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Abstract. Spatial patterns as well as temporal dynamics
of soil moisture have a major influence on runoff genera-
tion. The investigation of these dynamics and patterns can
thus yield valuable information on hydrological processes,
especially in data scarce or previously ungauged catchments.
The combination of spatially scarce but temporally high res-
olution soil moisture profiles with episodic and thus tem-
porally scarce moisture profiles at additional locations pro-
vides information on spatial as well as temporal patterns
of soil moisture at the hillslope transect scale. This ap-
proach is better suited to difficult terrain (dense forest, steep
slopes) than geophysical techniques and at the same time
less cost-intensive than a high resolution grid of continu-
ously measuring sensors. Rainfall simulation experiments
with dye tracers while continuously monitoring soil moisture
response allows for visualization of flow processes in the un-
saturated zone at these locations. Data was analyzed at differ-
ent spacio-temporal scales using various graphical methods,
such as space-time colour maps (for the event and plot scale)
and binary indicator maps (for the long-term and hillslope
scale). Annual dynamics of soil moisture and decimeter-
scale variability were also investigated. The proposed ap-
proach proved to be successful in the investigation of flow
processes in the unsaturated zone and showed the importance
of preferential flow in the Malalcahuello Catchment, a data-
scarce catchment in the Andes of Southern Chile. Fast re-
sponse times of stream flow indicate that preferential flow
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observed at the plot scale might also be of importance at the
hillslope or catchment scale. Flow patterns were highly vari-
able in space but persistent in time. The most likely explana-
tion for preferential flow in this catchment is a combination
of hydrophobicity, small scale heterogeneity in rainfall due
to redistribution in the canopy and strong gradients in unsat-
urated conductivities leading to self-reinforcing flow paths.

1 Introduction

Identification of patterns of soil moisture response to rainfall
and especially the vertical dynamics of soil moisture at the
hillslope or plot scale can be useful for the investigation of
runoff generation processes in previously ungauged or data
scarce catchments (runoff generation is here referring to all
components of streamflow: groundwater, subsurface storm-
flow and surface runoff). When investigating runoff gener-
ation processes in a previously ungauged catchment it be-
comes obvious from the start that the equipment we are about
to install is insufficient. There will be neither enough data
points in time nor in space to characterize these processes
in their temporal and spatial variability. A possible way to
overcome this problem is the approach where a multitude
of experimental methods is applied within a relatively short
time frame, producing a data set that highlights a multitude
of angles and aspects of catchment functioning. This type of
study was carried out in the Malalcahuello Catchment in the
Chilean Andes and is described inBlume et al.(2008a).

The hydrologic behaviour of young volcanic ash soils in
Chile is little understood and no studies of high temporal
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resolution soil moisture dynamics were found in our litera-
ture search. However, in other parts of the world such as
New Zealand or Japan the soil moisture dynamics of volcanic
ash soils has been investigated to some extent:Hasegawa
(1997) used hourly TDR data to investigate soil water con-
ditions and movement,Eguchi and Hasegawa(2008) used
TDR and tensiometer data to estimate preferential flow,Mu-
siake et al.(1988) used tensiometric observations and a nu-
merical model to study infiltration and drying behaviour of
these soils andVan’t Woudt(1954) used 19 small lysimeters
to investigate subsurface stormflow.

Soil moisture data has been used as a means to understand
runoff generation in other parts of the world (e.g.Kienzler
and Naef, 2007; Meyles et al., 2003; McNamara et al., 2005;
Frisbee et al., 2007; Germann and Zimmermann, 2005; Zhou
et al., 2002; Hino et al., 1988) or for the investigation of the
effects of changes in land use or management on hydrologi-
cal processes (Williams et al., 2003; Starr and Timlin, 2004).
See alsoRobinson et al.(2008) andVereecken et al.(2008)
for comprehensive reviews on measurement techniques and
the value of soil moisture data, respectively. In most stud-
ies soil moisture was measured either with high spatial or
with high temporal resolution, thus producing either spatial
soil moisture patterns (Bardossy and Lehmann, 1998; Brocca
et al., 2007; Meyles et al., 2003; Williams et al., 2003; West-
ern et al., 2004; Rezzoug et al., 2005; Nyberg, 1996) or infor-
mation on the dynamics (e.g.McNamara et al., 2005; Starr
and Timlin, 2004; Frisbee et al., 2007). A combination of
both can only be achieved with either a large number of
probes measuring continuously such as inStarr and Timlin
(2004) andTaumer et al.(2006) or with geophysical methods
such as described for example inZhou et al.(2001), were
electric resistivity tomography was used to investigate soil
moisture dynamics on a 3.5×3.5 m plot at hourly resolution.
However, the first of these two options is cost-intensive while
the second is predominantly carried out on grassland, fields
or bare soils with little topography and is not feasible in com-
plex terrain. Furthermore, as no general petrophysical rela-
tion to derive soil moisture from specific resistivity values
is available, careful inversion and site specific calibration is
needed. Combining data sets with different spatio-temporal
resolution thus might be a viable cost-efficient alternative for
difficult terrain. A recent study using a similar approach has
been carried out in a small catchment in Australia, where
500 datapoints sampled on a weekly basis for 4 weeks were
combined with 7 continuously measuring stations (Martinez
et al., 2008).

At the Malalcahuello Catchment soil moisture was mea-
sured on two steep hillslope transects. Data was collected
with a data logger at high temporal resolution at three points
and manually at irregular intervals at 11 additional points.
Each measurement produces soil moisture data for 6 differ-
ent depths along a vertical profile. While this is still a very
small number of data points it is nevertheless possible to
get a general understanding of the major processes occur-

ring within the unsaturated zone of this catchment. Data was
analyzed using various graphical methods allowing for data
exploration at different spatio-temporal scales. By carrying
out rainfall simulation experiments using a dye tracer over
each of the continuously measuring probes it was possible to
corroborate our perception of flow in the unsaturated zone at
these locations. This combination of high temporal resolu-
tion soil moisture measurements, rainfall simulation experi-
ments and the use of dye tracers to reassess the conclusions
gained from the soil moisture time series is noteworthy and
has a high potential for synergetic effects. However, only
one other study (Weiler and Naef, 2003) using a similar ap-
proach but a slightly different layout was found in our lit-
erature search. The study at the Malalcahuello catchment
furthermore included the analysis of response times at the
event scale, yearly soil moisture dynamics, spatial patterns
and their long-term dynamics for 14 locations and 6 depths
and the investigation of small scale soil moisture variability
at the decimeter scale.

The four main questions of the study in the Malalcahuello
Catchment were:

1. Can soil moisture data be used to investigate the dy-
namic patterns of unsaturated flow?

2. Can novel ways of data-visualization (e.g. space time
colour maps) give a better picture of subsurface flow
processes than traditional line plots alone?

3. Can the combination of data sets with different spatio-
temporal resolution have synergetic effects and thus
yield additional insights?

