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Abstract. One of the challenges in river flow simulation
modelling is increasing the accuracy of forecasts. This paper
explores the complementary use of data-driven models, e.g.
artificial neural networks (ANN) to improve the flow simu-
lation accuracy of a semi-distributed process-based model.
The IHMS-HBV model of the Meuse river basin is used in
this research. Two schemes are tested. The first one ex-
plores the replacement of sub-basin models by data-driven
models. The second scheme is based on the replacement of
the Muskingum-Cunge routing model, which integrates the
multiple sub-basin models, by an ANN. The results show
that: (1) after a step-wise spatial replacement of sub-basin
conceptual models by ANNs it is possible to increase the ac-
curacy of the overall basin model; (2) there are time periods
when low and high flow conditions are better represented by
ANNs; and (3) the improvement in terms of RMSE obtained
by using ANN for routing is greater than that when using
sub-basin replacements. It can be concluded that the pre-
sented two schemes can improve the performance of process-
based models in the context of flow forecasting.

1 Introduction

It is a common practice to use semi-distributed conceptual
models in operational forecasting for meso-scale catchments.
These models are based on the principle of mass conserva-
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tion and simplified forms of energy conservation. Inaccurate
precipitation data and the need for its averaging for the sub-
basin models may seriously influence the accuracy of mod-
elling. Due to the limited representation of the full rainfall-
runoff process, the complexity of the model integration and
the identification of the lumped parameters, the proponents
of fully distributed detailed models argue that there are many
situations when the accuracy of conceptual models is not suf-
ficient. However, the simplicity of these models and the high
processing speed is an advantage for real time operational
systems and often makes such models the first choice.

Precipitation forecasts are normally available for low res-
olution grids which are close to the size of the modelled sub-
basins. It has been shown that there are situations when such
models are more accurate than the fully spatially distributed
physically based and energy based models (Seibert, 1997;
Linde et al., 2007).

An alternative approach to flow forecasting is using data-
driven models (DDM). The most common DDMs used in hy-
drological forecasting are artificial neural networks (ANN)
(ASCE, 2000; Brath et al., 2002; Toth and Brath, 2007), but
other types of models, for example M5 model trees (Solo-
matine and Dulal, 2003) or support vector machines (Dibike
et al., 2001) are used as well. Traditionally, modellers build a
general model that covers all the processes of the natural phe-
nomenon studied (overall model). Hydrological forecasting
data-driven models are not exceptions in this sense: they tend
to be developed on the basis of using a comprehensive overall
model that covers all the processes in a basin (ASCE, 2000;
Dibike and Abbott, 1999; Abrahart and See, 2002; Dawson
et al., 2005). However, such models do not encapsulate much
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of the knowledge that experts may have about the system,
and in some cases suffer from low extrapolation capacity
(generalization capability). In many applications of data-
driven models, the hydrological knowledge is “supplied” to
the model via a proper analysis of the input/output structure
and the choice of the adequate input variables (Solomatine
and Dulal, 2003; Bowden et al., 2005). These models are
less sensitive to precipitation and temperature information in
hydrological systems where high autocorrelation is found in
stream flows. Therefore, in operational systems where miss-
ing data is an issue, such models can replace local sub-basin
models.

An important component on the semi-distributed hydro-
logical model is the routing scheme, which integrates the
sub-basin model discharges. The Muskingum-Cunge has for
many years been successfully applied in flood modelling and
prediction (NERC, 1975; Ponce et al., 1996). In this study, a
river routing model based on the Muskingum-Cunge method
is replaced by an ANN model that integrates the results of
the different sub-basin models.

The approaches presented in this paper follow the general
framework of integrating hydrological concepts and data-
driven models using modular models that is being developed
in our recent publications (Corzo and Solomatine, 2007a,b;
Fenicia et al., 2007; Solomatine and Price, 2004) and has
been also explored byToth(2009); Abrahart and See(2002).

Finding adequate combinations of the mentioned model
types (conceptual models and DDMs) is a relatively new area
of research and has been studied only in recent years.Anctil
and Taṕe (2004) presented a successful combination of con-
ceptual models where the information from the time series of
soil moisture is fed into a neural network model. Their study
concentrated on using the daily time series for flow forecast-
ing purposes. However in the same study, the problems of us-
ing potential evapotranspiration and antecedent precipitation
index as input to the ANN models are reported. The work
presented byNilsson et al.(2006) shows that not only infor-
mation about soil moisture but also about snow accumula-
tion may bring improvement to the ANN modelling process.
Their results were based on monthly data with the purpose
of having more accurate forecasts for power production, dam
safety and water supply. Although in both papers integration
of models is employed, none of them use all the information
from the conceptual model. Basin sizes considered in these
studies were not more than 1400 km2.

Chen and Adams(2006) used ANN to link the sub-basin
models. The basin area was around 8500 km2, with a division
into three sub-basins based mainly on the river network sys-
tem. The calibration process included two stages: first, the
whole catchment was considered (no sub-basin discharge in-
formation was available), and, second, the output discharges
from the basins to the outlet were used as well. This approach
is similar to the one presented in the present paper, but we
considered a more complex basin, compared the model with
the ANN routing integrator with a full basin hybrid model in-
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Fig. 1. Replacement of sub-basin models by ANN models.

volving ANN submodels, and performed additional analysis
of the variations of the models seasonal performance (Fig.1).

The objectives of this paper are: (i) to analyse the per-
formance of DDMs in their role as sub-basin replacements
for overall flow simulations; (ii) to explore the use of an
ANN routing model for the integration of sub-basin models;
(iii) draw conclusions about the applicability of the hybrid
process-based and data-driven models in operational flow
forecasting.

