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Abstract. This paper presents a new approach using an Arti-
ficial Neural Network technique to improve rainfall forecast
performance. A real world case study was set up in Bangkok;
4 years of hourly data from 75 rain gauge stations in the
area were used to develop the ANN model. The developed
ANN model is being applied for real time rainfall forecast-
ing and flood management in Bangkok, Thailand. Aimed
at providing forecasts in a near real time schedule, different
network types were tested with different kinds of input in-
formation. Preliminary tests showed that a generalized feed-
forward ANN model using hyperbolic tangent transfer func-
tion achieved the best generalization of rainfall. Especially,
the use of a combination of meteorological parameters (rela-
tive humidity, air pressure, wet bulb temperature and cloudi-
ness), the rainfall at the point of forecasting and rainfall at
the surrounding stations, as an input data, advanced ANN
model to apply with continuous data containing rainy and
non-rainy period, allowed model to issue forecast at any mo-
ment. Additionally, forecasts by ANN model were compared
to the convenient approach namely simple persistent method.
Results show that ANN forecasts have superiority over the
ones obtained by the persistent model. Rainfall forecasts for
Bangkok from 1 to 3 h ahead were highly satisfactory. Sen-
sitivity analysis indicated that the most important input pa-
rameter besides rainfall itself is the wet bulb temperature in
forecasting rainfall.

1 Introduction

Accurate information on rainfall is essential for the planning
and management of water resources. Additionally, in the ur-
ban areas, rainfall has a strong influence on traffic, sewer
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systems, and other human activities. Nevertheless, rainfall is
one of the most complex and difficult elements of the hydrol-
ogy cycle to understand and to model due to the complexity
of the atmospheric processes that generate rainfall and the
tremendous range of variation over a wide range of scales
both in space and time (French et al., 1992). Thus, accurate
rainfall forecasting is one of the greatest challenges in opera-
tional hydrology, despite many advances in weather forecast-
ing in recent decades (Gwangseob and Ana, 2001).

Neural networks have been widely applied to model many
of nonlinear hydrologic processes such as rainfall-runoff
(Hsu et al., 1995; Shamseldin, 1997), stream flow (Zealand
et al., 1999; Campolo and Soldati, 1999; Abrahart and See,
2000), groundwater management (Rogers and Dowla, 1994),
water quality simulation (Maier and Dandy, 1996; Maier and
Dandy, 1999), and rainfall forecasting. More detailed dis-
cussion regarding the concepts and applications of ANN in
hydrology can be referred to in the two technical papers pre-
pared by the ASCE Task Committee on Application of Ar-
tificial Neural Networks in Hydrology as appeared in the
Journal of Hydrologic Engineering (ASCE, 2000). A pio-
neer work in applying ANN for rainfall forecasting was un-
dertaken by French et al. (1992), which employed a neural
network to forecast two-dimensional rainfall, 1 h in advance.
Their ANN model used present rainfall data, generated by
a mathematical rainfall simulation model, as an input data.
This work is, however, limited in a number of aspects. For
example, there is a trade-off between the interaction and the
training time, which could not be easily balanced. The num-
ber of hidden layers and hidden nodes seem insufficient, in
comparison with the number of input and output nodes, to
reserve the higher order relationship needed for adequately
abstracting the process. Still, it has been considered as the
first contribution to ANN’s application and established a new
trend in understanding and evaluating the roles of ANN in in-
vestigating complex geophysical processes.
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Toth et al. (2000) compared short-time rainfall prediction
models for real-time flood forecasting. Different structures
of auto-regressive moving average (ARMA) models, artifi-
cial neural networks and nearest-neighbors approaches were
applied for forecasting storm rainfall occurring in the Sieve
River basin, Italy, in the period 1992-1996 with lead times
varying from 1 to 6 h. The ANN adaptive calibration appli-
cation proved to be stable for lead times longer than 3 hours,
but inadequate for reproducing low rainfall events.

Koizumi (1999) employed an ANN model using radar,
satellite and weather-station data together with numerical
products generated by the Japan Meteorological Agency
(JMA) Asian Spectral Model and the model was trained us-
ing 1-year data. It was found that the ANN skills were better
than the persistence forecast (after 3 h), the linear regression
forecasts, and the numerical model precipitation prediction.
As the ANN model was trained with only 1 year data, the re-
sults were limited. The author believed that the performance
of the neural network would be improved when more train-
ing data became available. It is still unclear to what extent
each predictor contributed to the forecast and to what extent
recent observations might improve the forecast.

Past studies have obviously indicated that ANN is a good
approach and has a high potential to forecast rainfall. The
ANN is capable to model without prescribing hydrological
processes, catching the complex nonlinear relation of input
and output, and solving without the use of differential equa-
tions (Luk et al., 2000; Hsu et al., 1995; French et al., 1992).
In addition, ANN could learn and generalize from examples
to produce a meaningful solution even when the input data
contain errors or is incomplete (Luk et al., 2000). Most of the
existing ANN models applied in rainfall forecasting are event
based; the models were fed in input with screened/generated
data that contained only rainy periods (i.e., rainfall events,
rainy days or monthly rainfall data). By using only the data
from the rainy periods as training data, ANN models could
easily identify the patterns characterizing the rainfall. How-
ever, on the other hand, any features or characteristics not in-
cluded within the training data will not be learned by ANN.
Translated this means that conventional ANN models could
only issue accurate forecasting when rain occurred already
and they can estimate how long the rain would last, but they
are unable to predict whether it would rain or not if there is no
rain at the time of issuing forecast. Hence, most of the previ-
ous studies of ANN on rainfall forecast are not fully suitable
for the application in real time forecasting.