4. Can the observed soil moisture patterns and dynamics
be connected with entire system/catchment response?

2 Research area

2.1 The Malalcahuello catchment

The research area is situated in the Reserva Forestal Malalc-
ahuello, in the Precordillera of the Andes, IX. Region,
Chile. The catchment is located on the southern slope of
Volcán Lonquimay (38◦25.5′–38◦27′ S; 71◦32.5′–71◦35′ E).
The catchment covers an area of 6.26 km2. Elevations range
from 1120 m to 1856 m above sea level, with average slopes
of 51%. 80% of the catchment is covered with forest of the
type Araucaria (Araucaria araucana) (with Lenga (Nothofa-
gus pumilio) and Coig̈ue (Nothofagus dombeyi)) at higher el-
evations and Roble (Nothofagus obliqua) – Rauĺı (Nothofa-
gus alpina) – Coig̈ue (Nothofagus dombeyi) at lower eleva-
tions. These types of native forest have a dense understorey
of bamboo (Chusquea culeou). There is no anthropogenic
intervention. Due to this dense vegetation interception losses
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Table 1. Soil physical characteristics for major horizons of the Trumao soils in the Malalcahuello Catchment. (Ksat-saturated hydraulic
conductivity, GSD-grain size distribution, FC-field capacity, PWP-permanent wilting point, n.d.-not determined. Values are median values
unless otherwise stated.)

humus horizon 1 horizon 2 horizon 3 gravel pumice

color dark dark brown yellow brown reddish brown gray orange
occurrence common common common less common common less common
depth range (cm) upper limit 0 5–10 20–60 25–90 30–600 60

lower limit 5–10 20–60 60–130 45–170 50–710 90
Ksat (m/s) min 2.2E–04 7.0E–05 3.8E–05 2.0E–05 1.3E–03 1.0E–03

max 2.7E–03 8.2E–04 8.9E–04 6.1E–03 1.8E–03 2.8E–03
median 2.1E–03 2.6E–04 2.2E–04 9.6E–05 1.7E–03 2.2E–03
No.of samples 3 14 9 11 3 6

GSD (mean%) sand n.d. 69 67 n.d. 39 n.d.
silt n.d. 29 30 n.d. 2 n.d.
clay n.d. 2 3 n.d. incl. in silt n.d.
gravel n.d. n.d. n.d. n.d. 59 n.d.
No.of samples 0 2 14 0 6 0

porosity (%) min 78 58 58 63 63 68
max 82 79 72 73 67 71
median 81 66 67 71 66 69
No.of samples 3 15 13 5 5 6

bulk density min 0.43 0.48 0.57 0.68 0.82 0.70
max 0.52 0.87 0.97 0.90 0.93 0.81
median 0.48 0.73 0.69 0.77 0.89 0.75
No.of samples 3 15 15 6 5 6

FC (Vol%) at 0.33–0.06 bar 32–36 33–43 35–46 32–39 39–43 22–26
PWP (Vol%) at 15 bar 10 16 24 20 24 15

No.of samples 3 15 9 9 5 6

become significant: on average only 80% of total precipita-
tion reaches the forest floor as throughfall (measured with a
raster of throughfall collectors with a diameter of 10.5 cm).
However, throughfall amounts are highly variable and can in
places also exceed total precipitation (measured outside the
forest) by a factor of 2 or even 3 (Blume et al., 2008a). Above
the tree line (20% of the catchment area) there is no signifi-
cant vegetation cover.

The soils are young, little developed and strongly layered
volcanic ash soils (Andosols, in Chile known as Trumaos)
(Iroumé, 2003; Blume et al., 2008a). High permeabilities
(saturated and unsaturated), high porosities (60–80%) and
low bulk densities (0.4–0.8 g/cm3) are typical for volcanic
ash soils. They also usually show a strong hysteresis and ir-
reversible changes (e.g. in water retention) with air-drying
(Shoji et al., 1993). Soil hydraulic conductivities for the
soils in the Malalcahuello catchment were determined for
soil cores (8 cm diameter) in the lab with the constant head
method and range from 1.22×10−5 to 5.53×10−3 m/s for
the top 45 cm (independent of soil horizon), with an average
of 5.63×10−4 m/s (42 samples). The mean conductivity for
the fine gravel and pumice layers is 1.88×10−3 m/s (9 sam-
ples). Porosities for all horizons sampled range from 56.8%
to 82.1%. The mean porosity for the top 45 cm is 71.7%

with a standard deviation of 6.6% (16 samples). Grain size
distributions for the upper horizons resulted in an average of
66.5% sand, 30.4% silt and 3% clay. In the coarse layers
the grain size fraction≥2 mm ranges from 38–86% (Blume
et al., 2008a). Layer thickness is also highly heterogeneous,
and can range from 2–4 cm to several meters. It was not pos-
sible to establish a soil catena along the hillslope, probably
due to the young age of the very little developed ash soils.
For details on the soil physical characteristics of the major
soil horizons in this catchment see Table1. Depth to bedrock
is unknown, however, manual augering to depths of 2–3 m,
at one occasion even 7 m was possible (Blume et al., 2008a).
At the locations of the 4 wells at the lower end of this slope
(Fig.1) groundwater was found in depths of 1.8–3.2 m below
the surface. However, at many other locations on this slope
no groundwater was found in auger holes of similar depths.
For a more detailed description of the Malalcahuello Catch-
ment seeBlume et al.(2008a).

The climate of this area can be described as temper-
ate/humid with altitudinal effects. There is snow at higher el-
evations during winter and little precipitation during the sum-
mer months January and February. Annual rainfall amounts
range from 2000 to over 3000 mm, depending on elevation.
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Fig. 1. Left: The Malalcahuello Catchment including the positions of rain gauges and the gauging station. The vertical resolution of the
isolines is 50m. Right: The slope close to the catchment outlet. Shown are the positions of thecontinuously measuring soil moisture
probes (P1–P3) as well as the locations of the manual soil moisture measurements. The position of the groundwater observation wells is
also included. The vertical resolution of the isolines is 20m. H4 and H5 are exemplary manual measured moisture profiles for which data is
shown in section 4.3.

Fig. 1. Left: The Malalcahuello Catchment including the positions of rain gauges and the gauging station. The vertical resolution of the
isolines is 50 m. Right: The slope close to the catchment outlet. Shown are the positions of the continuously measuring soil moisture
probes (P1–P3) as well as the locations of the manual soil moisture measurements. The position of the groundwater observation wells is
also included. The vertical resolution of the isolines is 20 m. H4 and H5 are exemplary manual measured moisture profiles for which data is
shown in Sect.4.3.

An overview of catchment layout and topography as well
as instrumentation is given in Fig.1.

The current perception of the hydrological processes in
this catchment can be summarized as follows: Rainfall-
runoff response is generally fast, in part due to high hydraulic
conductivities and thus fast matrix flow. Lateral subsurface
flow is assumed to be important as strongly differing soil lay-
ers offer interfaces either for flow along capillary barriers or
impeding layers. Lateral flow has furthermore been observed
in the duff layer during a high intensity rainfall simulation ex-
periment (Blume et al., 2008b). A large subsurface storage
is indicated by the deep unsaturated zone, the high porosities
and the fact that event runoff coefficients are low, with 1–
10% for 17 events analyzed in 2004/2005, of which a third
are smaller than 2% (Blume et al., 2007), while yearly runoff
coefficients (>60%) as well as the baseflow index (>75%)
calculated for the years 2004 and 2005 are high (Blume et al.,
2008a). Furthermore ashift in processes from dry to wet sea-
son(summer to winter) is indicated by a change in flow pat-
terns observed through dye tracer experiments and a change
in groundwater surface water interaction observed close to
the catchment outlet (Blume et al., 2008b).

3 Approach and methodology

3.1 Approach

The approach of this study is based on the measurement
of spatially scarce but high temporal resolution soil mois-
ture profiles on the one hand and episodic and therefore
temporally scarce soil moisture profiles on the other hand.
These two datasets combined with additional experiments

were used to investigate soil moisture response patterns and
thus flow in the unsaturated zone. This included the analy-
sis of yearly soil moisture dynamics as well as of event re-
sponse patterns resulting in the deduction of flow processes,
the use of rainfall simulation experiments with dye tracers
to corroborate these deductions, but also the analysis of re-
sponse times at the event scale. The episodic measurements
along the hillslope transects allow for the analysis of spatial
patterns and their long-term dynamics for 14 locations and 6
depths and for the investigation of small scale soil moisture
variability at the decimeter scale. Figure2 gives an overview
of the data sets used in this study. The synergies arising from
their combination are described in Sects.4 and5.