2 HBV-M model for Meuse river basin

The conceptual hydrological model HBV was developed in
the early 1970s (Bergstr̈om and Forsman, 1973) and its ver-
sions have been applied to many catchments around the
world (Lindström et al., 1997). HBV describes the most
important runoff generating processes with simple and ro-
bust procedures. In the snow routine, snow accumulation
and melt are determined using a degree temperature-index
method. The soil routine divides the forcing by rainfall and
meltwater, into runoff generation and soil storage for later
evaporation. The runoff generation routine consists of one
upper non-linear reservoir representing fast and intermediate
runoff components, and one lower linear reservoir represent-
ing base flow. Runoff routing processes are simulated using
a simplified Muskingum approach and/or a triangular equi-
lateral transfer function (Ponce et al., 1996).

HBV is a semi-distributed model and the river basin can
be subdivided into sub-basins (HBV-S). This model simu-
lates the rainfall-runoff processes for each sub-basin sepa-
rately with a daily or hourly time step. Each sub-basin is
divided into homogenous elevations which are then divided
into vegetation zones. Further details about the HBV model
can be found inLindström et al.(1997) andFogelberg et al.
(2004).

The HBV-S sub-basin models are linked by a Muskingum-
Cunge equation. This routing equation is conventionally
applied to river reaches where the distance between the
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outlets of the basins is significant. The Eq. (1) was used in
this study.

Qn+1 = C0In+1 + C1In + C2Qn (1)

C0 =

(
Kx − 0.51t

K − Kx + 0.51t

)
(2)

C1 =

(
Kx + 0.51t

K − Kx + 0.51t

)
(3)

C2 =

(
K − Kx − 0.51t

K − Kx + 0.51t

)
(4)

where,K is a storage factor with units of time, and1t is the
time interval considered in the simulation. The value ofx

represents the position on the river channel in meters.In and
In+1 are the inputs to the channel at the beginning and the
end of the period1t , respectively.

Diermansen(2001) presented an analysis of spatial het-
erogeneity in the runoff response of large and small river
basins, and an increase of error is observed with an increase
of the number of spatial details in the model. An alterna-
tive to fully-distributed models is the class of intermediate
models, the so-called semi-distributed conceptual models,
as the most appropriate modelling approach for meso-scale
operational forecasting. In this research the IHMS-HBV
model (Lindström et al., 1997) belonging to this class is used
(http://www.smhi.se). In this paper it will be called simply
HBV, and will refer to the initial hydrological model formu-
lation used as a hydrological prototype module in the flood
early warning system for the rivers Rhine and Meuse.

Ashagrie et al.(2006) presented a long term analysis for
the effects of climate change and land use change on the
Meuse river basin using the HBV model. This analysis
showed that the agreement between the observed and mea-
sured discharge is generally good, in particular flood volumes
and the highest peak are simulated well. However, there are
some problems with the medium flow (shape and peak val-
ues), and a systematic deviation for certain observed periods
(i.e. 1930–1960) was also observed.de Wit et al.(2007b)
explored the impact of climate change on low-flows. They
found high accuracy for the monthly average discharge and
for the highest (January) and lowest discharge (August), but
there was an overestimation and underestimation observed in
spring and autumn, respectively. To improve the model per-
formance, various calibration techniques have been tried, e.g.
Booij (2005) presented the manual calibration and validation
of the HBV based on expert tuning of model parameters. The
problems mentioned above still remain unresolved and under
investigation by a number of authors.

Fig. 2. The Meuse River basin and the sub-basins divisions up-
stream of Borgharen. The arrows represent the regions for which
HBV-S model were replaced by ANNs (Scheme 2).

2.1 Characterisation of the Meuse River basin

The Meuse River originates in France, flows through Bel-
gium and The Netherlands, and finally drains into the North
Sea (Fig.2). The river basin has an area of about 33 000 km2

and covers parts of France, Luxembourg, Belgium, Germany
and The Netherlands. The length of the river from its source
in France to the North Sea at the Hollands Diep (an estuary
of the Rhine and Meuse rivers) is about 900 km. Major trib-
utaries of the Meuse are the Chiers, Semois, Lesse, Sambre,
Ourthe, Ambl̀eve, Vesdre and Roer. The hydrological model
of the Meuse basin upstream of Borgharen is subdivided into
15 sub-basins, covering an area of 21 000 km2 (Fig. 2). For
more detailed information about catchment geological and
hydrological properties seeBerger(1992) andde Wit et al.
(2007a).

In general terms the land use in the basin is made up of
34% arable land, 20% pasture, 35% forest and 9% built up
areas.Tu et al.(2004) found the coverage of forest and agri-
cultural land relatively stable over the last ten years, but the
forest type and management practices have changed signif-
icantly. In addition to this it seems that intensification and
upscaling of agricultural practices and urbanization are the
most important land changes in the last century.

As far as the hydrologic properties are concerned the
Meuse can roughly be split into three parts (Berger, 1992):

1. The upper reaches (Meuse Lorraine), from the Lorraine
sud to the mouth of the Chiers. Here the catchment is
lengthy and narrow, the gradient is small and the major
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bed is wide. Because of that the discharge up to the
mouth of the Chiers has a comparatively calm course.

2. The central reaches of the Meuse (Meuse Ardennaise),
leading from the Chiers to the Dutch border near Ei-
jsden. In that section the main tributaries are Viroin,
Semois, Lesse, Sambre and Ourthe. Here the Meuse
transects rocky stone, resulting in a narrow river and a
great slope. The poor permeability of the catchment and
the steep slope of the Meuse and most of the tributaries
contribute to a fast discharge of the precipitation. The
contribution of the area to flood waves is great, the con-
tribution to low flows is small.

