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Abstract. We demonstrate that global satellite products can
be used to evaluate climate model soil moisture predictions
but conclusions should be drawn with care. The quality of a
limited area climate model (LAM) was compared to a gen-
eral circulation model (GCM) using soil moisture data from
two different Earth observing satellites within a model vali-
dation scheme that copes with the presence of uncertain data.
Results showed that in the face of imperfect models and data,
it is difficult to investigate the quality of current land surface
schemes in simulating hydrology accurately. Nevertheless,
a LAM provides, in general, a better representation of spa-
tial patterns and dynamics of soil moisture compared to a
GCM. However, in months when data uncertainty is higher,
particularly in colder months and in periods when vegetation
cover is too dense (e.g. August in the case of Western Eu-
rope), it is not possible to draw firm conclusions about model
acceptability. For periods of higher confidence in observa-
tion data, our work indicates that a higher resolution LAM
has more benefits to soil moisture prediction than are due to
the resolution alone and can be attributed to an overall en-
hanced representation of precipitation relative to the GCM.
Consequently, heterogeneity of rainfall patterns is better rep-
resented in the LAM and thus adequate representation of wet
and dry periods leads to an improved acceptability of soil
moisture (with respect to uncertain satellite observations),
particularly in spring and early summer. Our results suggest
that remote sensing, albeit with its inherent uncertainties, can
be used to highlight which model should be preferred and as
a diagnostic tool to pinpoint regions where the hydrological
budget needs particular attention.

Correspondence to:G. Schumann
(guy.schumann@bristol.ac.uk)

1 Introduction

The land surface is a key component in climate models
(CMs) and controls the partitioning of available energy at
the surface between sensible and latent heat, and of available
water between evaporation and runoff (Pitman, 2003). The
dynamics of soil moisture content is a key process that con-
trols the partitioning of the heat fluxes which in turn influence
the variability in both weather and climate (Entekhabi et al.,
1996). Simulations from climate models are increasingly be-
ing used in other applications. In particular for hydrolog-
ical models being applied to assess future or past changes
in hydrological behaviour, land surface schemes (LSSs) in
CMs need to be evaluated against some sort of data. Given
that these models are run over scales for which ground data
collection is hardly possible, evaluation of land surface vari-
ables is difficult to perform. It is argued byCornwell and
Harvey(2007) that while the quality of CM-LSSs seems to
be improving (although there still are large inconsistencies
in predictions), without high-quality long-term observations
there remains significant uncertainty in the evolution of CM
predictions of soil moisture change.

However, satellites acquire data over very similar scales
to climate models, and thus present an invaluable source of
validation data. For instance,Bastiaanssen et al.(2005) used
radiance values from satellites in association with an energy
balance model to derive large scale evapo-transpiration. Sim-
ilarly, techniques exist to derive soil moisture from passive
as well as active microwave sensors. These range from less
complex change detection algorithms (Wagner et al., 1999)
to more sophisticated integration of land parameter retrieval
models (Owe et al., 2001). It is important to note the many
differences in definition of soil moisture that exist. LSSs
are most concerned with heat and energy fluxes and soil
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moisture is treated and defined differently by different CM-
LSSs (Cornwell and Harvey, 2007). Although efforts are
being made to improve soil moisture retrieval from remote
sensing, in some existing algorithms, soil moisture is repre-
sented as a wetness index whereby changes with depth or the
effects of heat and moisture fluxes are only partially repre-
sented.

Despite considerable limitations and uncertainties, the
success of satellite remote sensing to help improve the func-
tioning of land surface schemes has been illustrated in some
studies. Large scale vegetation cover and land cover from re-
mote sensing have been shown to possess potential for inte-
gration with land surface schemes (e.g.Lu and Shuttleworth,
2002; Crawford et al., 2001). Also, large scale satellite-
derived soil moisture has been used to initialize numerical
weather prediction models (Drusch, 2007) and climate mod-
els (e.g.Walker and Houser, 2001).