3.2 Streamflow, groundwater levels and rainfall

Water levels in stream and groundwater were measured with
capacitive water level sensors (WT-HR Trutrack) at 5–10 min
time intervals. Stream water levels were converted to dis-
charge with the help of a rating curve and groundwater levels
are reported in reference to the well datum or the datum of the
stream gauge. Rainfall was measured with a tipping bucket
rain gauge with a resolution of 0.27 mm. A climate station
maintained by the Universidad Austral de Chile is located in
a nearby forest plantation at 1270 m elevation. This climate
station has been logging the parameters rainfall, tempera-
ture, relative humidity, wind direction and velocity as well
as global radiation at hourly intervals since 1999. During the
winter of 2005 an ultra-sonic snow height sensor was also
installed at this climate station. For more details on the ex-
perimental methods applied in the Malalcahuello Catchment
seeBlume et al.(2008a).
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3.3 Soil moisture profiles

To investigate the dynamics as well as the trends in soil mois-
ture profiles along the hillslope, measurements were carried
out at two transects with FDR (frequency domain reflectome-
try) profile probes (Delta-T) in 10, 20, 30, 40, 60 and 100 cm
depth. Both transects are located on the eastern slope close
to the main stream gauging station S1 (Fig.1). This hills-
lope was selected for being quite typical for the catchment in
slope and vegetation as well as for its accessibility. At each
depth soil moisture is measured in a soil volume of about
2500 ccm, a cylinder with a radius of 10 cm. The absolute
measurement error of about 3% (as given by the manufac-
turer) is for the measurement of the dynamics of soil mois-
ture of less importance. The error of the measured dynamics,
i.e. the error of the values relative to each other is likely to
be smaller than the absolute error. As a result of the special
characteristics of the volcanic ash soil, such as the extremely
high porosities and the fact that volcanic glass is a primary
constituent, the built-in standard calibrations were not appli-
cable. It was thus necessary to calibrate the probe specifically
for this type of soil with gravimetrically determined water
contents of 19 soil samples of the upper horizons (horizons
1 and 2 in Table1), which generally cover depths from 5
to 130 cm. Water contents for the calibration curve ranged
from 16 to 51 Vol%. The calibration resulted in a correction
of the supplied generalised soil calibration given by the man-

ufacturer:θcorr= 0.8126×θ + 0.1145. With this calibration
curve it was possible to reproduce the gravimetrically deter-
mined values with anR2 of 0.94 and a median absolute error
of only 1 Vol%. These profile probes do not measure within
a purely circular field as the sensor only extends about two
thirds around the probe. For manual measurements it is pos-
sible to cover the full circle by taking three measurements,
turning the probe by 120◦ each time. While many of the
soil cores used in the soil physical characterisation (Table1)
were taken at or close to this hillslope, there is no soil physi-
cal information available for the exact location of each of the
sensors. Due to the large variability of layer thickness, it is
also difficult to attribute the sensors to a specific soil horizon.

Three profile probes were connected to a data-logger and
were measuring continuously with a temporal resolution of
10 min. The data set extends from March 2003 to May 2006
for the lowest probe and from October 2004 to May 2006
for the two upper probes. For easier reference the three
probes are numbered: probe 1 is located at the lower end
and probe 3 at the upper end of the hillslope transect. A
fourth probe was used for manual measurements at 11 points
along the transects. 5 of these measurement locations sup-
plement the transect of the continuously measuring probes,
while the remaining 6 form a second transect located to the
north of the first (Fig.1). The points on the transects were
roughly evenly spaced. These manual measurements were
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carried out at 41 occasions at irregular time intervals dur-
ing field campaigns (December 2003–February 2004, Octo-
ber 2004–December 2004, November 2005–December 2005
and April–May 2006).

3.4 Rainfall simulation experiments

To investigate subsurface flow patterns 10 dye tracer exper-
iments with brilliant blue were carried out in the Malalc-
ahuello catchment in 2004 and 2005 (for details seeBlume
et al.(2008b)).

Furthermore, similar rainfall simulation experiments were
conducted in May 2006 at the locations of the continuously
measuring soil moisture probes. It was thus possible to test
our perception of flow in the unsaturated zone at these pro-
files. The plot size was 1.2 m×1.2 m with the probe situated
in the center. For all experiments the dye tracer Brilliant Blue
with a concentration of 4 g/l was used. The dye was applied
with a hand pressurized pesticide sprayer in order to simu-
late rainfall. 30 l of the dye were sprayed over a period of
3 h. This corresponds to a total of 25 mm at application rates
of 8.3 mm/h on average. Profiles of the plots were excavated
the following day and photos of the dye patterns were taken
with a digital camera.

3.5 Response times

Response times were calculated for both, dry and wet season
from the time series of rainfall, soil moisture, groundwater
levels at well W1 (Fig.1) and streamflow (all with 10 min
resolution). Response time in this case was defined as the
time period between begin of precipitation and first response
of soil, ground- and stream water. The following threshold
values were chosen to identify the point of first response in
the time series: an increase of 0.2 Vol% in soil moisture, an
increase of 0.005 m in groundwater level and an increase of
0.01 m3/s in stream flow. As the main interest are the rel-
ative changes in response times from winter to summer, the
absolute values of these thresholds are of less importance as
long as consistent thresholds (>noise of the time series) are
used for the entire analysis.

3.6 Data analysis

Data was analyzed at different space-time scales using vari-
ous graphical methods. The space-time scales analyzed in-
cluded event and longterm scale, point and hillslope scale.

Simple line plots were used to analyze annual dynamics as
well as small scale variability of soil moisture.

Soil moisture patterns at the hillslope scale are investigated
with the help of binary indicator maps for each depth. These
maps show locations where soil moisture is above/below a
certain threshold. Here we selected the median value to in-
dicate wetter/drier than average locations as well as the 75%
quantile to indicat wet spots. These thresholds are calculated

for each depth and sampling occasion at all sampling loca-
tions on both transects and depend thus on time and depth.
The temporal aspect of these binary patterns is included in
the indicator map by plotting location on the slope on the y-
axis and time on the x-axis, thus giving an idea of pattern
persistency.

Event scale datasets with 10 min temporal resolution were
analyzed with the help of colour maps which included tem-
poral dynamics similar to those used byWeiler and Naef
(2003). Here, time is plotted on the x-axis while depth is
plotted on the y-axis. Soil water content at each depth and
point in time is visualized by color, changing from blue to
red with increasing wetness. For additional information the
response of streamflow and groundwater, as well as the rain-
fall intensity at each point in time were also included. Color
scales were adapted from one event to the next in order to get
the best “color resolution” possible, producing clearer pat-
terns of response. It thus becomes possible to explore and
identify patterns in moisture response, patterns in spaceand
time that are much more difficult to identify in the classical
line plots of soil moisture dynamics. In a next step flow pro-
cesses were deduced from these patterns.

3.7 Estimation of potential for self-reinforcing flow
paths

A rough estimation was used to investigate the potential of
flow paths being self-reinforcing due to a strong gradient in
moisture content: potential “flow within the flow path” was
compared with “flow perpendicular to the flow path inter-
face”. The Van Genuchten parameters were obtained through
fitting the Van Genuchten equation to the soil moisture char-
acteristic curves. The soil moisture characteristic curves
were determined with a pressure chamber for the first two
horizons below the humus layer (3 samples each). These
horizons are the two most commonly found soil layers which
can extend to a depth of 130 cm. Then the gradient in ma-
tric potential was determined from the soil moisture charac-
teristic curves for different gradients in soil moisture. The
Van Genuchten equation can then be used to determine the
unsaturated conductivities for the chosen matric potential.
A longitudinal distance of 10 cm was chosen, as this is the
range of the soil moisture probes. The ratio of the gradi-
ents in potential (across interface/within flow path) was then
compared with the ratio of the unsaturated hydraulic con-
ductivities (within the flow path/across the interface). The
effective unsaturated hydraulic conductivity across the flow
path interface was calculated by treating the interface as two
layers of differing conductivity (due to the differences in wa-
ter content) and therefore using the harmonic mean for its
calculation. The gradient in potential within the flow path
is assumed to be equal to 1 [cm H2O/cm]. In case the ra-
tio of the unsaturated hydraulic conductivities (Kθ ) is much
larger than the gradient in matric potential (1ψ) across the
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interface (Eq.1), these flow paths are likely to persist over
time.