The main objective of this study is to develop a rainfall
forecast model using ANN technique. The developed ANN
model is designed to run a real time task, in this situation, the
input to the model should not be event based data but con-
secutive data including non-rainy periods to acquire a fully
representation of both rain and no rain conditions. When us-
ing only continuous past rainfall data to train an ANN model,
no rain periods with zero values make no change in weights
update process so the ANN could not recognize the pattern

and provided poor forecasting results. Targeting to explore
alternative ways to overcome this problem, several models
were tested by changing model architecture, transfer function
and employing additional data as input variables. Results of
preliminary test showed that with the use of additional data
(meteorology data and rainfall record from surrounding sta-
tions), a continuous ANN model could perform highly accu-
racy of rainfall forecast and can be used for real time appli-
cations. Applying the developed ANN model, rainfall from 1
to 6 h ahead was forecasted at 75 rain gauge stations (as fore-
cast point) in Bangkok city, Thailand, using present hourly
rainfall data and meteorological parameters of relative hu-
midity, air pressure, wet bulb temperature, cloudiness, and
rainfall from surrounding rain gauge stations as input vari-
ables. Additionally, along with the ANN model, a persistent
model was developed and compared with the predictions of
the ANN model in order to reveal the real advantage of the
continuous ANN model in term of real time forecast. Sensi-
tivity analysis is also carried out to identify the most and least
important factors in predicting rainfall in the study area.

2 Study area

Bangkok, the capital and commercial city of Thailand, is one
of the highly developed cities in Southeast Asia. Having a
land area of 1569 km2, it is located in the central part of the
Thailand on the floodplain of the Chao Phraya River, with
latitude 13.45 N and longitude 100.35 E. The area has a trop-
ical type of climate with long hours of sunshine, high tem-
peratures and high humidity. There are three main seasons;
rainy (April-October), winter (November–January) and sum-
mer (February–March). The average minimum temperature
is approximately in low to mid 20 s◦C and high temperature
in mid 30s◦C. Bangkok receives an average annual rainfall
of 1500 mm and is influenced by the seasonal monsoon. The
city is affected by the flood on regular basis due to rainfall,
which paralyzes most of the daily activities. Some of the
immediate consequences of a heavy rainfall in Bangkok are:
water clogging in the streets, heavy traffic jams, blackouts,
and direct or indirect economic losses.

The flood events in Bangkok occur from two sources: the
rainfall and the rise in water level in the Chao Phraya River
due to large flow from upstream. In the past, most of the
occurrence of high river flow and heavy rains in the city re-
sulted in severe flooding. However, with the construction
of dams in the upstream and a dike along the riverbank in
Bangkok, nearly all parts of the city are now protected from
flooding. Land use in Bangkok has changed rapidly in the
last few decades and development or urbanization of the area
has increased the impervious land, increasing flood volume
and frequency. The construction of drainage infrastructure
has not kept pace with the land-use change due to lack of
investment in the sector. This has resulted in reduced capac-
ity of the drainage system. In addition, lack of hydrological
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Fig. 1. Location of the study area and the rain gauge stations network.

information and the failure of gravity to effectively remove
drainage water from the city make urban flooding inevitable
during the wet season. For the city like Bangkok, one of the
best ways to cope with the flooding problem is to provide ad-
vance rainfall forecasting and flood warning. Knowing the
condition of rainfall in Bangkok in advance can help in man-
aging and dealing with problems due to flooding.

The Department of Drainage and Sewage (DDS) of the
Bangkok Metropolitan Administration (BMA) had estab-
lished the Bangkok Metropolitan Flood Control Center
(FCC) in 1990 for systematic and efficient management of
operation and control of flood protection facilities. The
BMA has 53 online rain gauge stations scattered through-
out Bangkok and sensors installed at canal gates and pump-
ing stations that observe water level. The observed data is
transferred in real time to the FCC by ultra high frequency
radio signals every 15 min. Besides, the Thai Meteorological
Department (TMD) owns a network of 51 rain gauge sta-
tions covering Bangkok and nearby areas. Both rain gauge
networks consist of rain gauges of tipping bucket type with
0.5 mm accuracy. Furthermore, Bangkok has one 100-m tall
meteorological mast station covered the area. Data collected
at the meteorological station was transmitted via a dedicated
telephone line to a central processing computer for data stor-
age and analysis. These data are now available on the Internet
and can be used for online applications. Locations of the rain
gauges are shown in Fig. 1.