3. The lower reaches of the Meuse, corresponding to the
Dutch section of the river. The lower reaches them-
selves may again be split into the stretches from Eijs-
den to Maasbracht and from Maasbracht to the mouth.
In the former part the slope is still relatively high. For
the greater part the river has no weirs here. In the sec-
tion the Meuse has no dikes. For those reasons the
stretch above Maasbracht is occasionally reckoned as
part of the Meuse Ardennaise, which in that case flows
from Sedan to Maasbracht. It may be remarked that
the stretch that forms the border with Belgium is called
the Grensmaas (Border Meuse) in the Netherlands, and
Gemeenschappelijke Maas (Common Meuse) in Flan-
ders.

2.2 Data validation

The validation of the data sets presented in this paper
are based on the results obtained from different researches
(Booij, 2002; van Deursen, 2004; Leander and Buishand,
2007; Ashagrie et al., 2006; de Wit et al., 2007b). The
model used for this study (IHMS-HBV-96) was calibrated
and validated by van Deursen (2004) for the basin upstream
of Borgharen over the period 1969–1984 and 1985–1998, re-
spectively. The overall model error obtained in the validation
was±5%. Ashagrie et al.(2006) concluded that the aver-
age correlation of the HBV predictions and measured data is
around 0.9, and the Nash-Sutcliffe efficiency is 0.93.

Hereafter HBV-M (HBV-Meuse) refers to the instantia-
tion of the HBV rainfall-runoff model for the whole of the
Meuse basin. The calibration and validation data sets used in
HBV modelling were constructed in such a way that the ob-
served and simulated discharges in both data sets in terms of
flow volumes, and the number of flood peaks and the overall
shape of the hydrographs are similar. However, initially no
specific low-flow indices are used neither for calibration nor
validation. Therefore in this study the results of the hydro-
logical simulation of the Meuse discharges done byde Wit
et al.(2007b) are used. In their study, the model was specif-
ically validated against low-flow indices derived for the pe-
riod 1968–1998.

The HBV-M model simulates the rainfall-runoff processes
for each sub-basin separately. The sub-basins are intercon-
nected within the model schematization and HBV-M simu-
lates the discharge at the outfall. The schematisation and pa-
rameter optimization is derived from the approach proposed
by van Deursen(2004).

The Meuse basin model has been calibrated and validated
using daily temperature (T ) and precipitation (P ) for 17 loca-
tions interpolated from measurement stations, the calculated
potential evapotranspiration (Epot) per subbasin, and the dis-
charge (Q) at Borgharen. The interpolation of the different
locations was performed using kriging (Stein, 1999).

HBV-M has been run on a daily basis using daily tem-
perature, precipitation, potential evapotranspiration and dis-
charge data for the period 1968–1984 (calibration) and 1985–
1998 (validation) byBooij (2002, 2005) and fine-tuned (with
more detailed data) byvan Deursen(2004).

Complementary information on data validation can be
found in the research done byde Wit et al.(2007a). Their
work presents the complete and detailed description of the
hydrological data used for the model development.

3 Methodology

In this study two hybrid modelling schemes were tested. In
the first one, some of the HBV-S (sub-basin) models were
replaced by data-driven model representations. The sec-
ond scheme is based on the replacement of the Muskingum-
Cunge flow routing model (1) by an ANN model integrating
the outputs of the sub-basin models.

3.1 HBV-M model setup

The model results in this study have been evaluated against
the observed discharge records using (a) the volume errors
(mm/yr), (b) the coefficient of efficiency (CoE) for the gaug-
ing stations along the Meuse and the outlets of sub-basins
and the root mean squared error (RMSE, Eq.5); (c) the nor-
malised RMSE (NRMSE, Eq.6) (for comparing the sub-
basin models with considerably different flows).

RMSE=

√∑n
i=1(Q

i
s−Qi

o)
2

n
(5)

NRMSE=

√∑n
i=1(Q

i
s−Qi

o)
2∑n

i=1(Q
i
o−Qo)2

(6)

CoE= 1 −

√
SSE√

n∑
t=1

(Qobs,t − Q̄obs,t )2

(7)
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whereQs is simulated discharge (m3/s);Qo is observed dis-
charge (m3/s); n is the number of observations, and is av-
erage observed discharge (m3/s) over the whole period (all
summations are run from timei=1 ton).

3.2 Scheme 1: sub-basin model replacement

3.2.1 HBV-S sub-basin models

The objective of the further analysis is to determine the av-
erage error contributions of the different sub-basin models
(referred to as HBV-S) to the total error of HBV-M, and
hence to identify the candidate sub-basin models that would
need improvement or replacement. In this modelling exer-
cise the river basin behaviour during different seasons and
flow regimes will be also taken into account.

3.2.2 Sub-basin error contribution

The relative error contribution from a particular HBV-S (sub-
basin) model is calculated as follows. First, the HBV-M
model is run and its RMSE at the outlet is calculated. Then,
according to a given replacement scenario a number of input
measured discharges are fed into the HBV-M. These mea-
sured discharges were available only for some basins, and are
the ones used for the different HBV-S model replacements
scenarios. The HBV-M model is run once for each scenario.
The resulting RMSE for each scenario is compared to the
RMSE of the standard HBV-M. This gives the possibility of
identifying the overall error variation due to the sub-basin
model simulation. Such an error contribution is calculated
for the different flow conditions (e.g., dry and wet seasons).

The replacement of the sub-basin models is performed in
sequence: it starts with the Lorraine Sud in the direction
downstream towards Borgharen, then one more sub-basin
model is replaced, then yet another one, until all selected sub-
models are replaced (ending at Borgharen). It is important to
stress that the independent replacements of sub-basins will
not allow for seeing the accumulative error reduction, which
is necessary to have an overall idea of the total error of the
sub-basin replacement. Two important assumption are made
to be able to visualize the error contribution. First, is that the
compensation of errors when adding the basin is minimal in
comparison to the error of the basin contribution. The second
assumption is based on the additive linear error propagation
along the river basin.