Kθ (flow path)[m/s]

Kθ (interface)[m/s]
�
1ψ(interface)[cm H2O/cm]

1[cm H2O/cm]
(1)

3.8 Hydrophobicity

Potential hydrophobicity was measured with the Water Drop
Penetration Time (WDPT) test as described inDekker and
Ritsema(1994) for 12 air dried soil samples from 4 different
locations and depths from 5 to 80 cm. The WDPT test is a
simple test for the persistency of water repellency where a
water drop is applied to a soil sample and the time between
application of the water drop and its penetration into the soil
is measured. Water drop penetration times for air dried soil
have been classified byDekker and Ritsema(1994) into 5
classes: wettable (<5 s), slightly water repellent (5–60 s),
strongly water repellent (60–600 s), severely water repellent
(600–3600 s) and extremely water repellent (>3600 s). Af-
ter testing if a soil sample was wettable soil samples show-
ing water repellency were submitted to 12 repetitions of the
WDPT, each test carried out with a different subsample.

4 Results and discussion

4.1 Annual dynamics of soil moisture

The annual dynamics of soil moisture, shown for the period
from October 2004–May 2006 in Fig.3, are little pronounced
in comparison to the event dynamics. Only during the sum-
mer months (February 2005 and February 2006) a short dry-
ing period can be observed (Fig.3). However, as soon as the
first rainfall starts in autumn, soil moisture values rebound
to their previous level. Overall, the temporal variability of
soil moisture at each of the sensors is much lower than the
spatial variability along the depth profile (see alsoBlume
et al.(2008a), for more detailed statistics on this topic). The
profile at probe 1 (lowest on the slope) had generally higher
moisture contents, but otherwise no trends along the transect
could be established. Interestingly, events that lead to strong
responses in discharge and groundwater level (e.g. in May
and June 2005), do not show a comparably strong response
in soil moisture (Fig.3). As even the slope groundwater (well
5 – for location see Fig.1) responds strongly, this difference
in response can not be attributed to snow melt events in the
upper part of the catchment. A more likely explanation is
that the unsaturated subsurface in this catchment is close to
equilibrium or steady state (see also the explanations to event
3, in Sect.4.4). This means that soil moisture change is close
to zero, but waterflow itself is non-zero. Perturbations of
rainfall and drought only lead to small and short responses
in soil moisture as water is efficiently being transported to
greater depths. While this efficient transport of water in the

unsaturated zone only results in small changes in soil mois-
ture in the upper meter, it also leads to a fast and pronounced
response in ground and surface water.

Subsurface flow for the three events indicated with arrows
in Fig. 3 is analyzed in more detail in Sect.4.4.

4.2 Soil moisture spatial patterns at the hillslope scale

Using the manually measured soil moisture profiles as well
as the corresponding logged data sets it was possible to estab-
lish a picture of spatial as well as coarse resolution temporal
soil moisture characteristics. Soil moisture patterns at the
two transects are depicted in Fig.4 using the binary indicator
maps.

Surprisingly, no general trends along the transects could
be identified, apart from for the 10 cm sensors: There seems
to be a correlation with position on the slope for the 10 cm
depth, but not for the deeper sensors. At 10 cm depth the
lower half of the slope is generally wetter than the upper part
of the slope. This is probably due to shading effects: the
deeper in the steep valley the fewer hours of direct sunshine.
Another possible explanation is downslope flow accumula-
tion in the o-horizon. The northern transect is wetter than
the southern transect, which is probably due to denser vege-
tation. It was found that spatial patterns are generally persis-
tent over time.

4.3 Variability of soil moisture at the decimeter scale
and preferential flow patterns

Figure 5 shows the small scale variability in soil moisture
measured by twisting the probes at the manual measurement
points H4 and H5 (for location of these points see Fig.1).
Differences in soil moisture around the probe can be very
pronounced, e.g. it is wetter/drier in one direction than in
the others. These patterns of small scale variability are gen-
erally persistent over time while the temporal variability of
soil moisture at this time resolution (irregular intervals dur-
ing field campaigns) is generally low as the dynamics of re-
sponse act on much shorter time scales (compare Fig.2). It
can be seen that while for measurement point H4 only the
20 and the 40 cm sensor show a stronger directional variabil-
ity of 2.3 Vol% and 4.3 Vol%, respectively, this phenomenon
is found for all depths but the 100 cm level at location H5.
Overall 68% of the sensors show directional variability (me-
dian variability≥1.8 Vol%) when counting each sensor along
the probes separately (i.e. 6 depths times 11 locations). 29%
of all sensors have a variability≥3 Vol%, 18% have a vari-
ability ≥4 Vol% and 6% show a variability of more than 5
Vol%. As the profile probes have a range of only 10 cm,
this observed variability of soil moisture occurs on a very
small scale, the scale of decimeters. A possible explanation
for these strong gradients in water content over such a small
distance is the presence of preferential flow patterns. This
type of flow patterns was indeed found during a dye tracer
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Fig. 3. Time series of rainfall, soil moisture, discharge and groundwater levels. The near stream groundwater levels correspond to well W1
and the slope groundwater levels to well W5 on Fig. 1. Groundwater levels are given in reference to the stream gauge. Maximum levels are
about 1 m and 1.7 m below ground for W1 and W5, respectively. The black arrows indicate the timing of events analysed in section 4.4.

Fig. 3. Time series of rainfall, soil moisture, discharge and groundwater levels. The near stream groundwater levels correspond to well W1
and the slope groundwater levels to well W5 on Fig.1. Groundwater levels are given in reference to the stream gauge. Maximum levels are
about 1 m and 1.7 m below ground for W1 and W5, respectively. The black arrows indicate the timing of events analysed in Sect.4.4.
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Fig. 4. Manual soil moisture measurements at irregular intervals at 41 occasions during the field campaigns (December 2003–February
2004, October 2004–December 2004, November 2005–December 2005 and April–May 2006). The northern transect is shown on the left,
the southern transect is shown on the right. Each block corresponds to one depth on that particular slope. Sensors are ordered as follows:
lowest sensor on the slope is plotted on the lowest line of a single block. On theleft transect there are 6 sensors, on the right transect there are
8 sensors. y axis is position on the slope (within bars) and depth (from onebar to the next), x axis is time (i.e. the 41 temporally irregularly
spaced data points). Dark blue indicates measurements of soil moisture above the median(a) or the 75% quantile(b) of that depth, light blue
are values below these thresholds. Missing data is indicated with white fields.

Fig. 4. Manual soil moisture measurements at irregular intervals at 41 occasions during the field campaigns (December 2003–February
2004, October 2004–December 2004, November 2005–December 2005 and April–May 2006). The northern transect is shown on the left,
the southern transect is shown on the right. Each block corresponds to one depth on that particular slope. Sensors are ordered as follows:
lowest sensor on the slope is plotted on the lowest line of a single block. On the left transect there are 6 sensors, on the right transect there are
8 sensors. y axis is position on the slope (within bars) and depth (from one bar to the next), x axis is time (i.e. the 41 temporally irregularly
spaced data points). Dark blue indicates measurements of soil moisture above the median(a) or the 75% quantile(b) of that depth, light blue
are values below these thresholds. Missing data is indicated with white fields.
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Fig. 5. Directional or small scale variability at manual measurement points H4 and H5. Measurements 1, 2, 3 at each date are repetitions
within the same access tube, after rotating the probe by 120◦. Measurement 1 is carried out with the sensor directed upslope, while for
measurements 2 and 3 the sensor is angled downslope to the right and left,respectively. Note that the measurements are taken at irregular
time intervals.