There was actually no reliable rainfall forecast mechanism
using rain gauge data in the past. Based upon the histori-
cal data and the current situation, the flood forecast analysis
is manually carried out at the FFC. After a decision about
control policy is made out of this analysis, the flood con-
trol protection command is then broadcasted to all remote

control stations (gates and pumping stations). This system
is acceptable in terms of real time data transmission but not
efficient in terms of urban flood forecast and flood manage-
ment. Therefore, there is a need to investigate and apply an
accurate technique for real time rainfall forecasting. ANN
with its advantages such as computation speed, learning ca-
pability, fault tolerance and adoptability, has been selected to
be a tool for short-term rainfall forecast using rain gauge data
for Bangkok area. The model is mimic design, so it can be
applied not only to Bangkok area but also to other tropical
developing urban areas as well.

Historical rainfall data was collected from 104 stations of
the BMA and TMD rain gauge networks for the period from
1991 to 2005. After analyzed data, the period from 1 Jan-
uary 1997 to 31 December 1999 was selected to train ANN
models, and the data of the year 2003 were used as a test-
ing set. This study focus on the Bangkok area only, so to-
tal 75 stations inside Bangkok area were selected, while the
other 29 stations which are located outside Bangkok were
discarded, it roughly made each selected station representing
for an area around 21 km2. The collected meteorological data
which contained hourly measurements of six parameters ob-
served in the mast station, that is: relative humidity, wet bulb
temperature, dry bulb temperature, air pressure, cloudiness,
and wind speed for the same period as rainfall data. As an
additional variable, the average hourly rainfall intensity of all
the rain gauges was simply arithmetically average computed
and provided with the meteorology data.

Figure 2 shows the average monthly rainfall, taken over a
period from 1991 to 2003, in Bangkok. There are two peaks
of rainfall during a year, the first in May, and the second in
October. The meteorological data of 1991–2004 shows that
the average annual relative humidity (RH) is about 81% with
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Fig. 2. Average monthly rainfall in Bangkok.

the average maximum RH of 93% and the average minimum
RH of 52%. The average annual temperature is 26.8◦C, with
the average maximum temperature of 33.4◦C in April and
the average minimum temperature of 20.4◦C in December.
The average annual rainfall is 1869.5 mm with the highest
average monthly rainfall of approximately 381 mm observed
in October, and the lowest average monthly rainfall of about
12 mm occurring in December, usually the driest month of
the year.

3 Artificial neural network

An artificial neural network (ANN) is an interconnected
group of artificial neurons that has a natural property for stor-
ing experiential knowledge and making it available for use.
The first simplest form of feedforward neural network, called
perceptron has been introduced by Rosenblatt in 1957. This
original perceptron model contained only one layer, inputs
are fed directly to the output unit via the weighted connec-
tions. Although the perceptron initially seemed promising, it
was eventually proved that perceptrons could not be trained
to recognize many classes of patterns. After that, multilayer
perceptron (MLP) model was derived in 1960 and gradually
became one of the most widely implemented neural network
topologies. Multilayer perceptron means a feedforward net-
work with one or more layers of nodes between the input
and output nodes. The MLP overcomes many limitations of
the single layer perceptron, their capabilities stem from the
non-linear relationships among the nodes (Lippmann, 1987).
In theirs study of nonlinear dynamics, Lapedes and Farber
(1987) have pointed out the important that the MLP is ca-
pable of approximating arbitrary functions. Two important
characteristics of the MLP are: its nonlinear processing ele-
ments (PEs) which have a nonlinearity that must be smooth
(the logistic function and the hyperbolic tangent are the most
widely used); and their massive interconnectivity (i.e. any
element of a given layer feeds all the elements of the next
layer).

Fig. 3. A simple generalized feedforward neural network with hy-
perbolic tangent function.

Generalized feedforward networks are a generalization of
the MLP such that connections can jump over one or more
layers. In theory, a MLP can solve any problem that a gen-
eralized feedforward network can solve. In practice, how-
ever, generalized feedforward networks often solve the prob-
lem much more efficiently. A classic example of this is the
two-spiral problem. Without describing the problem, it suf-
fices to say that a standard MLP requires hundreds of times
more training epochs than the generalized feedforward net-
work containing the same number of processing elements.
A simple generalized feedforward neural network with two
hidden layers is shown in Fig. 3.

An optimal ANN architecture may be considered as the
one yielding the best performance in terms of error min-
imization, while retaining a simple and compact structure.
There are two important issues concerning the implementa-
tion of artificial neural networks, that is, specifying the net-
work architecture (the number of nodes and layers in the
network) and finding the optimal values for the connection
weights (selection of a training algorithm). In the process of
specifying the network size, an insufficient number of hidden
nodes causes difficulties in learning data whereas an exces-
sive number of hidden nodes might lead to unnecessary train-
ing time with marginal improvement in training outcome as
well as make the estimation for a suitable set of interconnec-
tion weights more difficult (Zealand et al., 1999). A higher
number of nodes in hidden layer tend the network to memo-
rize, instead of learning and generalization, and it might lead
to the problem of local minima. On the other hand, increas-
ing the hidden nodes will help to adjust to larger fluctuation
of target function and allow the model to consider the pres-
ence of volatilities in the data. Such as trends and seasonal
variation often appear a lot with rainfall. There is actually no
specific rule to determine the appropriate number of hidden
nodes; yet the common method used is trial and error based
on a total error criterion. This method starts with a small
number of nodes, gradually increasing the network size until
the desired accuracy is achieved. Fletcher and Goss (1993)
proposed a suggestion number of node in the hidden layer
ranging from (2n+1) to (2

√
n + m) wheren is the number of
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input node, andm is the number of output node. The num-
ber of input and output nodes is problem-dependent, and the
number of input nodes depends on data availability. In addi-
tion, the selection of input should be based on priori knowl-
edge of the problem. A firm understanding of the hydrologic
system under consideration is necessary for the effective se-
lection of input data (Ahmad and Simonovic, 2005).