3.2.3 Data-driven sub-basin models

After the error contribution of the HBV-S models are iden-
tified, data-driven models (DDM) can be built for each of
the sub-basins under consideration. Various data-driven tech-
niques are compared to select the representative and accurate
DDM. Their performances were compared to that of the ex-
isting HBV-M model. Apart from that, an attempt was made
to recalibrate a number of local HBV models; however, the

Table 1. Data available for the Meuse tributaries (catchment area
until Borgharen).

Sub-basin Location of measurement % Areaa Available
tributary/river data

Subbas 1 St. Mihiel – Meuse 12.1 1969–2005
Subbas 2 Carignan – Chiers 10.5 1966–2005
Subbas 3 Stenay – Meuse 6.5 1982–2005
Subbas 4 Chooz – Meuse 10.7 1969–2005
Subbas 5 Membre – Semois 5.9 1968–2005
Subbas 6 Treignes – Viroin 2.5 1974–2005
Subbas 7 Maas Chooz Namur 5.4 –
Subbas 8 Gendron – Lesse 6.2 1968–2005
Subbas 9 Sambre 13.1 –
Subbas 10 Tarbeux – Ourthe 7.6 1988–2005
Subbas 11 Martinrive – Ambleve 5 1974–2005
Subbas 12 Chaudfontaine – Versdre 3.3 1992–2005
Subbas 13 Moha – Mehaigne 1.7 1969–2000
Subbas 14 Maas Namur Borgharen 7.4 –
Subbas 15 Jeker 2.2 –

a Catchment area until Borgharen.

overall performance obtained was lower than that after the
calibration of HBV-M as a whole, and these experiments are
not presented here. A detailed reference of the algorithms
used can be found inHaykin (1999) andWitten and Frank
(2000).

In the case study, before identifying the relative error con-
tribution of various sub-basin models, several types of the
DDMs were compared for 8 of 15 sub-basins. This made
it possible to judge if DDMs are useful as HBV-S replace-
ments.

Each data-driven rainfall-runoff model for the sub-basins
uses precipitation and measured discharge as inputs, and the
response discharge of the basin is generated for the moment
T time steps ahead. The general DDM forecast formulation
can be represented as follows:

Qt+T = f (Rt , Rt−1, Rt−2...Rt−L, Qt .....Qt−M) (8)

where the optimal lagsL for precipitation andM for dis-
charge are obtained through model optimization (these can
be different for various forecast horizonsT , in our case AMI
and correlation results are used);f is the data-driven regres-
sion model, andT is the forecast horizon (e.g. 1 day). In
this research several data-driven models are tested; including
linear regression model (LR, Kachroo and Liang, 1992), ar-
tificial neural networks (ANN,Dawson et al., 2005and M5
model trees (MT,Solomatine and Dulal, 2003).

Neural network are all trained using the same random
seed, and trained with the Levenberg-Marquardt optimiza-
tion algorithm (Levenberg, 1944; Marquardt, 1963). The
learning rate was set to 0.1, one hidden layer with sigmoid
function, and one linear transfer function in the output layer
are common properties of the models. The ANN models
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have been optimized using a cross-validation set for deter-
mining the number of hidden nodes.

Building M5 model trees (piece-wise linear regression
models) followed the procedure presented byWitten and
Frank(2000). The size of the trees is controlled by fixing of
the minimum number of instances in linear regression mod-
els at leaves (e.g. four).

3.3 Scheme 2: integration of sub-basin models

Routing is a common way to integrate sub-basin models of
a meso-scale catchment. However, river routing models in-
clude hydrodynamic conditions that require a large number
of physical measurements. The accuracy is determined by
the availability and the quality of these measurements and
of the models. Since the cost of the measurements is high,
often simplified routing equations are used. In HBV the
sub-basin models use simple transfer functions that repre-
sent the routing process. The main idea of the Scheme 2
is the replacement of the traditional runoff routing equations
by a more accurate non-linear function (data-driven model,
Fig. 3). In this paper we have chosen for the multi-layer per-
ceptron ANN (ANN-MLP) due to its widely known robust-
ness and accuracy. The output discharges from the fifteen
HBV-S sub-basin models are lagged and used as input to this
model. The lags are determined using the correlation and
average mutual information analysis involving different sub-
basin flows and the final outflow at Borgharen. The general
ANN-MLP model to determine the flow downstream can be
formulated as function of the different lags of the sub-basins.

Q
Borgharen
t+T = f

(
Q1

t−l11
, Q1

t−l12
, ...,Q1

t−l1M
, Q2

t−l21
, ...,

Q2
t−l2M

, ...,QN

t−lNM

)
(9)

where the lower-indexT represents forecast horizon,N is
the total number of sub-basins, andlki the lagi at each sub-
basink. M is the total number of lags taken per sub-basink.
All basins in the model are lagged with respect to the current
flow at Borgharen.