Fig. 5. Directional or small scale variability at manual measurement points H4 and H5. Measurements 1, 2, 3 at each date are repetitions
within the same access tube, after rotating the probe by 120◦. Measurement 1 is carried out with the sensor directed upslope, while for
measurements 2 and 3 the sensor is angled downslope to the right and left, respectively. Note that the measurements are taken at irregular
time intervals.
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Table 2. Results of the Water Drop Penetration Time (WDPT) test. If a sample showed water repellency the WDPT test was carried out
with 12 repetitions, i.e. with 12 sub-samples. Shown are the number of tests per sample falling in the different classes of water repellency.
Samples “forest 1-3” were taken at the slope of the soil moisture transect, while samples named “pine” were taken in a pine plantation
downstream of the catchment outlet. The sampling sites of “forest 1–3” do not correspond to the locations of the soil moisture probes 1–3.

location depth wettable slightly strongly severely extremely
(cm) water repellent water repellent water repellent water repellent

forest 1 5–10 no – – 5 7
forest 1 10–15 no – 2 3 7
forest 2 10–20 no – 12 – –
forest 2 20–60 yes – – – –
forest 2 60–80 yes – – – –
forest 3 10–20 no 3 9 – –
forest 3 20–60 yes – – – –
forest 3 60–80 yes – – – –

pine 0–5 no – – – 12
pine 5–20 no 12 – – –
pine 20–60 yes – – – –
pine 60–80 yes – – – –

T. Blume et al.: Soil moisture dynamics and subsurface flow processes 21
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Fig. 6. Preferential flow paths marked during dye tracer experiments. Flow patterns differ from wet to dry season, especially in the top
20 cm. For details see Blume et al. (2008b).

Fig. 6. Preferential flow paths marked during dye tracer experiments. Flow patterns differ from wet to dry season, especially in the top
20 cm. For details seeBlume et al.(2008b).

study in this catchment (Blume et al., 2008b), where pref-
erential flow proved to be the rule for all forested sites (9
experiments), with slightly varying flow patterns during dry
and wet season (Fig.6). If a soil moisture sensor was located
near the interface of such a preferential flow path, soil mois-
ture would differ considerably depending on the direction of
the measurement. The scale or width of the flow paths iden-
tified with the dye tracer is in the order of<3 decimeters,
thus matching the scale of the measurement. A sensor show-
ing no directional variation must therefore be located either
in the center of a flow path or in the center of the matrix
with no flow path within reach of the measurement.Ritsema
and Dekker(1996) also used small scale (5–10 cm) variabil-
ity of soil moisture as a measure for preferential or finger
flow. In their study moisture gradients between flow paths
and non-flow areas ranged between 3 and 6 Vol%. Assuming
small scale soil moisture variability does indeed indicate the
presence of a preferential flow path, the fact that in Malalc-

ahuello 68% of all sensors show this type of variability also
gives us a measure of the importance of preferential flow in
this catchment.

There are five possible explanations for the surprising per-
sistency of the small scale soil moisture patterns (or prefer-
ential flow patterns) over the course of more than one and a
half years (Fig.5):

1. These patterns might be caused by air gaps between ac-
cess tube and the surrounding soil due to faulty instal-
lation. However, special care was taken to avoid this
problem, by using the auger supplied by the manufac-
turer of the probes. Furthermore no noticeable air gaps
were found during excavation of the probes at the end
of the field study, on the contrary, probes were sitting
tightly in the soil. Air gaps are also likely to cause low
soil moisture readings, but small scale variability was
also found at higher moisture contents (Fig.5)
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Table 3. Response characteristics and antecedent conditions for the three events shown in Fig.7 (Ptot = rainfall amount, PInt = maximum
rainfall intensity, antec.θ = antecedent mean soil moisture content for the top 30 cm, max.1θ = max. increase in soil moisture of all sensors,
antec.Q = antecedent streamflow, max.1Q = max. increase in streamflow, antec.GW = antecedent groundwater level at well W1 relative to
the well datum at 2.55 m below the soil surface, max.1GW = max. rise in groundwater levels).

Date Ptot PInt antec.θ max.1θ antec.Q max.1Q antec.GW max.1GW
(mm) (mm/10 min) (Vol%) (Vol%) (m3/s) (m3/s) (m) (m)

03/03/2005 52 8.6 21.6 8.6 0.13 0.45 0.08 0.11
06/04/2005 28 1.6 26.8 3.8 0.13 0.06 0.01 0.03
27/05/2005 124 3.2 29.1 5.5 0.29 3.22 0.42 1.20

2. They might also be due to textural differences. How-
ever, as the sensors have only a range of 10 cm the mea-
sured volume is likely to be located within a single layer.

3. These patterns might also be induced by roots, which
are not likely to change position on this time scale.
However, roots were only found in some of the in-
stances where these preferential flow patterns were ob-
served during dye tracer experiments.

4. They might be due to hydrophobicity in some parts of
the soil, which would produce self reinforcing patterns
likely to persist if not subjected to long periods of sat-
uration. The change in flow patterns from dry to wet
season, which was found in the dye tracer experiments
(Fig. 6, for details seeBlume et al., 2008b), supports
this theory (Fig.2). Potential water repellency of soil
samples from 5 to 80 cm depth was tested with the Wa-
ter Drop Penetration Time test. It was found that while
the top horizons show strong to extreme potential wa-
ter repellency, samples from greater depths are wettable
(Table 2). However, this test determines only poten-
tial water repellency, measured in air dried soil. Hy-
drophobicity under field conditions is likely to be less
pronounced and spatially heterogeneous as a result of
water redistribution by canopy, litter, microtopography
or by variability in soil organic matter (Dekker and Rit-
sema, 1994; Ritsema and Dekker, 1995). The O-horizon
in this catchment only has a thickness of about 5 cm, but
due to its higher organic matter content, it is likely to
enforce redistribution processes due to spatially hetero-
geneous water repellency.

5. These patterns could also be self reinforcing due to the
strong gradient in soil moisture itself, leading to faster
vertical transport within the wetter area (the flow path)
than lateral flow into the drier area as a result of the
gradient in matric potential.

Possibility no.5 was investigated with a simple estimation:
If the ratio of the of the unsaturated hydraulic conductivities
is much larger than the gradient in matric potential across the
interface (Eq.1), flow paths are likely to be self-reinforcing

and persistent over time. This estimation was carried out
by calculating the unsaturated conductivities for a number
of gradients in soil moisture and thus matric potential: from
20 to 25 Vol%, from 25 to 30 Vol% and from 30 to 35 Vol%,
thus covering the range from 20 to 35 Vol% of soil moisture,
where most of the variability was observed. The gradient
of 5 Vol% chosen to investigate this phenomenon was in the
upper range of gradients observed in the field.The gradient
in potential within the flow path is assumed to be equal to
1 [cm H2O/cm]. It was found that flow paths would indeed
be self-reinforcing for a pure sand (with a ratio ofKθ up to
11 times larger than the ratio of1ψ), however, in these ash
soils, which have a fraction of at least 20% silt, it is very dif-
ficult to achieve these conditions (the ratio ofKθ is less than
half that of the ratio of1ψ). It is thus unlikely that solely
the gradient in soil moisture causes the flow paths to persist
in time. Nevertheless, if the unsaturated conductivity across
the interface is further diminished by the effects of hydropho-
bicity a persistant pattern becomes more probable. Further-
more this type of soil is known to be hysteretic (Shoji et al.,
1993; Musiake et al., 1988) thus causing a shift in the wet-
ting curve compared to the here used draining curve, which
could also change the outcome of this rough estimation. Per-
sistent fingers as a result of hysteresis of the soil moisture
characteristic curves were described bySelker et al.(1996)
andNieber(1996). Nieber(1996) explains that fingers will
persist if the water entry pressure on the main wetting curve
is smaller then the air entry pressure on the main drainage
curve. However, due to lack of information on the main wet-
ting curve, this effect cannot be assessed for the soils in the
Malalcahuello Catchment.