To complement and extend this part of the literature, we
use the global soil moisture products from the Advanced
Microwave Scanning Radiometer onboard the Earth Obser-
vation satellite (AMSR-E) and the scatterometer sensor on
the European Remote Sensing satellite (ERS-2) to propose
a scheme to assess the quality and value of spatial patterns
of monthly soil moisture simulated by a limited area model
(LAM), HadRM (Jones et al., 1995), and a general circula-
tion model (GCM), HadAM3 (Pope et al., 2000). In other
words, this paper introduces a methodology to evaluate the
acceptability of soil moisture heterogeneity from imperfect
climate models in the presence of uncertain observation data.
By doing so, we hypothesize that this helps justify the de-
velopment and use of a LAM. For instance, more reliable
higher resolution limited area models could provide valuable
input data for large scale hydrological modelling under dif-
ferent climate change scenarios. While it is reasonable to
assume that a quantitative estimation of all sources of un-
certainty is hardly possible when dealing with global-scale
imperfect models and observation, we believe that it is sen-
sible to introduce an acceptability – rather than performance
or model matching – scheme for climate models that is partly
based on qualitative analysis of the different error sources.

2 Data

2.1 Active scatterometer data

Global, coarse-resolution soil moisture data (25–50 km) are
derived from backscatter measurements from active scat-
terometers on-board ERS-1 and ERS-2 (1991 to present) and
the three MetOp satellites (2006–2020). Surface soil mois-
ture data are derived using a change detection method for
radar backscatter that relies upon the multi-incidence obser-
vation capabilities of the scatterometer to model the effects of
vegetation phenology (Wagner et al., 1999). This technique
retrieves topsoil moisture content (≈5 cm) in a relative quan-

tity ranging between 0 and 1 (respectively, 0–100%), scaled
between zero soil moisture and saturation. The data can be
obtained free of charge athttp://www.ipf.tuwien.ac.at/radar/.

2.2 Passive AMSR-E data

Parameters for soil moisture retrieval are derived from pas-
sive microwave remote sensing data using the Land Param-
eter Retrieval Model (LPRM). The LPRM is based on a for-
ward radiative transfer model to retrieve surface soil moisture
and vegetation optical depth (VOD), i.e. vegetation wetness
(Owe et al., 2001). A unique feature of this method is that
it may be applied at any microwave frequency (<20 GHz),
making it very suitable to exploit all the available passive
microwave data from historic satellites (Owe et al., 2008).
This dataset describes volumetric soil moisture (in m3 m−3)
of the first top centimeters (1–2 cm) with an average accu-
racy of 0.06 m3 m−3 for sparse to moderate vegetated re-
gions (de Jeu et al., 2008). For direct data use, five years
(2002–2007) of daily 0.25 degree surface soil moisture data
from AMSR-E C-band are available free of charge athttp:
//www.geo.vu.nl/∼jeur/lprm/.

2.3 Soil moisture from climate models

Soil moisture is simulated within both CMs using MOSES
(Meteorological Office Surface Exchange Scheme) from the
UK Meteorological Office (UKMO) (Cox et al., 1999).
MOSES is a land surface scheme that reproduces terrestrial
processes according to a simplified surface flux partitioning
scheme. For moisture flux, the surface hydrology is defined
in terms of the soil moisture vertical profile, snow lying on
the ground and water on plant leaves or on the soil surface.
The soil hydrology component of MOSES is based on a finite
difference approximation to Richards’ equation (Cox et al.,
1999) and moisture content is output for four vertical profiles
(0.1, 0.25, 0.65 and 2.0 m), of which the top one (10 cm) is
used for comparison in this study. Both CMs generate atmo-
spheric conditions that interact with MOSES to output soil
moisture. Runoff, which is another important hydrological
variable and closely linked to soil moisture, is generated via
infiltration excess and drainage from the bottom of the soil
column. Surface runoff takes place when water flux at the
soil surface exceeds the saturated hydraulic conductivity. An
exponential sub-grid distribution of rainfall intensities is as-
sumed in order to calculate gridbox mean values of surface
runoff (Cox et al., 1999).