Regarding the second issue, several training processes are
available to find the values of connection weights. These al-
gorithms differ in how the weights are obtained. The selec-
tion of training algorithm is related to the network type, com-
puter memory, and the input data. There are several training
algorithms which can be randomly listed as follow: Quick-
Prop (QP), Orthogonal Least Square (OLS), Levemberg-
Marquart (LM), Back Propagation (BP), and Resilient Prop-
agation Algorithm (RPROP). As implied in this study, the
standard back propagation algorithm is used in ANN train-
ing based on its most popular success, Coulibaly et al. (2000)
stated that 90% of ANN models applied in the field of hydrol-
ogy used the back propagation algorithm. In fact the renewed
interest in ANN was in part triggered by the existence of back
propagation which was first introduced by Werbos in 1974
for the three layer perceptron network. The application area
of the MLP network remained rather limited until the break-
through in 1986 when Rumelhart and McClelland published
theirs work with back propagation and gained recognition.
The back propagation rule propagates the errors through the
network and allows adaptation of the hidden units. This al-
gorithm involves minimizing the global error by using the
steepest descent or gradient approach. The network weights
and biases are adjusted by incrementing the negative gradient
of the error function for each iteration.

The multilayer perceptron is trained with error-correction
learning, which means that the desired response for the sys-
tem must be known. The error correction learning works in
the following way: from the system responsedi(n) at nodei
at iterationn,and the desired responseyi(n) for a given input
pattern, an instantaneous errorei(n) is defined by

ei(n) = di(n) − yi(n) (1)

Using the theory of gradient-descent learning, each weight
in the network can be adapted by correcting the present value
of the weight with a term that is proportional to the present
input and error at the weight, i.e. the weight from nodej to
nodei (wij ) can be calculated by:

wij (n + 1) = wij (n) + ηδi(n)xj (n) (2)

where,xj is a transform function at nodej , i andj indicate
different layers.

The local errorδi(n) can be directly computed fromei(n)

at the output node or can be computed as a weighted sum of
errors at the internal nodes. The constantη is called the step
size. Most gradient search procedures require the selection
of step size. The larger step size, the faster the minimum can

be reached. However, if the step size is too large, then the
algorithm will diverge and the error will increase instead of
decrease. If the step size is too small then it will take too long
to reach the minimum, which also increases the probability
of getting caught in local minima. Momentum learning is an
improvement to the straight gradient descent in the sense that
a memory term (the past increment to the weight) is used to
speed up and stabilize convergence. In momentum learning
the equation to update the weights becomes

wij (n+1) = wij (n)+ηδi(n)xj (n)+α(wij (n)−wij (n−1))(3)

whereα is the momentum. Normallyα should be set be-
tween 0.1 and 0.9. The back propagation algorithm is applied
as follow:

1. Initialize all weights and bias (normally a small random
value) and normalize the training data.

2. Compute the output of neurons in the hidden layer and
in the output layer (net) using

net i =

∑
wijxi + θi ; θi is a bias forPEi (4)

1. Compute the error and weight update.

2. Update all weights, bias and repeat steps 2 and 3 for all
training data.

3. Repeat steps 2 to 4 until the error converges to an ac-
ceptable level.

4 ANN models in preliminary test

In the model designing stage, several models were first tested
at one station in order to find the optimal ANN model that
can then be employed for all other stations in the forecasting
stage. The station E18, located in the Sukhumvit area, where
a real-time flood forecasting system is currently being de-
veloped, was chosen as a sample station to design the ANN
model set up. Split-sample training is a common method
to train ANN models; in this method, collected data are di-
vided into a training and testing set. However, recent works
have found that the better-trained model is not always cou-
pled with better performance in the testing. A practical way
to find a point of better generalization and avoid over train-
ing is to set aside a small percentage of the training data set,
which then can be used for cross validation. Monitoring the
errors in the training set and the validation set should be car-
ried out during the training process. When the error in the
validation set increases, the training should stop because the
point of best generalization has reached. This cross valida-
tion approach was adopted for the training of ANN models in
this study. Accordingly, three years data (1997, 1998, 1999)
with hourly rainfall records were selected to train ANN mod-
els, in which 80% of the data was set as a training set and
20% of the data was set aside to use for cross validation. The
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Table 1. Alternative ANN models considered in the study.