4.4 Soil moisture dynamics on event basis

The soil moisture response was analyzed with the help of
space-time colour maps for 34 rainfall events during the pe-
riod from December 2004 to December 2005. The tempo-
ral resolution of these plots is 10 min. Rainfall amounts for
the events analyzed ranged from 16–150 mm (2 day periods)
with a median value of 48 mm. Maximum rainfall intensi-
ties ranged from 0.5–8.6 mm/10 min with a median value of
2 mm/10 min.
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Fig. 7. Event response patterns of soil moisture for three rainfall events. Time is plotted on the x-axis. All plots show a two day period.
Explanation of color bars from top to bottom: The uppermost bar shows 10-min rainfall intensity: dark blue is equivalent to 0mm/10min,
dark red is equivalent to≥4mm/10min. The two following bars show the increase of discharge and rise of groundwater level (at well W1),
respectively. The color scale is stretched from minimum to maximum values. Down below follow the three wide bars representing the soil
moisture response at the hillslope transect. The upper bar corresponds to the profile probe at the upper end of the slope (P3), the middle bar
to the mid-slope probe (P2) and the lowest bar to the profile probe at the lower end of the slope (P1). Within these three wide colour bars,
each stripe corresponds to a certain depth: 10, 20, 30, 40, 60 and 100cm. 0 on the soil water color scale corresponds to antecedent moisture
content. The arrows indicate the most prominent features and are numbered for easier reference. The small plots to the left of each soil
moisture bar show antecedent moisture conditions for each depth as wellas the median values of soil moisture content as reference.

Fig. 7. Event response patterns of soil moisture for three rainfall events. Time is plotted on the x-axis. All plots show a two day period.
Explanation of color bars from top to bottom: The uppermost bar shows 10-min rainfall intensity: dark blue is equivalent to 0 mm/10 min,
dark red is equivalent to≥4 mm/10 min. The two following bars show the increase of discharge and rise of groundwater level (at well W1),
respectively. The color scale is stretched from minimum to maximum values. Down below follow the three wide bars representing the soil
moisture response at the hillslope transect. The upper bar corresponds to the profile probe at the upper end of the slope (P3), the middle bar
to the mid-slope probe (P2) and the lowest bar to the profile probe at the lower end of the slope (P1). Within these three wide colour bars,
each stripe corresponds to a certain depth: 10, 20, 30, 40, 60 and 100 cm. 0 on the soil water color scale corresponds to antecedent moisture
content. The arrows indicate the most prominent features and are numbered for easier reference. The small plots to the left of each soil
moisture bar show antecedent moisture conditions for each depth as well as the median values of soil moisture content as reference.

Three typical events are shown in Fig.7. The timing of the
events is indicated by arrows in Fig.3. Probe 1 is located at
the lower end and probe 3 at the upper end of the hillslope
transect. Details of event response and antecedent conditions
are listed in Table3.

For the first event, the event on 3 March 2005 (Fig.7a),
total precipitation amounted to 52 mm with a highest inten-

sity of 8.6 mm/10 min. The maximum change in soil mois-
ture was high with 8.6 Vol%, which is due to the fact that
this event was the rainfall event with the lowest antecedent
moisture content of all events studied (Moisture contents for
depths 10, 20, 30 and 40 cm are below their median values
for all three probes). The most prominent patterns found for
this event are a) extremely fast vertical water transport (arrow
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Fig. 8. Rainfall simulation with dye tracer at the locations of the soil moisture probes: amount of dye applied: 25mm, intensity of application:
8.3mm/h. The arrows A, B and C mark the most prominent patterns observed during this simulated rainfall event. The time scale of this
plot has a length of one day.

Fig. 8. Rainfall simulation with dye tracer at the locations of the soil moisture probes: amount of dye applied: 25 mm, intensity of application:
8.3 mm/h. The arrows A, B and C mark the most prominent patterns observed during this simulated rainfall event. The time scale of this
plot has a length of one day.

1 in Fig. 7a), due to high rainfall intensities and high hy-
draulic conductivities, and b) very little reaction at the 10 cm
depth for probes 1 and 3 (arrow 2 in Fig.7a). This is proba-
bly due to hydrophobicity resulting from the dry antecedent
moisture conditions. This pattern was observed only for the
3 driest occasions. The dry antecedent conditions also make
steady state conditions unlikely, where flow without change
in moisture content is possible. Soil moisture increase be-
low the hydrophobic layer thus must be due to lateral inputs,
either at the the decimeter scale or at the hillslope scale.

The rainfall event on April 6th 2005 (Fig.7b) has a total
precipitation of 28 mm and only low rainfall intensities. The
maximum increase in soil moisture, as well as streamflow
and groundwater levels are low with 3.8 Vol%, 0.06 m3/s and
3 cm, respectively (Table3). Antecedent moisture contents
correspond to the median values for most depths, apart from
the 10 and 20 cm depths at probe 1. The major patterns iden-
tified for this event are: a) fast vertical water transport, due
to high hydraulic conductivities (arrow 3 in Fig.7b), and b)
late but persistent response at 100 cm depth for probes 2 and
3, while no such reaction can be seen at the 60 cm sensor
(arrow 4 in Fig.7b). As water is apparently not transported
to this point vertically, this seems to be the result of lateral
water input, causing a slow trailing “wave” at this depth.

The event on 27 May 2005 (Fig.7c) has a very high
total precipitation of 124 mm with a highest intensity of
3.2 mm/10 min. However, as this event is probably a rain
on snow event, it is difficult to estimate the actual amount
of water entering the soil. Antecedent moisture contents are
high (at or above median values). While the response of dis-
charge (3.22 m3/s increase), and ground water levels (120 cm
increase) is extremely strong, soil moisture shows a much
less pronounced reaction. One possible explanation is that
this is not only an event with high rainfall amounts, but that
snow was also present in the catchment at this time (30 cm of

snow were measured at the climate station just outside of the
research catchment at 1270 m elevation, while the soil mois-
ture transect is located at about 1140 m elevation.). Therefore
some of the runoff might be generated at the snow surface or
within the snow layer. However, the extreme response at well
W5 (see also Fig.3) proves that large amounts of water did
indeed enter the subsurface. A more likely explanation is
therefore that as all water in excess of field capacity is being
transported quickly to greater depths, soil moisture increases
most for dry antecedent conditions and less in conditions of
high antecedent wetness despite the fact that large amounts
of water are being transported during nearly steady state flow
conditions. This efficient vertical water transport will result
in a pronounced response in the saturated zone without caus-
ing similarly pronounced peaks in moisture content. The
most prominent patterns for this event are: a) slow verti-
cal water transport, probably due to lower rainfall intensities
(arrow 5 in Fig.7c and b) strong response at 40 cm depth
for probe 1, very local and short-term (arrow 6 in Fig.7c).
This reaction might be due to an underlying capillary barrier,
causing the water to pond above it until breakthrough. This
pattern was observed at this location quite frequently (for 15
events out of 34).