HadAM3, with a grid resolution of 2.5 degrees latitude
by 3.75 degrees longitude, is an improved version of the
former Hadley Centre atmospheric model HadAM2b (Strat-
ton, 1999) and is based on the Unified Model (UM) system.
The HadAM3 simulations assessed in this paper are identi-
cal to the modern control simulations ofJost et al.(2005).
The atmospheric model is initialized by observed climato-
logical monthly mean sea surface temperatures (SSTs) (over
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Fig. 1. Study area and soil moisture estimated from space-borne sensors (AMSR-E and ERS scatterometer, left) and climate models (HadRM
LAM and HadAM3 GCM, right) for selected months. For comparison, soil moisture values are re-scaled between 0 and 1.

30 years), and so simulations do not correspond to any par-
ticular year. In other words, this study compares the seasonal
cycle between data sets and not individual years.

HadRM is a limited area atmospheric model also belong-
ing to the UM system, which is driven at its lateral bound-
aries and at the sea surface by a time series of data archived
from a previous integration of HadAM3. Locatable over any
part of the globe, it is typically run for short periods (i.e.
<20 years) at a horizontal grid resolution of 0.44 degrees,
as opposed to global simulations of long periods of time,
which generates high-resolution climate change information
for particular regions; however, the relative computational

cost is high (Jones et al., 1995). Again, the HadRM simula-
tions are identical to the modern control simulations ofJost
et al.(2005).

3 Methods

3.1 Data pre-processing

For data quality assessment, both remote sensing data sets
were translated onto a common grid over the chosen study
area of Western Europe (Fig.1). The Delaunay Triangulation
method (Guibas and Stolfi, 1985) was used to plot data onto a
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Fig. 2. Evaluation scheme based on a non-linear fuzzy membership
function. RS1 andRS2 represent monthly re-scaled soil moisture
values from the two satellites. Note thatRS1 and RS2 can take
the value of either ERS or AMSR-E, whereRS1<RS2 (i.e. RS1 is
the lowest of both products andRS2 the highest). The grey area
shows the entire LSS acceptability domain. This scheme is applied
to every pixel in the domain separately.

common grid resolution of 0.5 degrees, as it does not assume
any special arrangement of the data points used. Thereafter,
for sake of comparing different sources of data, soil mois-
ture values were re-scaled in the spatial domain between the
maximum and minimum value for each month (Fig.1).

Given that climate model outputs are available on a
monthly basis for six years constrained by climatological
mean SSTs (with an additional eight years spin-up time) for
both the LAM and GCM, averaging all daily remote sensing
values over a month for 3–4 years from 2004 to 2006/2007
for each sensor separately was assumed sensible. Although
AMSR-E data are available on a daily basis whilst ERS data
are acquired every 3 days, it is assumed that this difference is
negligible when averaging data from each sensor separately
over a month. It is worth noting that although data from both
sensors are also available for the entire year of 2003, this year
was omitted because (a) the ERS sensor was switched off a
number of times and (b) the strong abnormal heat wave over
Europe that summer had considerable effects on soil mois-
ture conditions (Fischer et al., 2007), and as a result, both
climate models (for normal atmospheric conditions) would
be inappropriately penalized during evaluation.

Arguably averaging quasi daily values over one month
might introduce more uncertainty, given the different sam-
pling intervals and high variability of surface soil moisture.
We try to minimise this effect by treating monthly soil mois-
ture from both space-borne sensors separately in the pro-
posed climate model acceptability scheme and comparing
both climate models in terms of their ability to adequately re-
produce spatial patterns of soil moisture rather than absolute
values in the presence of uncertain observations. Moreover,
given the inherent uncertainties and process simplifications,
we believe that current climate models cannot be expected to
reproduce temporal and/or spatial variability of soil moisture
adequately on a daily scale.