Model Network type Transfer function Architecture Training data

A Simple multilayer perceptron Sigmoid 5-5-5-1 Rt−4, Rt−3, Rt−2, Rt−1, and Rt
B Simple multilayer perceptron Sigmoid 5-10-10-1 Rt−4, Rt−3, Rt−2, Rt−1, and Rt
C Generalized feedforward Sigmoid 5-10-10-1 Rt−4, Rt−3, Rt−2, Rt−1, and Rt
D Generalized feedforward Sigmoid 6-16-12-1 Rt , RHt , WBTt , APt , CLt , and ARt

E Generalized feedforward Hyperbolic Tangent 6-18-12-1 Rt , RHt , WBTt , APt , CLt , and ARt

F Generalized feedforward Hyperbolic Tangent 9-22-11-1 Rt , RHt , WBTt , APt , CLt , ARt , SR1t , SR2t , and SR3t
G Generalized feedforward Hyperbolic Tangent 9-22-11-1 Same as Model F but only rainfall events

Rt = Rainfall intensity att , RHt = Relative humidity att , WBTt = wet bulb temperature att , APt = Air pressure att , CLt = Cloudiness att ,
ARt = Average hourly rainfall intensity of all rain gauges att , and SR1t = Rainfall intensity at surrounding station 1 att .

training set was used to calibrate the weights of the network;
the cross validation set was used to monitor the progress of
training process. The testing data set which used for the final
evaluation of the model performance is the hourly rainfall
records of the year 2003. Presented in this section are six
distinctive alternative models, whose structure and result are
considered as the most presentable for the preliminary test,
details of these six ANN models are summarized in Table 1.

The first model (Model A) used the multilayer perceptron
(MLP) network with a simple structure involving five nodes
in the input layer, two hidden layers having 5 hidden nodes
in each of the two layers, and one node in the output layer
(5-5-5-1). Inputs to the model were hourly rainfall data (at
time t) and past hourly rainfall with four hourly lag times
i.e., from (t−4) to (t-1) at station E18, while the output is the
rainfall intensity of the next hour (t+1). The transfer function
in nodes was the sigmoid function. For the second model
(Model B), the network type, transfer function and input data
were kept as same as Model A but the number of hidden
nodes in both hidden layers was increased from 5 to 10.

In the third model (Model C), the generalized feedforward
network was employed, the input variables, transfer function
and network architecture (5-10-10-1) were similar as Model
B. The fourth model (Model D) also adopted the generalized
feedforward network, with the sigmoid transfer function, but
different input variables and model structure. Theoretically,
the self-learning nature of ANN normally allows it to pre-
dict without extensive prior knowledge of all processes in-
volved. However, a good understanding of the physical pro-
cesses involved, and a hypothesis on how different processes
(and their state variable) interact with each other would help
in identifying parameters used in the input data. Thus, other
meteorological parameters were added to the input data set
and the past rainfall data was excluded as it brings more zero
values to the training process (no rain periods). This resulted
in six input variables for Model D, which included present
time values of relative humidity, wet bulb temperature, air
pressure, cloudiness, average hourly rainfall intensity of all
the rain gauge stations, and present rainfall at the station E18.
The model structure was modified to 6 input nodes, 16 and

12 hidden nodes in the first and second hidden layer, respec-
tively, and 1 output node (6-16-12-1).

In the fifth model (Model E), the input data was remained
as same as in Model D but the hyperbolic tangent function
was used instead of the sigmoid function and the number
of hidden node in the first layer was increased to 18, which
formed a new network architecture (6-18-12-1). In the sixth
model (Model F), spatial data were also considered in the in-
put variables for the ANN model, rainfall data of stations
around E18 were included to the input that were used in
Model D and E. A correlation analysis was carried out for
75 selected rain gauge stations to determine which stations
are strongly related to the station E18. Results of the analy-
sis revealed higher correlation of the stations E00, E19 and
E26 with the station E18. Therefore, the present hourly rain-
fall data of these three stations were added to the input data
set of Model E in the formulation of Model F. The change in
the input variables resulted in an increase in the number of
nodes in the input layer to 9, increase in the number of nodes
to 22 in the first hidden layer and 11 in the second hidden
layer.

5 Results and discussion

5.1 Comparison of models for one-hour ahead rainfall
forecast at station E18

The one-hour ahead forecast accuracy of the six ANN mod-
els in preliminary testing stage (model A to F) were evalu-
ated using to Efficiency Index (EI), Root Mean Square Error
(RMSE), and Correlation Coefficient (R2); the behavior of
these parameters is presented in Table 2. To investigate the
models deeper in terms of quantitative forecast, all the pat-
terns with no rain in observed data were excluded, and model
performance indices based on the remaining data (rainy pe-
riods only) were re-evaluated and the results are shown in
Table 3.

It can be seen that there was consistency in the results
obtained between the training and testing stages of these
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Fig. 4. Scatter plot of observed and forecasted rainfall for Model A and Model B (testing stage).

Fig. 5. Scatter plot of observed and forecasted rainfall for Model C and Model D (testing stage).

Table 2. Performance statistics of the six ANN models for 1 h rain-
fall forecasting at E18 station.