4 Application of Scheme 1: data-driven models for
sub-basin representation

4.1 Inputs selection and data preparation for DDMs

Each data set is split into a training set (70%; some data is
used for cross-validation as well) and a verification (30%)
set. This procedure is performed in a way that ensures that
the training data contains the maximum and minimum values
of each variable to reduce the possible extrapolation prob-
lems. Additionally, the statistical similarity of each set was
verified by comparing its probability density function. The
first step in developing data-driven models for the Meuse
sub-basins was to identify the most appropriate inputs for

predicting future discharges. Two approaches were used to
select the appropriate input variables and their lags: correla-
tion analysis and the average mutual information (AMI), as
it was done, for example, bySolomatine and Dulal(2003).
A lag is defined as the number of time steps by which a time
series is shifted relative to itself (when autocorrelated), or rel-
ative to the corresponding time values of another time series
(when cross-correlated). The correlation coefficient and AMI
were calculated for 10 lag values. The variables compared
were discharge, precipitation and evapotranspiration. Since
the correlation analysis reflects only linear relationships and
the phenomena are highly non-linear, the analysis based on
AMI was employed as well. The AMI between two mea-
surementsxi andyj drawn from setsX andY is defined by:

IXY =

∑
xi
yj

P(Xi ,Yj )log2

[
PXY (xi, yj )

PX(xi)PY (yj )

]
(10)

P(Xi ,Yj ) =

∫ ∫
XY

f (x, y)dxdy (11)

whereP(Xi ,Yj ) is the joint probability density for measure-
mentsX andY resulting in valuesx andy, which are the in-
dividual probability density functions for the measurements
of X andY . If the measurements of a value fromX result-
ing in xi is completely independent of the measurement of
a value fromY resulting inyj then the average mutual in-
formation IXY is zero. The probabilities were calculated
with different bin sizes and the results were similar. Fig-
ure 4a shows the AMI for the Ourthe (a) and Lorraine Sud
(b), which represent the sub-basins with faster and slower
precipitation-discharge response, respectively. The maxi-
mum AMI of precipitation-discharge time lag for the Ourthe
corresponds to a three-day lag (Pt−3), and for the Lorraine
Sud sub-basin up to a four-day lag (Pt−4)).

Based on a similar analysis to the one presented in the
Fig. 4, the following model structure was adopted for eight
basins:

Qt = f (Pt , Pt−1, Pt−2, Pt−3, Qt−1) (12)

The models were built for: Semois, Viroin, Lesse, Our-
the, Ambleve, Mehaigne, Chiers, Lorraine Sud; see location
Fig. 2. The data used to build each sub-basin model (except
Vesdre) covered the period from 1989 to 1995 for the training
set and the period from 1996 to 1998 for testing. Due to the
availability of data, for Versdre the data set used for training
and testing covers the period from 1992 to 1996 and from
1997 to 1998, respectively. Stenay and Chooz (Sub-basin
3 and 4), have input from other three and one sub-basin flow
(confluence sub-basins), and therefore not represented strick-
tly as catchment nor contemplated in this analysis. These two
sub-basins are defined for the overall integrated HBV simu-
lation and not for local model representation.
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Fig. 3. Diagram of the ANN as replacement for the routing model (Chen and Adams, 2006).
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Fig. 4. Average mutual information for between lagged precipitation and discharge for sub-basins Ourthe(a) and Lorraine Sud(b).

4.2 Data-driven sub-basin models

The performance of the HBV-S models was compared with
that of several data-driven models (LR, M5P, ANN, Fig.5);
NRMSE was used as the error measure.

Both ANN and M5P data-driven models outperform the
HBV-S models. Only for the Lesse, Ourthe, Ambleve, and
Vesdre HBV-S model error is relatively low, but even then it
is not comparable with that of the data-driven models. Ac-
cording to Berger (1992), Ourthe sub-basin together with

Vesdre and Ambleve are the most important tributaries for
flood forecasting, relating area percentage and response time.
HBV-M results for Semois, Viroin, and Mehaigne show high
NRMSE. The error graphs show that the M5P and ANN
models outperform the HBV model for all the considered
sub-basins.

It should be stressed that DDM and conceptual models are
different in nature and are based on different assumptions.
As mentioned byToth and Brath(2007), DDM (referred as
system-theoretic models) can incorporate information about
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Fig. 5. Comparison of model performance for each sub-basin, expressed in NRMSE of streamflow (Calculated for verification period).

discharge coming from real-time measurements preceding
the forecast instant, and the conceptual model assumes that
only forcing (typically precipitation and temperature) input is
sufficient to drive the evolution of the system. The concep-
tual model aims to represent the processes of the modelled
phenomena (albeit roughly), and the DDM is based on the
analysis of historical data.

Since the conceptual model only uses the forcing informa-
tion (precipitation, temperature, etc.), to obtain forecast with
extended lead times in the conceptual model weather forecast
information can be effectively fed into conceptual models to
make forecast for longer lead times.

To obtain more accurate real-time forecasts it is often pos-
sible to use the up-to-date observed system outputs in order
to minimize the acknowledged errors due to the model in-
adequacies (Kachroo, 1992; Moore, 1983; Schreider et al.,
1997). Comparison of various updating schemes, using both
types of models can be found, for example, inToth and Brath
(2007); Brath et al.(2002). Updating schemes were not con-
sidered in this study but it is planned to do so.

The ANN-MLP model outperforms HBV in more cases
than M5P does, and therefore is selected for the replacement
experiments. The results show that DDMs can serve as ac-
curate replacement models for sub-basins. However, when
more and more sub-basin models are replaced, there will be
less and less hydrological knowledge (encapsulated in pro-
cess models) left. Therefore analysis of the overall perfor-
mance of the model under different replacements has been
undertaken and presented below. Since there is a large num-
ber of possible scenarios of replacing various numbers of
models, it is necessary to analyze the river basin behaviour

and the relative quality of the individual HBV-S sub-basin
models with respect to the overall basin measurements given
by the discharge at Borgharen.

4.3 Analysis of HBV-S simulation errors

The changes in the overall model performance (RMSE) on
the verification data set as a result of various replacements
with measured discharge data are shown in Fig.6 and Ta-
ble2.