3.2 Defining an appropriate LSS assessment scheme

After data pre-processing, the agreement of monthly soil
moisture values between the two remote sensing sensors
was assessed using histogram distributions of absolute dif-
ferences. This gave an appreciation of data consistency over
a full year. A strong positive skewness of the distribution and
a mean absolute difference value over Europe of∼0.2 in re-
scaled soil moisture for most months indicated a good agree-
ment (pixel by pixel) between the two products. Given the
uncertainties affecting both products, establishing the exact
quality of either one is hardly possible (de Jeu et al., 2008).
Uncertainties, other than differences in sampling resolution
and interval and monthly averaging, include: (i) different in-
strument technologies and retrieval approaches, (ii) effects of
dense vegetation and remaining snow and frozen soil pixels
(n.b. products are available with quality flags for these pix-
els), and (iii) minor differences in retrieval depth.

Reciprocally, the degree of disagreement between the two
products may be viewed as a measure of the uncertainty
associated with the data. In regions where both products
agree in particular over large spatial distances, the values are
likely to represent actual soil moisture characteristics (de Jeu
et al., 2008). This information can be used in an evaluation
scheme where both model and observation data are known
to be in error. Such schemes have recently gained popu-
larity in hydrological studies (Beven, 2006) and an adap-
tation is used here to assess the acceptability of both cli-
mate models. It is clear that other satellite products avail-
able at similar scales, such as global precipitation (e.g.Hong
et al., 2004) or/and evaporation data (e.g.Bastiaanssen et al.,
2005; Cleugh et al., 2007), might be used within similar
acceptability schemes. Given the rather limited availability
of global-scale spatially distributed hydrological parameters
and the simplicity as well as difficulties with which current
climate models reproduce spatially averaged seasonal hydro-
logical behaviour, we believe that assessing the acceptability
of models to adequately reproduce monthly changes in spa-
tial heterogeneity of near-surface soil moisture saturation is
a fair test to evaluate surface hydrological response.

Given that soil moisture is highly variable in its nature, is
poorly defined and reproduced differently by climate model-
ing as well as remote sensing, a fit-for-purpose model evalu-
ation scheme, which copes with errors in both data and mod-
els as described above, needed to be defined. In the hydrol-
ogy literature a number of different fuzzy rules-based mem-
bership functions have been used (e.g.Beven, 2006; Pap-
penberger et al., 2007). We implemented a trapezoidal-like
non-linear function (Fig.2) that defines an adequate num-
ber of degrees of freedom within a fuzzy membership defini-
tion based on an interval of monthly mean remotely sensed
soil moisture, the bounds of which are defined by the two
satellite observations (RS) from 2004 to 2006/2007. Out-
side either side of this interval a Gaussian function is de-
fined using±σ , whereσ reflects the interannual variability
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Fig. 3. Absolute errors (AE) between AMSR-E and ERS re-scaled soil moisture for each month (averageAE values for Europe are given
above each plot). The corresponding histogram distribution is also shown.

in spatial heterogeneity of soil moisture from both satellites
combined and is taken here as a safeguard against climate
model over-penalization. As both products have been val-
idated with ground observations for some areas in Europe
(Owe et al., 2008; de Jeu et al., 2008), accuracy indications
exist and errors are generally below 10% but are difficult to
compare (de Jeu et al., 2008). In order to account for product
accuracy, we make the top of the function wider by adding
10% of re-scaled soil moisture to each side. The member-
ship function that gives the acceptability,A, of the monthly
soil moisture outputs from the LAM and GCM over Europe,
denotedCS, is defined in Eq. (1) below.

A =


1 0.9RS1 ≤ CS ≤ 1.1RS2

e
−

(0.9RS1)−CS

2σ2 CS < 0.9RS1

e
−

CS−(1.1RS2)

2σ2 CS > 1.1RS2

(1)

WhereA denotes climate model acceptability (not actual per-
formance) andσ is the interannual variability in spatial soil
moisture patterns from both satellites,RS1 andRS2. 0.9RS1
and 1.1RS2 represent the position of the center of the peak,
andσ controls the width of the function. By adopting a con-
ditional membership function, it is ensured that the LSS is
given a maximum acceptability of 1 if it falls inside an in-
terval defined by the mean soil moisture of the two satellite
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Fig. 4. Line plot showing for each month the interquartile range
as well as the 90% range of the remote sensing soil moisture in-
terval [0.9RS1, 1.1RS2] used in the proposed model acceptability
scheme. In other words, the ranges shown illustrate the distribution
of disagreement in spatial heterogeneity between the two remote
sensing products.
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Fig. 5. (a)The plots show LAM acceptabilities for selected months
in each season, where a maximum of 1 is attributed to a simula-
tion that falls within the interval[0.9RS1, 1.1RS2] while a Gaus-
sian function is applied outside that interval±σ on either side. The
plots in (b) give the interannual variability (σ ) in remote sensing-
observed spatial heterogeneity.