Model A B C D E F

Index Training (1997, 1998 and 1999 data)
EI (%) 31.62 40.46 50.5 62.47 81.52 98.54
RMSE (mm/h) 2.15 1.96 1.75 1.51 0.98 0.53
R2 0.48 0.54 0.57 0.68 0.87 0.98

Testing (2003 data)
EI (%) 28.35 38.25 48.32 59.19 80.54 96.72
RMSE (mm/h) 2.1 1.98 1.86 1.56 1.05 0.71
R2 0.41 0.49 0.55 0.66 0.83 0.94

models. This was attributed to the fact that the cross vali-
dation approach was helpful in detecting the best general-
ization point. The first three ANN models (A, B, C), which
used only the characteristics of previous rainfall value as in-
put variables, provided very low accuracy of forecast. The
lowest score was obtained by Model A since the number of
hidden nodes was insufficient to memorize and learn the pat-

tern of training data. Although the number of hidden nodes
was increased from 5 to 10 in each hidden layer in Model
B, improvement in the result was minor. Changing the net-
work type in Model C enhanced the performance compared
to Model A and B. This suggests that the generalized feed-
forward network performed better than the simple multilayer
perceptron network in this study. Figures 4 and 5 depict the
scatter plot of rainfall forecast against the observed record of
these three models, showing that most low rainfalls are over-
estimated and high rainfalls are underestimated. These three
models rendered several errors in forecasts; sometimes they
provided rainfall forecasts when there was no rain. No rain in
forecasted results versus no rain in the observed record was
considered as a very high forecasting result; therefore, when
the non-rainy period was excluded for quantitative investi-
gation, the EI and coefficient of correlation were degraded
as presented in Table 3. All these results of the first three
models A, B and C (Tables 2 and 3) indicated that rainfall-
rainfall model structure is not working well in the approach
of a continuous model.

Comparison of Model D with Model C, both of which
used the same network type and transfer function but
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Table 3. Performance statistics of models for 1h rainfall forecasting at E18 station (rainfall events only).

Model A B C D E F G P

Index Training (1997, 1998 and 1999 data)
EI (%) −16.2 18.21 24.54 33.47 45.23 95.24 97.86 68.23
RMSE (mm/h) 7.73 6.12 5.32 4.52 3.54 1.02 0.97 1.65
R2 0.02 0.38 0.55 0.62 0.69 0.95 0.98 0.78

Testing (2003 data)
EI (%) −18.5 17.98 23.16 32.29 43.97 94.82 96.63 66.35
RMSE (mm/h) 8.53 6.22 5.85 4.91 3.92 1.24 0.99 1.78
R2 0.02 0.36 0.53 0.59 0.65 0.95 0.97 0.72

Fig. 6. Scatter plot of observed and forecasted rainfall for Model E and Model F (testing stage).

different input variables, brought a very interesting outcome.
The combination of the meteorology information with rain-
fall series in the input data has generally improved model per-
formance as the Model D yielded better results than Model
C for both the training and testing phase. For model E, re-
markable performance indicates that with hyperbolic tangent
function, model E is capable of generalizing better results
from the same set of input variables than model D, which use
the sigmoid function. Models D and E also show degraded
performance indices, just as models A, B and C, when no-
rain data was eliminated (Table 3). Figs. 5 and 6 reveal that
both models E and D provided underestimated rainfall fore-
casts.

Model F, which involved the input data of rainfall at the
station of forecast and the three surrounding stations, as well
as other meteorological parameters (Table 1), produced the
highest performance (Table 2). The scatter plot in Figure 6
confirms the match between forecasted and observed rainfall.
Moreover, Model F also worked well when applied to each
rainfall event (Table 3). The high accuracy result by Model
F (Tables 2 and 3) again highlights the importance of using
additional data to enable the ANN model to train and run in
continuous mode.

In order to evaluate the superiority of the optimal model
(Model F) over the conventional approach in the real time
rainfall forecast, two other models were developed. The first
model is Model G with the same setup as Model F, but using
only rainfall events to feed in input as given in Table 1. The
second model is a persistence approach (Model P), or naı̈ve
prediction, widely used in forecasting theory. This predictive
scheme, which simply substitutes the last measured values
as the current forecast, represents a good bottom line bench-
mark.

The performance indices of Model G (Table 3) showed
that in the first case, when applied with rainy data only,
Model G works more or less comparably with Model F;
similar results were obtained in the training stage and were
slightly improved in the testing stage. However, in the sec-
ond case, when Model G was applied in real time mode with
continuous data of the year 2003, it was found that Model G
produced a very large forecast error, as illustrated in the right
panel of Fig. 7. Non-rainy periods included in the contin-
uous data made this input set become unhomogeneous with
the original training data (rainfall events only). Therefore,
Model G, once trained with rainy data only, has no ability of
generalization to unseen problems, and was unable to gener-
ate rainfall forecasts in continuous mode.
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Fig. 7. Scatter plot of observed and forecasted rainfall for Model G (testing stage).

Table 4. Performance statistics for sensitivity analysis for 1 h rainfall forecasting at E18 station.