4.5 Dye tracer rainfall simulation

In May 2006 rainfall simulation experiments with blue dye
were carried out at the locations of the three continuously
measuring probes. The soil moisture dynamics of these three
experiments are shown in Fig.8, with space-time colour
maps equivalent to Fig.7. As the same amount of dye was
applied over the same amount of time during each of these
experiments, the three experiments are plotted in one sin-
gle figure as if corresponding to a single rainfall event. The
time period and intensity of dye application is plotted in the
top bar. The same colour scale was applied for the intensity
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Fig. 9. Flow path visualization at the locations of the three continuously logging profile probes. The black line indicates the soil surface
and the arrows the most important features in each photo. They are numbered for easier reference. The red lines indicate the approximate
location of the soil moisture sensors.

of application as for the rainfall intensities in Fig.7. Nei-
ther streamflow nor groundwater level dynamics are plotted
as there was no reaction to these small scale experiments
(small in comparison to the size of the hillslope). Antecedent
moisture contents are quite high (at median values for all but
the 10 cm sensors at probes 1 and 2). The dynamic mois-
ture response patterns show fast/preferential vertical flow for
probes 1 and 2 and slow vertical water transfer for probe 3
(Fig. 8). One day after the sprinkling experiment, cross sec-
tions of the infiltration plots were excavated and the dye stain
patterns marking the flow paths of the dye in the unsaturated
zone were photographed. The three photos of the cross sec-
tions at the locations of the soil moisture probes are shown
in Fig. 9. Preferential flow is found at all three plots (com-
pare Fig.2). Flow occurred in plumes, which are separated
by distinct areas of little or no flow unmarked by blue dye.

Figure9a shows the flow paths of probe 1 (located at the
bottom of the slope). While blue dye can be seen in the top
5 cm, hardly any dye stains could be found in depths of 5–

ca. 30 cm (arrow 1 in Fig.9a). This is most likely the sus-
pected zone of hydrophobicity which was also found in the
analysis of the time-space maps of soil moisture response to
rainfall events. This zone of hydrophobicity or water repel-
lency is most pronounced after summer dry periods but is
still visible at the time of the sprinkling experiment where
only little reaction was seen at the 10 cm sensor of probe 1
(Fig. 8). Distinct plumes of dye can be found at depths of
ca. 30–60 cm (arrow 2 in Fig.9a) (also at the location of the
soil moisture probe), just above a very pronounced layer in-
terface between the silty sand layer above and the gravelly
layer below (arrow 3 in Fig.9a). This confirms the hypothe-
sis that a capillary barrier could be the cause of the ponding
at the 40 cm sensor which was seen in the event response
analysis (Fig.8, arrow A). The dye stains also indicated the
locations were water leached into the capillary barrier (arrow
3 in Fig. 9a). The maximum depth of dye infiltration was
about 1 m. Probe 1 is thus intersecting a preferential flow
path, which is in part due to roots and in part probably due to
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Fig. 10. Soil moisture variability along each profile as well as lag times of response insoil moisture, discharge (Q) and groundwater levels
(GW) for 19 events in winter and 8 events in summer. Soil moisture response times are shown for 20, 30 and 40 cm depth (S20, S30, S40).

Fig. 10. Soil moisture variability along each profile as well as lag times of response in soil moisture, discharge (Q) and groundwater levels
(GW) for 19 events in winter and 8 events in summer. Soil moisture response times are shown for 20, 30 and 40 cm depth (S20, S30, S40).

flow patterns caused by water repellency of the soil. In late
summer the 10 cm and sometimes also the 20 cm sensor are
surrounded by hydrophobic soil (Fig.7a and b).

The cross section at probe 2 (Fig.9b) shows as most dis-
tinct feature the saprolite layer (weathered bedrock) starting
at the location of the 60 cm sensor (arrow 1 in Fig.9b). The
100 cm sensor is thus located within the saprolite. It was
also found that the probe is located within a preferential flow
path coinciding with a concentration of fine roots (arrow 2
in Fig. 9b). Maximum infiltration depth is about 80 cm in
the three major plumes. A hydrophobic layer with very little
staining can be seen in the cross section (arrow 3 in Fig.9b).
However, this layer was not identified in the soil moisture

data, as the probe is located within the preferential flow path
and not in a hydrophobic patch. The high velocity of flow
and the strong response in this preferential flow path is also
visible in Fig.8 (arrow B) and was also a feature of the soil
moisture response space-time maps at this location.

The soil at probe 3 (Fig.9c) differed compared to the two
others as the vegetation at this plot included a thicket of low
shrubs, causing a higher density of roots in the top 20 cm (ar-
row 1 in Fig. 9c). Here, the probe was located in between
dye stained preferential flow paths. While blue dye is found
in the vicinity of the probe at depths 10–20 cm, very little of
it is found close to the probe at greater depths. The 60 cm
sensor is located just at the interface between the silty sand
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and a layer of fine gravel (arrow 2 in Fig.9c), thus prob-
ably measuring in both layers, while the 100 cm sensor is
situated in a layer of more compacted silty sand starting at
a depth of approx. 75 cm. Maximum depth of infiltration is
80 cm. The fact that the layer at the 100 cm sensor is more
compacted might explain why reaction at this sensor occurs
delayed and prolonged. This would correspond to lower hy-
draulic conductivities in the compacted layer causing a delay
in response and a prolonged peak. However, as the response
at the 60 cm sensor is often very weak, the water causing
the peak at 100 cm depths is most likely transported to this
point not vertically but laterally. The dense root zone in the
top 20 cm explains the strong reaction at the 20 cm sensor
(Fig. 8, arrow C). Probe 3 shows a slower reaction to rainfall
compared to the other two probes (Fig.8 and also Fig.7),
which is explained by the fact that this probe is not situated
within a preferential flow path.

4.6 Response times

To test if the seasonal change in subsurface flow has an ef-
fect on overall catchment response, response times for soil
moisture, groundwater and stream flow were calculated for
the wet and dry season separately (Fig.10). This analysis
is based on 27 rainfall events between December 2004 and
April 2006. S20, S30, S40 are the response lags of the soil
moisture sensors at 20, 30 and 40 cm depth, GW is the re-
sponse lag of ground water level at well W1 (Fig.1) and Q
is the response lag of stream flow. Groundwater response is
generally slower than stream flow response. (At this hills-
lope the groundwater surface at well W1 in the vicinity of
the stream is generally about 60 cm below the level of the
stream bed.) Surprisingly, the soil moisture sensors often
react slower than stream flow. This could either mean that
rainfall is not uniformly distributed over the catchment or
that these sensors are bypassed by preferential flow paths.
Surface runoff is unlikely, due to high infiltration rates and
porosities and has not been observed during field campaigns.
Another possible explanation would be lateral flow in the
duff layer/organic horizon. Response lags of all parameters
show similar behavior over time: response times are short
from January to April (summer and early fall) when com-
pared to the winter months. This is probably the result of
higher rainfall intensities on the one hand (median maximum
intensities are 2.1 mm/10 min in winter and 3.0 mm/10 min in
summer) and enhanced preferential flow due to hydrophobic-
ity on the other hand. Snow was present/melting during 4 of
the winter events, however, this does not lead to a consistent
change in response time: both, faster and slower than median
responses have been observed for these events. Streamflow
response times for the events shown in the space-time colour
maps (Fig.7) range from 30 minutes for the first event (driest
antecedent moisture conditions), 1:50 h for the second event
up to 6:40 h for the event in May (wettest antecedent condi-
tions).