The replacement order can be followed by reading Fig.6
from top to bottom. From the total RMSE of 83.84, Chiers
has the largest relative error contribution of 4.53% (10.5%
of the total area), followed by Lorraine Sud (2) and Lesse
sub-basins with an error contribution of 3.86% (12.10% of
the total area) and 2.81%, respectively. Chiers is the sec-
ond largest sub-basin of the Meuse and it is known that it
commonly influences floods generated by its slow response,
Lorraine Sud is also a slow responding basin. Vesdre, Am-
bleve, Viroin and Ourthe basins closer to the outlet are the
most accurate in the HBV-M model and are the ones directly
responsible for floods.

Hydrological data is available for 52% of the basin area;
however, only 20% of the total errors seem to be attributed to
this area. The rest of the error contribution can be associated
with the other variables in the system, the modelling capacity
of the HBV, as well as the different uncertainties in modelling
of the basin. It would also be interesting to identify the er-
ror contribution of the Sambre, the largest sub-basin, but this
was not carried out due to data unavailability. In Fig.6, the
RMSE contributions obtained by each sub-basin replacement
are associated with the measured discharge values.
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Table 2. RMSE error contribution to the HBV overall simulation.

Sub-basin Relative error reduction Area Area Observed – Simulated
HBV-M (RMSE, m3/s) (km2) (% of total basin) (% Volume Difference)

Mehaigne 0.87 346 1.65 1.04
Ambleve 1.44 1050 5.00 1.72
Ourthe 1.89 1597 7.60 2.26
Lesse 2.36 1311 6.24 2.81
Viroin 1.08 526 2.50 1.29
Semois 1.35 1235 5.88 1.61
Chiers 3.79 2207 10.51 4.53
Lorraine Sud 3.23 2540 12.10 3.86
Others 67.82 10 188 48.51 80.89
Total HBV error 83.84 21 000 100 100

Fig. 6. Percentage of sub-basin models errors for dry and wet seasons.

Since it is well known that seasonality influences this river
basin, the error contributions of the HBV-S models in sum-
mer (May–October) and winter (November–April) seasons
are calculated in terms of the percentage of error with re-
spect to the total HBV-M error; see Fig.6. The results in
Fig. 6 show that there is a homogeneous error contribution
from Chiers in both seasons. The model for Lorraine Sud
basin has a higher error contribution for summer and a small
overall contribution in the winter. Clearly the calibration of
the model is well suited for summer conditions where the
slow response of the catchment is important for the average
discharge in these periods. This is congruent with the size
(2540 km2), which represents approximately 10% of the con-
sidered area.

In terms of flood forecasting at Borgharen the most sen-
sitive basins for the HBV-M model distribution are Ourthe,
Vesdre and Ambleve. The analysis shows that the Ourthe
and Ambleve stream flows do not influence the model in the
summer period, but together make a significant contribution
to the error generated in the winter season. The contributions

of the Mehaigne and Viroin sub-basins do not depend on the
season: they have a small and similar error percentage for
both seasons.

4.4 Replacements of sub-basin models by ANNs

There are numerous replacement scenarios and these should
be identified based not only on the previous error analysis,
but also taking into account the river basin behaviour during
the different seasons and the different flow regimes. The total
number of possible replacement scenarios (combinations of
the sub-basin models with the data availability) is too high
and it is not feasible to analyze them all. The experiments
to replace a sub-basin model were carried out using only 8
scenarios as shown in Table3.

The scenarios reflect mainly the fact that sub-basins with
slow and fast flow responses contribute to different compo-
nents of the resulting streamflow (mainly low and high flows,
respectively). Characterisation of the eight scenarios (R1-
R8) is as follows:
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Table 3. Replacement scenarios and the effect of their implementation.

Short Replacement PARa ADCb RMSE RMSE ANN−S
MD (%)

Name (%) (%) Reduction (ANN-S) Reductionc MD

R1 Chiers 11 10 3.84 4.53 0.85
R2 Chiers, Semois, Viroin 19 22 6.17 7.42 0.83
R3 Ourthe and Ambleve 13 15 2.25 3.98 0.57
R4 Ourthe, Ambleve, Lesse 19 21 4.21 6.79 0.62
R5 Ourthe Ambleve, Semois 18 25 3.73 5.58 0.67
R6 Semois, Chiers, Lesse 24 28 7.52 8.39 0.9
R7 Ourthe, Ambleve, Semois, Lesse, Chiers 35 41 8.62 12.92 0.67
R8 Lorraine Sud, Chiers, Semois 28 28 9.47 9.99 0.95

a Percentage of area replaced of the total basin (PAR).
b Average discharge contribution in relation to the total average discharge (ADC). The total average discharge is calculated using the average
annual discharge from 1970 to 2000 (280.1 m3/s).
c Measured data (MD).

(a) Sub-basin 1 (St. Mihiel – Loraine Sud) (b) Sub-basin 2 (Chiers)

(c) Sub-basin 3 (Stenay-Meuse) (d) Sub-basin 4 (Chooz-Meuse)

Fig. 7. Hydrographs of sub-basin models giving important contributions to the overall model.
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– R1: the sub-basin (Chiers) with the largest error contri-
bution, and a slow runoff response.

– R2: three sub-basins which include the Meuse tribu-
taries upstream of Chooz. These are the highest eleva-
tion areas with relatively low slope and slow response
during flood situations.

– R3: the two fast responding sub-basins that have high
contributions during floods (Berger, 1992).

– R4: the same sub-basins as in R3, but together with the
slow response Lesse sub-basin whose model has a high
error in summer and a low error in winter.

– R5: the same sub-basins as in R3, but together with the
slow responding Semois whose model has a high error
in summer and low error in winter.

– R6: combination of slow and fast responding sub-
basins.

– R7: combinations of slow and fast responding sub-
basins, but with a larger area covering 35% of the basin.

– R8: slow responding sub-basins with a large total area.