Case Base case Without Without wet Without Without Without average rainfall Without rainfall at
(Model F) relative humidity bulb temperature air pressure cloudiness of all 75 stations surrounding 3 stations

Index Training (1997, 1998 and 1999 data)
EI (%) 98.54 81.34 79.54 82.13 88.62 93.54 83.36
RMSE (mm/h) 0.53 0.94 1.12 0.92 0.82 0.68 0.91
R2 0.98 0.85 0.82 0.87 0.92 0.96 0.89

Testing (2003 data)
EI (%) 96.72 80.32 76.96 81.54 85.41 92.15 82.51
RMSE (mm/h) 0.71 0.99 1.25 0.98 0.89 0.75 0.96
R2 0.94 0.84 0.81 0.86 0.91 0.95 0.87

Examination of Table 3 also reveals that the performance
of the persistent model (Model P) gained the third place
among eight presented models. However, since the persis-
tent model considered the forecast equal to the last rainfall
record, it always issued lag forecast and the performance in-
dices of Model P were significantly less than that of Model
F (Table 3). As a feature of a tropical climate, rainfall in
Bangkok is rapid, with high fluctuation in both duration and
intensity; therefore, the persistent approach is inadequate to
provide applicable forecasts for real time purposes.

Comparison of Model G and persistent model with Model
F confirmed that when applied for rainy data only, Model F
had comparable performance with Model G and was much
better than Model P. In the case of using continuous data,
model F has outperformed both Model G and P.

5.2 Sensitivity analysis

While training a network, the effect that each of the network
inputs has on the network output should be studied. This
provides feedback as to which input parameters are the most
significant. Based on this feedback, it may be decided to
prune the input space by removing the insignificant parame-
ters. This also reduces the size of the network, which in turn
reduces the network complexity and the training time. The

sensitivity analysis is carried out by removing each of the
input parameters in turn from the input parameters used on
Model F and then comparing the performance statistics, EI,
RMSE andR2. The greater the effect observed in the output,
the greater is the sensitivity of that particular input parameter.

As mentioned earlier, the inputs into Model F included
rainfall (mm/h) at the station E18, relative humidity (%), wet
bulb temperature (◦C), air pressure (HPa), total cloudiness,
arithmetical average rainfall (mm/h) of all rain gauges, and
rainfall (mm/h) from the three surrounding stations (strongly
connected with station E18). The rainfall on the particular
station was considered as the main parameter; hence this pa-
rameter was not included in the sensitivity analysis. The top
three strongly connected stations (E00, E19 and E26) to E18
station were selected based on the correlation and were con-
sidered to have the same relative importance level as the cor-
relation coefficients are 0.91, 0.93 and 0.87, respectively. For
this reason, in the sensitivity analysis, these three stations
were excluded once, which formed an ANN structure (6-18-
12-1). For the remaining five cases, the same network ar-
chitecture (8-22-11-1), using the hyperbolic tangent function
and forecasting rainfall 1 hour ahead is used (Table 4).

As seen from Table 4, the ANN model without wet bulb
temperature as input obtained the maximum EI reduction in
the training stage. In the testing stage, the model without
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Fig. 8. Comparison of observed rainfall (left side maps) and predicted rainfall (right side maps) for 1 to 6 h ahead forecasting on 16 September
2003 (from 13:00 to 18:00).
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Table 5. Summary of ANN results for rainfall forecasting at 75 rainfall stations (Model F).

Lead time Efficiency index (%) Correlation coefficient RMSE (mm/h)

Max Min Mean Max Min Mean Max Min Mean
1 h 98 74 86 0.99 0.74 0.88 1.48 0.42 0.87
2 h 87 63 69 0.92 0.63 0.77 2.16 0.73 1.36
3 h 68 42 54 0.84 0.55 0.67 2.55 1.06 1.72
4 h 62 35 45 0.78 0.48 0.64 2.82 1.11 1.85
5 h 58 30 41 0.73 0.46 0.62 2.72 1.16 1.88
6 h 48 29 36 0.71 0.36 0.60 2.75 1.24 1.93

wet bulb temperature gave similar results: EI received the
lowest value. This indicates that the most significant input is
wet bulb temperature. Likewise, from overall performance
of models in Table 4, the second most important parameter
is the relative humidity, while other important parameters are
the air pressure and the rainfall at the three surrounding sta-
tions. The cloudiness remained as the fifth most important
parameter, with an EI decreasing to 88.62% for the model
without this parameter. The ANN model without average
rainfall of all stations gave EI of 93.54% in the training stage,
nearest to the results of Model F, indicating that this input
data contributed the least in improving the model results.

5.3 Rainfall forecasting from 1 to 6 h for Bangkok area

From the preliminary test, Model F was identified as the best
model among six ANN testing models. The efficiency at-
tained at 1 h ahead forecast is highly accurate; the scatter
plot in Fig. 6 also shows that peaks forecast are matched with
observed data. Therefore, Model F was selected to forecast
rainfall at lead times of one to six hours at all 75 rain gauge
stations in Bangkok. The same training approach and data
selection of the preliminary test was implemented in the fore-
casting stage.

Table 5 presents the summarized ANN model results in
terms of maximum, minimum, mean EI,R2, and RMSE for
rainfall forecasting from 1 to 6 h ahead at all 75 rain gauge
stations. The models performed consistently well, providing
stable and similar results for all stations. It is seen that the
model performance decreases with the increasing lead time
of the forecast. This is to be foreseen, as the ANN model
uses a recursive method to forecast multi-step ahead. Thus
the forecast errors are propagated and accumulated from step
to step.