instruments over the 3–4 years and decreasing acceptabili-
ties following a Gaussian distribution on either side of the
interval±σ .

4 Results and discussion

4.1 Remote sensing soil moisture

Figure1 shows that there is a strong spatial consistency be-
tween the AMSR-E derived soil moisture and that simulated
by the LAM. In some places different spatial patterns are ob-
served in the ERS scatterometer soil moisture. This is most
probably because the AMSR-E algorithm and MOSES are
physically based whereas the scatterometer data are obtained

using a multi-incidence change detection algorithm which
may lead to greater spatial inconsistencies. Note that AMSR-
E soil moisture along the west coast of Ireland and Northern
Scotland is largely overestimated as a result of significant
excess standing water on the surface of pixels in that area
(leading to very low returns of brightness temperature) and
values in these parts should thus be interpreted with care or
ignored.

A more thorough analysis of the data revealed that there is
in general a good agreement between the monthly soil mois-
ture values of the two satellite sensors. Over Europe, abso-
lute differences are for most months generally less than 0.2
in re-scaled soil moisture (Fig.3). This is supported by the
skewness of the data distribution histograms plotted along-
side. Figure4 confirms this by illustrating that observed data
variability is generally of 0.2, except for colder months, when
the skewness of the distribution in Fig.3 flattens out. It is
believed that alongside the natural variability of soil mois-
ture, differences during colder months are primarily related
to difficulties in retrieving soil moisture at lower tempera-
tures and over snow-covered areas, especially for single or
extreme events. Larger disagreement also occurs during Au-
gust which may result (i) from differences in retrieval al-
gorithms and also to a certain degree in soil depth (1–2 cm
for AMSR-E, <5 cm for ERS and 10 cm for MOSES) es-
pecially in summer, (ii) when vegetation and soil moisture
are “out of phase” (for active microwave sensors), and (iii)
when vegetation wetness (i.e. VOD) is too high, resulting in
larger uncertainties in retrieved soil moisture (de Jeu et al.,
2008). Also, at higher altitudes, large topographic variations
as well as high vegetation add considerable uncertainties to
the retrieval of soil moisture. In such areas correlation (ρ)
is fairly low and even negative (15% of all pixels). Never-
theless, there is in general a good correlation between both
products, withρ>0.5 for 60% of the area.

4.2 LSS acceptability

The analysis of the remote sensing soil moisture products
confirms that both the degree of natural variability and the
level of disagreement can be used to set limits of acceptabil-
ity inside which the LAM and GCM need to fall to be ac-
ceptable. Figure5a illustrates the acceptability of the LAM
HadRM for selected months alongside interannual spatial
variability (Fig.5b) which is generally ofσ<0.2. In particu-
lar months with larger data intervals (e.g. August), apparent
model performances increase. With higher degrees of free-
dom to fit the data, higher levels of model acceptability are
to be expected, given the nature of the proposed evaluation
scheme. In months of higher natural data variability, there
is at the same time more uncertainty in the data retrieval be-
cause of the factors outlined earlier.

To assess the percentage improvement that is to be gained
with the HadRM over Europe as opposed to the global
HadAM3, the acceptability of the latter was computed and
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Fig. 6. Average precipitation, evaporation, runoff (in mm day−1) and top layer soil moisture (in kg m−2) for each month as simulated by
both climate models. Plots show average values for a selected region (centred at 50◦ long. and 13.12◦ lat.) where there is considerable
improvement in the LAM over the GCM, with respect to uncertain satellite soil moisture (see particularly “May” plot in Fig.7). In the case
of the GCM, May is too wet relative to any other region in the model compared to satellite and the LAM. For comparison with satellite data,
soil moisture plotted for both models only represents near surface soil moisture and not the entire vertical soil column. Note that in the lowest
panel the notion “hydrological budget” refers to the imbalance between total precipitation, evaporation and runoff.

compared to the LAM translated onto the GCM grid. Equa-
tion (2) below gives the percentage improvement,ILAM , that
can be achieved with a high resolution CM.

