that close observatories could have
very different values ofR and EI30, and this was confirmed
by the analysis of the semivariogram.

Comparing both erosivity indices, the average EI30 in-
dex of the erosive events had larger variability thanR, be-
ing more affected by the most extreme events. The spa-
tial pattern of EI30 showed a clear northwest-southeast gra-
dient. The highest values were found in the southern re-
gion, coinciding with the distribution of the peak intensity
of extreme rainfall events for the same area (Beguerı́a et al.,
2009). The spatial distribution of the R factor showed the
highest values in the north and the south-east part, isolat-
ing the centre of the valley with low values. Previous works
have analyzed the spatial distribution of the USLE R factor
in Spain (ICONA, 1988). The value range and the spatial
distribution are similar to the results of our study. There
are differences however in the south-east corner along the
Mediterranean coastland. The map of ICONA (1988) did
not show the high erosivity values which were presented in
our dataset. This discrepancy could be due to the different
period of analysis, since the study of ICONA (1988) was
based on data from the period 1966–1976, although this is-
sue could not be assessed using the current dataset. Unfor-
tunately, the technical brief attached to the map of ICONA
did not report enough details allowing for a deeper compari-
son. The R factor values found for the area are similar to the
ones published by other authors for the Mediterranean re-
gion: 697.4 to 3741.8 MJ mm ha−1 h−1 y−1 in Portugal (De
Santos Loureiro and De Azevedo Coutinho, 2001); 471 and
3214 MJ mm ha−1 h−1 y−1 in Italy (Diodato, 2004); 339 to
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818 MJ mm ha−1 h−1 y−1 in Central Spain (Boellstorff and
Benito, 2005); or 419.01 to 1124.36 MJ mm ha−1 h−1 y−1 in
Sicily (Onori et al., 2006). We are not aware of previous stud-
ies analyzing the spatial distribution of the average EI30 in-
dex.

Despite the high spatial variability of both indices, the
mapping methods tested were able to capture the main spa-
tial pattern of rainfall erosivity in the area. The spatial
distribution can be explained by seasonal atmospheric be-
haviour which causes the major stormy events. In the Pyre-
nees these events are related with south-western flows con-
fronting the mountains triggering orographic rainfall in win-
ter, and convective storms in summer. Close to the Mediter-
ranean Sea the heating contrast between the atmosphere up-
per levels and continental and maritime surfaces, more in-
tense during fall, generates intense storms. This is the prin-
cipal cause of heavy rainfalls in the southeastern area (Llasat
and Puigcerver, 1997). These synoptic situations explain the
spatial pattern of rainfall erosivity, which is linked to the
most extreme events of the year. In addition, the strong re-
lief adds complexity to the climate dynamics making more
complex to obtain reliable models. It is responsible of oro-
graphic precipitation increase, and it also generates temper-
ature differences in narrow spaces which contribute to the
formation of convective cellules and local storms. Thus, the
general pattern present in all rainfall erosivity maps show a
clear north-west to south-east gradient, and marked local dif-
ferences caused by the relief.

The comparison of several interpolation techniques
yielded mixed results, since no single method arouse as op-
timal according to all validation metrics, and the differences
between models were narrow. Local interpolation methods
yielded the best results overall, which can be explained by
the very high spatial variability of rainfall erosivity as found
in the preliminary semivariogram analysis. However, the
maps produced by these methods masked the global pat-
tern by introducing spatial noise due to the excessive weight
given to local observations. Geostatistical methods were able
to capture more general pattern ranking slightly lower from
the local methods in the validation statistics. Among them,
universal kriging (UK) ranked best and was able to cap-
ture local detail whereas conserving also the general pattern.
Regression-based methods (GLS regression and regression-
kriging) ranked lowest due to their most global character. Be-
sides, the independent variables selected – elevation and so-
lar radiation – did not have significant explanatory capacity.
Regression-kriging ranked slightly better than regression-
based methods, but their prediction was not better than that
of UK.

The results obtained in the present study reflected the
highly random character of rainfall erosivity, evaluated by
both indices – the R factor and EI30 index. In general, the
models were bad at predicting the highest values of both in-
dices, due to the presence of outlier observations. The uncer-
tainty of the predicted values can be explained by the natural

climate variability in the study area, and also by the length
of the analysis period. Other authors have reported high
variability of soil erosion values in the Mediterranean re-
gion, both in space and time (González-Hidalgo et al., 2007).
Though, more information is needed for the assessment of
the causal factors responsible of the high uncertainty present
in all models. The quantification of uncertainty by means of
Gaussian geostatistical simulation (GGS), expressed by stan-
dard error surfaces, allowed estimating confidence bands for
the prediction surfaces. These cartographies constituted an
important result for the applicability of the rainfall erosivity
maps.

The results suggest that the database needs to be im-
proved both in time (longer high-frequency precipitation se-
ries) and space (denser network). With respect to the length
of the data series, it is generally accepted that a minimum
of 20 years is desirable for rainfall erosivity analysis (Renard
and Freimund, 1994; Renard et al., 1997; Curse et al., 2006;
Verstraeten et al., 2006). Unfortunately, there are very few
data bases of high time resolution rainfall records and a good
spatial coverage, as the one used in this work. Longer se-
ries are needed for reducing the strong influence of outlier
observations. With respect to the spatial distribution of the
data sets, the results showed spatial autocorrelation limited
to a perimeter of∼15 km. This fact evidenced the need for
improving the spatial coverage if better predictions are to be
achieved.

The availability of high-quality environmental maps is a
key issue for agricultural and hydrological management in
many regions of the World. Rainfall erosivity maps can be of
high relevance as a guidance for soil conservation practices,
and also because they are usually part of erosion models such
as the RUSLE. Recently, the RUSLE model has been imple-
mented into GIS packages, integrating all the factors as dif-
ferent layers. Hence, the accuracy of the spatial surface of
each factor is propagated to the outputs of the model. Com-
pared to other climatic variables, rainfall erosivity is char-
acterized by a high spatial and inter-annual variability, what
makes mapping more difficult.

Further research may be directed to find reliable erosivity
indices which can be computed from daily precipitation data.
This would allow using daily precipitation data bases, which
are usually longer and have a higher spatial coverage. This
would lead to more robust results, and will also make trend
analysis possible.
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la Ecuacíon Universal de Ṕerdida de Suelo, Ministerio de Agri-
cultura, pesca y alimentación, Espãna, 1988.
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