Table3 presents the HBV-M model performance changes
as a consequence of the different ANN-S replacement strate-
gies. The following statements describe the interpretation of
some of the results:

The effectiveness of the models replacements can be eval-
uated by analysing the changes in the overall HBV-M RMSE.
The last column presents the percentages of the maximum
reduction possible in case of implementing a particular re-
placement scenario.

Comparing sub-basins with similar area and similar dis-
charge we can see where the replacement of models was
more successful. For example R1 and R3 have similar per-
centage of area (11 and 13, respectively), also similar aver-
age discharge contribution (10 and 15, respectively). How-
ever, the R1 (ANN-S) model gives a RMSE reduction (85%),
which is higher than that for the scenarios R3, corresponding
to larger areas and higher average discharge. This is an in-
dicator that low flows play a significant role in the overall
process, and also reflects the weakness of the HBV-S models
currently used in simulating low flows.

A similar situation can be observed when R7 replaced a
bigger area (35%) than R8 (28%), however, the efficiency for
the latter replacement is significantly higher (95%). In terms
of discharge, R8 has a smaller average discharge and there-
fore less contribution. For the scenarios R6 and R8 results
show a similar error reduction after the replacement. They
have approximately the same average discharge percentage
contribution to the basin and a similar area, however, their
seasonal error contribution is different (Fig.6).

The influence of changing Ourthe and Ambleve for Lor-
raine Sud shows that most of the errors arise in the low flow

Fig. 8. Hydrograph replacements (R8) and (R6).

modelling. The Lorraine Sud is the most distant basin with
relatively mild slope, and therefore its contribution to flash
flood (fast flow and runoff) is minimal. This is consistent
with the results ofde Wit et al.(2007b), who showed that the
peak discharges of Vesdre and Ourthe basins are larger than
those of Chooz. The results point to a partial explanation
based on the differences in precipitation depths of the region
and on the difference in hydro-geological conditions. On
the other hand, the basins Ourthe and Ambleve (central part)
are closer to the outlet and their individual performances are
more sensitive for short time lags and fast phenomena.

The results of simulations for the verification period (last
three years) are evaluated by calculating the RMSE and Co-
efficient of efficiency (Fig.9). A typical section of the hy-
drograph is extracted in Fig.8. The shape of the hydrograph
with ANN-S replacement is mainly driven by the overall hy-
drological model. It is possible to see that after the replace-
ment R8 the flows under 600 m3/s are closer to the observed
discharge. For flows above 600 m3/s the HBV-M is hardly af-
fected due to the low influence of the replaced basins during
the peak flow events (Fig.8). This shows that the replace-
ment affects mainly the low flow simulation periods.

If one analyses only the reduction in the overall RMSE,
then the replacement scenario R8 would result in the model
that can be recommended to use instead of the HBV-M.

5 Application of Scheme 2: integrating sub-basin
models by ANN

To build a neural network model for routing, preprocessing
and input variable identification is required. For this the AMI
and cross-correlation analysis were carried out to identify
the relation (time lag) between the local sub-basins discharge
calculated by the HBV model and the measured discharge at
Borgharen. For most of the sub-basins the maximum value of
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Fig. 10. Scatter plots of target (measured) and ANN model for training and verification period.

AMI related to the observed discharge at Borgharen is a time
lag of 1 day. Exceptions are sub-basins 9 (Sambre), 10 (Our-
the), 13 (Mehaigne), and 15 (Jeker) since the corresponding
AMI is at maximum for lags less than 1 day. Therefore in
Eq. 8, only 1 day lags is considered for all basins. Fifteen

inputs and the discharge at Borgharen are the input and out-
puts, respectively. These results are in agreement with recent
research (de Wit et al., 2007a), where it was found that the
travel time between the measuring stations of the Sambre and
Mehaigne, Ourthe and Jeker to Borgharen is less than half
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Fig. 11. Hydrograph of the original HBV-M and HBV-ANN integrated models.

a day. More precise time lags can be obtained with hourly
data. The average travel time of the flow between the Semois
measuring station (sub-basin 5) and Borgharen is one day
(Berger, 1992).

The results of the model can be visualized by scatter
plots. High correlations are found between the observed and
simulated discharge both for training and verification sets
(Fig. 10).

Figure11 shows the observed and simulated discharges at
Borgharen from 2 December 1990 (record 700) to 20 June
1991 (record 900). On average the integrated HBV-ANN
model outperforms the original HBV-M model. The reces-
sion curve of the hydrograph is clearly closer to the measured
curve and what was viewed as the systematic error in the re-
cession curve of the HBV-M model is now corrected. An
interesting phenomenon can be observed close to the mea-
sured peak: the measurement value goes up and down before
it reaches its maximum value. This peak change in the hy-
drograph is reproduced by the ANN routing model with a
relatively small underestimation.

For a 3 years error analysis the HBV-ANN gives RMSE
of 58.66 m3/s. An extended error analysis of nine years ver-
ification period shows that the RMSE for the HBV-M and
HBV-ANN are 86 m3/s and 55 m3/s respectively which is a
36% improvement (Table4). The coefficient of efficiency is
also improved from 0.918 for the HBV-M to 0.967 for HBV-
ANN model. For both winter and summer seasons it is clear
that the use of ANN for integrating the sub-basin models im-
proves the accuracy.

5.1 Integrating Schemes 1 and 2

The ANN-MLP routing model integrates the results of the
sub-basin models and generates the value of discharge at the
outlet (Borgharen). By doing so, the ANN routing is already
correcting the regional behaviour of each sub-basin model,
so the ANN-MLP routing acts as an error corrector. There-
fore, the use of another sub-basin model (e.g. R8 scenario
in Table3), with different error performance, as input of the
ANN-routing model does not add new knowledge into the
model, but only increases the error. The replacement R8 into
the ANN-MLP (scheme) had almost the same performance
as the original HBV without any replacement (RMSE 82.91,
see Fig.12).