ILAM =

(
ALAM − AGCM

AGCM

)
×100 (2)

In HadRM, processes are better discretized due to the
higher resolution, which results in an enhanced representa-
tion of precipitation (Jones et al., 1995). This is clearly high-
lighted in Fig.6. With respect to other regions, the selected
region is too wet in the GCM, particularly for May, when
compared to satellite observations. Indeed, the LAM does
a lot better in these months, with the region being drier in
relative spatial terms. Adequate representation of the total
precipitation is crucial to prevent unrealistic soil saturation
(see particularly the spring months in Fig.6). As a result
of a better discretization of processes, outputs of highly spa-
tially varying parameters are more heterogeneous in HadRM,
which can lead to a better fit with spatially (and also tempo-
rally) varying observations. Important to note is that actual
values in remote sensing soil moisture cannot be compared

to climate model values due to the differences in estimation
methods. Figure7 showsILAM for four months plotted on
the GCM grid in order to highlight improvement not directly
related to resolution. For months in which the two satel-
lites disagree most (e.g. August), the gain in acceptability is
less meaningful and conclusions should be drawn with care.
However, for months when both observation sources give
more similar values (e.g. May, and also April) despite often
more complex vegetation-soil moisture relations (e.g. April),
higher acceptability of either model is physically more mean-
ingful. Figure7 illustrates that for all months shown the im-
provement in acceptability of the LAM over the GCM ex-
ceeds 100% averaged over Europe (this also applies to all
other months). A higher acceptability of the HadRM on av-
erage justifies the development and use of a LAM.

One possibility to further improve soil moisture simula-
tions in LSSs is laid out byGedney et al.(2000) who found
that differences among CM predictions of changes in surface
hydrology are particularly sensitive to how the runoff is pa-
rameterized over the active soil moisture range. Variations in
the runoff at the critical soil moisture point account for much
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Fig. 7. Percentage improvement of acceptability when using a LAM
instead of a GCM, for four months. The LAM is plotted to the GCM
grid, which implicitly reflects the enhancement in surface dynam-
ics representation that is to be gained with a LAM. Positive values
indicate that the LAM gives a higher acceptability than the GCM
and negative values show a lower acceptability of the LAM. Val-
ues above each plot give the average percentage improvement over
Europe.

of the spread in predictions. Although this might be true,
our results indicate that precipitation in the GCM need to be
improved first, particularly in warmer months.

This study has demonstrated that satellite observations, al-
beit with their inherent uncertainties, can pinpoint areas that
are either too dry or too wet relative to other areas in a given
model and also indicate which model represents processes
more adequately. Although satellite observations might not
allow a comparison of actual values or indeed tell us the ex-
act quantities a model should simulate because of significant
differences in retrieval techniques, space-borne remote sens-
ing can be used as a tool to diagnose imperfect climate mod-
els. As remote sensing enables identifying a more adequate
model, subsequent improvement can be undertaken by exam-
ining hydrological components in more detail (as illustrated
in Fig. 6). From our findings, it may be concluded that a
high resolution climate model is necessary to model hydro-
logical change which is happening at much smaller scales,
such as soil moisture, that cannot be adequately represented
by a GCM.

5 Conclusions

In a review of LSSs,Pitman(2003) points out that signifi-
cant problems remain to be addressed, including difficulties
in parameterizing hydrology and sub-grid-scale heterogene-
ity. Continued development of land surface models requires

more multidisciplinary efforts by scientists with a wide range
of skills. In this context, we have presented a possible eval-
uation scheme for CM-LSSs in the face of imperfect models
and uncertain observations. The scheme reflects limitations
of both current CM-LSSs and available remote sensing data.