It can further be seen that the ANN models provide re-
markably acceptable results of rainfall forecasts for 1 and 2 h
ahead (Table 5). For 1 h lead forecasts at some stations the
value of EI reached up to 98%, while the lowest EI value of
all stations was 74%. Similarly, the maximum and minimum
correlation coefficient values of 0.99 and 0.74 reflect highly
satisfactory results. For 2 h ahead forecast, the results may

also be considered quite satisfactory with maximum EI of
87%, and minimum EI of 63%; and maximum and minimum
R2 of 0.92 and 0.63 respectively. Forecasting results of 3 h
ahead are less satisfactory, results for 4 to 6 h ahead may be
considered to be poor with the mean EI varying between 45
and 36% and meanR2 in the range from 0.78 to 0.71.

Observed rainfall (left figures) and the predicted rainfall
(right figures) for 1 to 6 h ahead forecasting on the rainfall
event on 16 September 2003 are compared in Fig. 8. These
maps are developed with the known geographical locations
and the observed and forecasted rainfall at all 75 stations
for clear visualization and comparison. The Kriging method
was employed for interpolation of the scattered data over the
study area.

As seen in Fig. 8, at 13:00 h on 16 September 2003, there
was rainfall on few stations and the model could estimate 1 h
ahead forecasts of rainfall quite accurately. Average mea-
sured rainfall is 0.78 mm and that of the forecast is 0.71 mm,
so the RMSE value of this forecast step is 0.65 mm/h. At
14:00 h, rain came from more stations in both the east and
west side of Bangkok with an average observed amount of
2.5 mm. The map based on the rainfall forecasted 2 h ahead
corresponds reasonably well with the map developed based
on the observed rainfall. In this step, the ANN model fore-
casted an average rainfall value of 1.95 mm, and RMSE in-
creased to 0.85 mm/h. Rainfall forecasts at 3 h ahead in this
example was reasonably good as the shape of the rain map
is matched between observed and forecasted. The RMSE
value for this forecast step was 1.15 mm/h. Rainfall forecasts
at 4 h ahead still formed a good rain map, except one sta-
tion clearly provided a large underestimated rainfall forecast.
The RMSE of this step was 1.42 mm/h. In both 5 and 6 hours
forecasts, the ANN model gave erroneous forecast at several
stations, and the RMSE value increased to 1.72 mm/h and
1.83 mm/h respectively. These illustrative results confirmed
the findings presented in Table 5 that the rainfall forecast re-
sults for 1 to 3 hours ahead were satisfactory and for 4 to 6 h
ahead were not acceptable and demand further improvements
in techniques for longer lead time predictions.

www.hydrol-earth-syst-sci.net/13/1413/2009/ Hydrol. Earth Syst. Sci., 13, 1413–1425, 2009



1424 N. Q. Hung et al.: A rainfall forecast model using Artificial Neural Network

6 Conclusions

In this study, an Artificial Neural Network model was em-
ployed to forecast rainfall for Bangkok, Thailand, with lead
times of 1 to 6 h. Comparison of 1 h ahead rainfall forecast of
the six models considered in the preliminary test showed that
a combination of meteorological parameters such as relative
humidity, air pressure, wet bulb temperature, and cloudiness,
along with rainfall data at the forecasting station and other
surrounding stations, as an input for the model could signifi-
cantly improve the forecast accuracy and efficiency. Results
of preliminary tests also concluded that the generalized feed-
forward network and hyperbolic tangent function performed
well in this study. With the appropriate network architec-
ture and especially with the use of auxiliary data, the ANN
model was able to learn from continuous input data which
contained both rain and dry periods, thus the model can be
adopted to run for real time forecasting. The superiority in
performance of the ANN model over that of the persistent
model again confirmed that the real advantage of a continu-
ous ANN model is that it can provide a satisfactory rainfall
forecast at any moment.

It is important to determine the dominant model inputs, as
this increases the generalization of the network for a given
data. Furthermore, it can help reduce the size of the network
and consequently reduce the training time. In this study, sen-
sitivity analysis was used to rank the input parameters with
respect to their importance in forecasting rainfall based on
the model performance. Results of the sensitivity analysis
indicated that the most important input parameter, besides
rainfall itself, is the wet bulb temperature; further study over
the entire rain gauge network could be carried out for more
significant conclusions.

The ANN model was found to be efficient in fast compu-
tation and capable of handling the noisy and unstable data
that are typical in the case of weather data. The predicted
values of all 75 rain gauge stations matched well with the
observed rainfall for forecasts with short lead times of 1 or 2
h. Not only that, the rainfall forecasting for 3 h ahead using
the ANN model also provided reasonably acceptable results.
The efficiency indices were gradually reduced as the forecast
lead time increased from 4 to 6 h. Although the model perfor-
mance of 6 hour forecasting was low and the forecasting was
not as accurate as expected, the developed model can still
be used for practical applications such as rainfall forecasting
and flood management for the urban areas.
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