6 Discussion

In this section the results for each scheme are discussed and
compared.

6.1 Scheme 1

The results show that replacing some of the conceptual sub-
basin models with data-driven models clearly improves the
overall model performance. Doing so the low flow errors re-
lated to some of the sub-basins can be reduced without any
deterioration in the high flow performance. The operational
forecasting system using process-based models requires vari-
ables like precipitation and temperature for each simulation
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Table 4. Comparison between the HBV-M model and the integrated HBV-ANN model.

Hydrological year (Nov–Oct) Winter (Nov–Apr) Summer (Apr–Oct)

Model HBV-1 HBV-ANN HBV-1 HBV-ANN HBV-1 HBV-ANN
RMSE (m3/s) 85.65 54.51 100.02 64.26 71.66 45.56
NRMSE 0.29 0.18 0.27 0.18 0.48 0.31

Fig. 12. Hydrograph comparison for the HBV-ANN with and without R8 replacement.

forecast, however, whereas the ANN models only previous
measured discharge is needed. Therefore, this approach may
bring operational advantages on the locations where weather
forecast information may not be available.

The choice of the best combination of HBV and ANN
components depends on various factors and is, in fact, a
multi-criteria problem. One may also think of rules (taking
into account for example the season, data availability, loca-
tion) that decision maker would use to select the final model.

The use of Scheme 1 may well be suited for simulation,
but comparative tests with data-assimilation and data-driven
approaches of the whole basin may be needed to determine
whether the use of data-assimilation in operational system
is more accurate or suitable than a simple ANN model of a
basin. This analysis will be conducted in further studies.

Note that the extended forecast made by DDMs can be
produced in different ways. Simply using previously simu-
lated discharges in an autoregressive conceptualization might
be the most straightforward approach. Another approach was
explored byToth and Brath(2007); Corzo and Solomatine
(2007a), where separate ANNs were created for each lead
time value.

Three important implications have to be mentioned here.
Firstly, the use of previously simulated discharges iteratively
decreases the quality of the forecast. Secondly, if we assume
that the measured information is a perfect forecast, the HBV
average performance will not decrease for higher forecast
horizons. Thirdly, the DDM is not representing the basin
behaviour and instead is acting more as an autoregressive
model with a small component given by the precipitation.

The data-driven model, which tends to generate high
weight values for input from previous discharges in its struc-
ture, underestimate the use of other variables that are poorly
correlated with the output. In this sense data-driven models
(DDM) can simulate the flow quite accurately (only on aver-
age, however, and not in the beginning of a high precipitation
event) even without the use of the variables that really drive
the phenomena (precipitation and temperature).

6.2 Scheme 2

Applying the Scheme 2 with the integrating ANN model
leads to a more accurate calculation of the overall river dis-
charge, if compared to both Scheme 1 and to the simplified
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routing scheme employed in the HBV-M model. Our results
in this experiment are in agreement with the work byChen
and Adams(2006) where an ANN model was used to inte-
grate the three basin models (Xinanjiang model, Tank model,
and Soil Moisture Accounting model).

Scheme 2 does not only consider the integration of stream-
flow process, but can be also seen as a data assimilation ap-
proach (error corrector). Note that the ANN-MLP model
does not target the accurate representation of the physical
system dynamics; instead, the target is aimed to reproduce
the measured value (discharge).

The use of physical conceptual and data-driven models in
operation should consider the dynamics of the basin. The dy-
namics of the Meuse basin has hardly changed during the last
decade (Tu et al., 2004), so the combination of models seems
to be reliable under relatively long periods of time (e.g. 3 to
5 years as the validation period of the models presented).

It should be noted that the experiments presented in this
paper are based on daily data and are aimed at improving
the HBV-M hydrological model. In subsequent studies it is
planned to explore the usefulness of the approaches above
under a more detailed and complex framework (daily fore-
cast with hourly data and precipitation forecast information).
The challenge in extending these concepts to hourly-based
models relates not only to the non-linearity and dynamics,
but also to the influence of human interventions at weirs,
sluices, canals, power plants, etc. These aspects are not in-
cluded in the HBV-M model and are part of the motivation
to use data-driven techniques, and, possibly, rule-based tech-
niques allowing for multiple regimes of model operation.

7 Conclusions

This paper explored two schemes of introducing data-driven
model components into a semi-distributed process based
rainfall-runoff model. The first scheme explored the replace-
ment of HBV sub-basin models by ANN-MLP models using
several scenarios. The results show that such approach im-
proves the discharge simulation both in terms of reducing the
RMSE and increasing the model efficiency. The improve-
ment was mainly observed for the summer periods for low
flows.

The second scheme used the replacement of the routing
model (combining the individual sub-basin models) by an
ANN, and lead to higher gains in terms of the overall error
than the first scheme. Nevertheless, it is important to stress
that this latter scheme does not only reproduce the flow, but
also the noise in the system. The use of an ANN for routing
replacement is not only a simulation tool but also captures
the variation in the time series. Therefore, its results can not
be interpreted as the accurate representation of the river rout-
ing but more as a tool to combine the model’s and which acts
as an error corrector as well.

In general it can be concluded that the both combination
schemes have a clear potential in improving the accuracy of
the considered class of hydrological models.

Performance of operational systems is typically affected
by the limited and/or inaccurate data. A possible way to al-
leviate this, is to use autoregressive models which are not
sensitive to the precipitation, temperature and evapotranspi-
ration. Yet another issue is the estimation of the models un-
certainty associated with the inaccuracies in data and model
structures. It is planned to explore all these issues and possi-
bilities in further studies.
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