Our work indicates that the use of a higher resolution LAM
has more benefits to soil moisture prediction than are due to
the resolution alone and can be attributed to improved rep-
resentation of precipitation and thus the hydrological cycle
at an enhanced horizontal resolution (Jones et al., 1995). It
is clear that given current data uncertainties, global products
from space-borne remote sensing might not yet allow us to
fully validate the actual performance of climate models and
land surface schemes but clearly possess the potential to indi-
cate where models are in error and which parts need improve-
ment. Currently diagnosing the hydrology in climate models
seems only really possible with global satellite observations,
as the scale of field data collection is incompatible with the
scale at which climate models are run.

In conclusion, we believe that higher resolution CMs need
to be evaluated with observations that space-borne remote
sensing could potentially provide. Using the proposed fuzzy
model acceptability scheme, this study has clearly demon-
strated the potential of remote sensing for large-scale model
diagnostics. However, our results indicate that for some
months model differences are around the same order of mag-
nitude as the uncertainty in current data sets. Therefore, fur-
ther effort is needed to obtain more accurate soil moisture
observations. Availability of adequate estimations of uncer-
tainty associated with the data, such as presented byde Jeu
et al.(2008), is also expected to aid evaluation. Noteworthy
is also the progress researchers are currently making with
higher resolution soil moisture retrieval from Envisat ASAR
observations (<1 km resolution, see e.g.Loew et al., 2006).
This is still in an experimental stage, but may become rou-
tinely available in the very near future. Also, improved data
products from new satellite missions, such as the Soil Mois-
ture and Ocean Salinity (SMOS) mission, may allow us to
better assess models.

Acknowledgements.G. Schumann was funded by a Mobility
of Researchers grant (AM2c) from the Luxembourg National
Research Fund (FNR) through the Public Research Centre-Gabriel
Lippmann (CRP-GL) in Luxembourg. D. J. Lunt was funded by
fellowships from the British Antarctic Survey (BAS) and Research
Councils UK (RCUK). The authors are extremely grateful to both
the NASA-VUA team and the Microwave Remote Sensing Group
at TU Vienna for providing the satellite data. Many thanks go
to Patrick Matgen at the CRP-GL and Florian Pappenberger at
ECMWF for their helpful comments. The authors also wish to
thank three anonymous referees for their constructive reviews and
suggestions.

Edited by: B. van den Hurk

Hydrol. Earth Syst. Sci., 13, 1545–1553, 2009 www.hydrol-earth-syst-sci.net/13/1545/2009/



G. Schumann et al.: Assessment of soil moisture from climate models 1553

References

Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids,
G., Thoreson, B. P., and Allen, R. G.: SEBAL model with re-
motely sensed data to improve water-resources management un-
der actual field conditions, J. Irrig. Drain. E.-ASCE, 131, 85–93,
2005.

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320,
18–36, 2006.

Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W.: Regional
evaporation estimates from flux tower and MODIS satellite data,
Remote Sens. Environ., 106, 285–304, 2007.

Cornwell, A. R. and Harvey, L. D. D.: Soil moisture: a residual
problem underlying AGCMs, Climatic Change, 84, 313–336,
2007.

Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree,
P. R., and Smith, J.: The impact of new land surface physics
on the GCM simulation of climate and climate sensitivity, Clim.
Dynam., 15, 183–203, 1999.

Crawford, T. M., Stensrud, D. J., Mora, F., Merchant, J. W., and
Wetzel, P. J.: Value of incorporating satellite-derived land cover
data in MM5/PLACE for simulating surface temperatures, J. Hy-
drometeorol., 2, 453–468, 2001.

de Jeu, R. A. M., Wagner, W., Holmes, T. R. H., Dolman, A. J.,
van de Giesen, N. C., and Friesen, J.: Global soil moisture pat-
terns observed by space borne microwave radiometers and scat-
terometers, Surv. Geophys., 29, 399–420, 2008.