5 Summary and conclusions

The soil moisture data obtained in this study provided diverse
insights in subsurface flow and runoff generation processes
in this catchment. It was shown that high resolution time
series of soil moisture in combination with manual measure-
ments at irregular time intervals can be a valuable addition to
time series of precipitation and discharge when investigating
runoff generation processes. This is especially true for catch-
ments where only short time series of data are available, as
in the Malalcahuello Catchment. The approach of combining
datasets with different spatio-temporal resolution allowed for
the investigation of soil moisture dynamics as well as pat-
terns and proved to be less expensive than high density in-
stallation of continuously logging sensors while also being
applicable to difficult terrain, i.e. densely forested and steep
hillslopes. The synergetic effects achieved with this combi-
nation of datasets is visualized in Fig.2.

The time series of soil moisture for the 19 month period in
Fig. 3 show that spatial variability of soil moisture is much
higher than its temporal variability. Both, rainfall events
and droughts only cause small, fast and short perturbations
and the moisture content quickly rebounds to previous lev-
els. This behaviour corresponds to a system at or close to
a dynamic equilibrium, i.e. close to steady state flow condi-
tions in the subsurface. This seems to prevail most time of
the year. This is corroborated by the high annual precipita-
tion, high baseflow index and annual runoff and the very low
event runoff coefficients.

The use of space-time colour maps facilitated the analysis
of soil moisture response dynamics, especially concerning
the timing and extent of response along the vertical profile.
It was thus possible to identify a number of patterns which
can be attributed to different phenomena of flow in the un-
saturated zone. The very subdued response of soil moisture
in the upper soil horizon at two locations during the driest
period (late summer) was attributed to the formation or re-
inforcement of hydrophobicity in this layer. The accumula-
tion/ponding of water at certain depths was assumed to be
due to the effect of capillary barriers. This was confirmed by
the dye tracer experiment carried out at this location.

Strong response at certain depths while the layers just
above show little reaction indicate the importance of lat-
eral flow processes. However, we do not know on what
scale these thus “observed” lateral flow paths are active (sev-
eral decimeters, meters or hillslope scale). Lateral flow has
also been directly observed in a dye tracer experimenet with
an application intensity of 20 mm/h. Here lateral flow oc-
curred in the duff layer (Blume et al., 2008b). The short
response times of streamflow also indicate that lateral sub-
surface storm flow is likely to be important.

It was furthermore found that infiltration dynamics dif-
fered from summer to winter, which could be due to dif-
ferences in rainfall intensities as well as the amplification
of preferential flow due to hydrophobicity in the top layer.
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Persistency of potential water repellency was found to be
strong to extreme for the upper horizon. Hydrophobicity
has also been observed in Chilean young volcanic ash soils
by other researchers (Bachmann et al., 2000; Ellies, 1975)
and is also of importance in volcanic ash soils of Ecuador
(Poulenard et al., 2004). In addition, differences in flow pat-
terns from dry to wet period were found in the Malalcahuello
Catchment during a more extensive study involving a total of
10 dye tracer experiments (Blume et al., 2008b). The change
in flow pattern observed in this study further supports the
theory that preferential flow in this catchment is reinforced
by hydrophobicity (application intensities were the same for
dry and wet season experiments). Similar flow patterns also
attributed to hydrophobicity were observed in other studies
(Ritsema and Dekker, 2000; Ritsema et al., 1998; Ritsema
and Dekker, 1994; Dekker and Ritsema, 2000; de Rooij,
2000). The fact that throughfall amounts are highly heteroge-
nous in this catchment (Blume et al., 2008a) is likely to be the
reason why some locations (probably on the decimeter scale)
are drier than others and thus more likely to develop water
repellency. Spots of high water input are therefore likely to
become preferential flow paths. These observed patterns in
dynamics were found to be spatially and temporally persis-
tent insofar as the event pattern dynamics of soil moisture
observed in Fall 2005 (Fig.7) matched well with the flow pat-
terns found during the dye tracer experiments one year later.
The persistency of the spatial patterns of soil moisture for 14
locations and 6 depths (Fig.4) shows that spatial variability
is much higher than temporal variability and that wetter lo-
cations are likely to remain wet. Furthermore the patterns of
soil moisture variability at the decimeter scale, which were
attributed to the presence/absence of preferential flow paths,
were also found to be persistent over a period of more than
one and a half years. The stationarity of these flow patterns
is another indicator that steady state conditions prevail in this
catchment.

Hydrophobicity is the most likely explanation for the flow
patterns found here. However, the effects of hydrophobicity
are probably aggravated by root channels, strong gradients in
matric potential and the hysteresis of the soil moisture char-
acteristic curves of volcanic ash soils as described byShoji
et al.(1993).

The last and maybe most important question is the ques-
tion of how important this locally observed preferential flow
is for the system as a whole, i.e. runoff response/runoff gen-
eration at the catchment scale.

The small response of soil moisture dynamics to pertur-
bations as well as persistency/stationarity of flow paths cor-
roborate our perception that this undisturbed, forested catch-
ment is at or close to steady state, i.e. a dynamic equilibrium.
This perception was originally based on integral observations
such as the fact that we observe high annual runoff and a high
baseflow index, while event runoff coefficients are low, and
has now been corroborated by internal observations, e.g. soil
moisture response and flow patterns. Efficient water trans-

port, as observed locally, therefore would indeed have an ef-
fect at the catchment scale.

Several additional findings indicate that while preferential
flow was only observed at the plot scale it might indeed be an
important factor of runoff generation at the catchment scale.
That preferential flow occurs throughout the catchment is in-
dicated by the fact that additionally to the three tracer experi-
ments shown in this study all 9 dye tracer experiments carried
out under forest at various locations in the catchment showed
preferential flow patterns (Blume et al., 2008b). The fact
that 68% of the sensors at the 11 manual measurement points
showed small scale soil moisture variability is another indi-
cator for the importance of these preferential flow paths. Last
but not least the analysis of response times for soil moisture,
groundwater and streamflow reveiled that response lags are
generally much shorter during the summer months were pref-
erential flow is also likely to be further enforced by stronger
hydrophobicity. Interestingly streamflow often shows faster
response than both groundwater and soil water. This might
be due to non-uniform rainfall distribution (i.e. earlier onset
of rainfall further up in the catchment causing stream levels
to respond while soil moisture at the slope close to the catch-
ment outlet remained unchanged). However, as soil mois-
ture response measurements are restricted to only three lo-
cations it is also likely that there are other preferential flow
paths with even faster response than the ones measured by
our instruments. In this case preferential flow in the verti-
cal and then a fast reaction along a horizontal layer interface
might be the reason for the short response lags of stream-
flow found in this catchment. (Finger flow is known to cause
faster breakthrough as investigated byde Rooij and deVries
(1996) in a modelling study.) The question whether or not
these preferential flow processes are important for catchment
response could be investigated further by application of a
physically based hydrological model either on the hillslope
or on the catchment scale.

To summarize the main conclusions in short:

1. the synergy of soil moisture datasets with different
spatio-temporal resolution proved to be useful for the
investigation of subsurface flow processes. Continu-
ously monitored rainfall experiments at the location of
the moisture probes with subsequent excavation of dye
stained soil profiles facilitated testing/corroboration of
the perception of subsurface flow gained from the mois-
ture patterns.

2. data-visualization with space-time colour maps permits
a much more detailed analysis of soil moisture response
than simple line plots alone

3. soil moisture/flow patterns in the here investigated
young volcanic ash soils were shown to be persistent
in time and highly variable in space

4. the most likely explanation for the observed flow pat-
terns is a combination of hydrophobicity with strong
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gradients in unsaturated conductivities, where flow
paths are initiated either by the presence of roots or
the highly heterogeneous distribution of throughfall and
thus water input

5. this soil moisture data set has provided us with inter-
nal observations corroborating our perception that the
catchment is at or close to steady state/dynamic equi-
librium, which was originally based on integral data,
mainly rainfall and runoff time series.

6. the flow patterns observed at the local scale are likely to
be important for runoff response at the catchment scale.
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