Drusch, M.: Initializing numerical weather prediction models with
satellite-derived surface soil moisture: Data assimilation experi-
ments with ECMWF’s Integrated Forecast System and the TMI
soil moisture data set, J. Geophys. Res., 112, D03102, doi:
10.1029/2006JD007478, 2007.

Entekhabi, D., Rodriguez-lturbe, I., and Castelli, F.: Mutual interac-
tion of soil moisture state and atmospheric processes, J. Hydrol.,
184, 3–17, 1996.

Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Luethi, D., and
Schaer, C.: Soil moisture – atmosphere interactions during the
2003 European summer heat wave, J. Climate, 20, 5081–5099,
2007.

Gedney, N., Cox, P. M., Douville, H., Polcher, J., and Valdes, P. J.:
Characterizing GCM land surface schemes to understand their
responses to climate change, J. Climate, 13, 3066–3079, 2000.

Guibas, L. and Stolfi, J.: Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams, ACM T.
Graphic., 4, 74–123, 1985.

Hong, Y., Hsu, K. L., Sorooshian, S., and Gao, X.: Precipitation
estimation from remotely sensed imagery using an artificial neu-
ral network cloud classification system, J. Appl. Meteorol., 43,
1834–1852, 2004.

Jones, R. G., Murphy, J. M., and Noguer, M.: Simulation of cli-
mate change over Europe using a nested regional-climate model.
I: Assessment of control climate, including sensitivity to location
of lateral boundaries, Q. J. Roy. Meteor. Soc., 121, 1413–1449,
1995.

Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O.,
Valdes, P. J., and Ramstein, G.: High-resolution simulations of
the last glacial maximum climate over Europe: a solution to
discrepancies with continental palaeoclimatic reconstructions?,
Clim. Dynam., 24, 577–590, 2005.

Loew, A., Ludwig, R., and Mauser, W.: Derivation of surface soil
moisture from ENVISAT ASAR Wide Swath and Image Mode
data in agricultural areas, IEEE T. Geosci. Remote, 44, 889–899,
2006.

Lu, L. and Shuttleworth, W. J.: Incorporating NDVI-derived LAI
into the climate version of RAMS and its impact on regional cli-
mate, J. Hydrometeorol., 3, 347–362, 2002.

Owe, M., de Jeu, R., and Walker, J.: A methodology for surface
soil moisture and vegetation optical depth retrieval using the mi-
crowave polarization difference index, IEEE T. Geosci. Remote,
39, 1643–1654, 2001.

Owe, M., de Jeu, R. A. M., and Holmes, T. R. H.: Multi-sensor his-
torical climatology of satellite-derived global land surface mois-
ture, J. Geophys. Res., 113, F01002, doi:1029/2007JF000769,
2008.

Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., and
Matgen, P.: Fuzzy set approach to calibrating distributed flood
inundation models using remote sensing observations, Hydrol.
Earth Syst. Sci., 11, 739–752, 2007,
http://www.hydrol-earth-syst-sci.net/11/739/2007/.

Pitman, A. J.: Review: The evolution of, and revolution in, land
surface schemes designed for climate models, Int. J. Climatol.,
23, 479–510, 2003.

Pope, V. D., Gallani, M. L., Rowntree, P. R., and Stratton, R. A.:
The impact of new physical parameterizations in the Hadley Cen-
tre climate model: HadAM3, Clim. Dynam., 16, 123–146, 2000.

Stratton, R. A.: A high resolution AMIP integration using the
Hadley Centre model HadAM2b, Clim. Dynam., 15, 9–28, 1999.

Wagner, W., Lemoine, G., and Rott, H.: A method for estimat-
ing soil moisture from ERS scatterometer and soil data, Remote
Sens. Environ., 70, 191–207, 1999.

Walker, J. P. and Houser, P. R.: A methodology for initializing
soil moisture in a global climate model: Assimilation of near-
surface soil moisture observations, J. Geophys. Res., 106, 761–
774, 2001.

www.hydrol-earth-syst-sci.net/13/1545/2009/ Hydrol. Earth Syst. Sci., 13, 1545–1553, 2009

http://www.hydrol-earth-syst-sci.net/11/739/2007/

