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Abstract. Remote sensing of water quality in inland waters
requires reliable retrieval algorithms, accurate atmospheric
correction and consistent method for uncertainty estimation.
In this paper, the GSM semi-analytical inversion model is
modified for inland waters to derive inherent optical prop-
erties (IOPs) and their spectral dependencies from air and
space borne data. The modified model was validated using
two data sets from the Veluwe and the Vecht Dutch lakes.
For the Veluwe lakes, the model was able to derive a linear
relationship between measured concentrations and estimated
IOPs withR2 values above 0.7 for chlorophyll-a (Chl-a) and
up to 0.9 for suspended particulate matters (SPM). In the
Vecht lakes, the modified model derived accurate values of
IOPs. TheR2 values were 0.89 for Chl-a and up to 0.95 for
SPM. The RMSE values were 0.93 mg m−3 and 0.56 g m−3

for Chl-a and SPM respectively. Finally, the IOPs of the
Veluwe lakes are derived from multi-spectral, ocean color
and hyperspectral airborne data. Inversion-uncertainties of
the derived IOPs were also estimated using a standard non-
linear regression technique. The study shows that inversion-
uncertainties of remote sensing derived IOPs are proportional
to water turbidity.

1 Introduction

Lakes are important natural water resources yet they are se-
riously threatened by eutrophication, salinisation and heavy
metal contamination. Increased sediment loads paly an im-
portant role in water quality of lakes since they relate total
primary production to heavy metal and micro pollutants (Vos
et al., 1998). Traditional measurements of water quality are
costly, time-consuming and are limited in their spatial and
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temporal coverage. Remote sensing data facilitate acquir-
ing synoptic information of water quality at high temporal
frequency. Monitoring of water quality using remote sens-
ing, in conjunction with strategic in-situ sampling can play a
crucial role in determining the current status of water qual-
ity conditions and helps anticipate, mitigate and even avoid
future water catastrophes (GEOSS, 2007). Remote sensing
of inland waters is quite challenging due to the complicated
signals from turbid water, bottom reflectance and adjacent
land surfaces. Moreover the empirical nature of the retrieval
algorithms limits their application to a specific range of con-
centrations, area and season.Kallio et al. (2001) studied dif-
ferent algorithms to estimate chlorophyll-a in lakes. These
algorithms were empirical and estimated one variable us-
ing band-ratio of approximately 675 nm and 705 nm (Dekker
et al., 1992; Gitelson et al., 1993). A generalized retrieval
algorithm is, however, hindered by the large natural variabil-
ity of inland waters (Shen et al., 2009). Significant efforts on
improving the accuracy of air and space borne derived wa-
ter quality parameters are therefore required for inland and
near coastal waters. Many studies have used semi analytical
models to derive water quality parameters in lakes (Hoogen-
boom et al., 1998; Gons et al., 2002). Semi-analytical model
inversion has been shown promising for case 2 waters (Do-
erffer and Fischer, 1994; Kishino et al., 2005; Van der Wo-
erd and Pasterkamp, 2008). These studies assumed, however,
known spectral dependencies of dissolved matter and detri-
tus absorption and sediment scattering. This was in order to
limit the number of unknowns and reduce uncertainties (Lee
and Carder, 2005). Values of these spectral shapes are related
to the constituent’s bio-geophysical composition and are not
always known, any wrongly assumed spectral shape will lead
to significant alteration of the derived inherent optical prop-
erties (IOPs). In this paper the GSM semi-analytical inver-
sion model (Maritorena et al., 2002) is modified to derive the
IOPs and their spectral dependencies. The method ofBates
and Watts(1988) is used to estimate inversion-uncertainties
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of the derived IOPs following previous researchers (Salama,
2003; Wang et al., 2005; Maritorena and Siegel, 2005).

2 Method

The total remote sensing reflectance received at the sensor
level can be written as the sum of several components (Gor-
don, 1997):

Rst (λ) = Rsr(λ) + Rsa(λ) + Tv(λ){Rssfc(λ) + Rsw(λ)} (1)

whereTv(λ) is the viewing diffuse transmittance from the
water surface to the sensor. The subscript of the reflectance
represents the contribution from air moleculesr, aerosola,
surfacesfc, and waterw. The calculation of Rayleigh scat-
tering of air molecules is well described in terms of geom-
etry and pressure (Gordon et al., 1988a). Water surface re-
flectance can be estimated using statistical relationships and
wind speed (Cox and Munk, 1954a,b). Gaseous transmit-
tance can be calculated from ancillary data on ozone and wa-
ter vapor content using transmittance models (Goody, 1964;
Malkmus, 1967). Viewing diffuse transmittance is approx-
imated followingGordon et al.(1983). Aerosol scattering
can be evaluated from measured aerosol optical thickness
and assumed aerosol type. This information about the atmo-
spheric path reflectance facilitates the retrieval of the signal
leaving the water body i.e.Rsw. Water remote sensing re-
flectanceRsw(λ) can be related to the inherent optical prop-
erties (IOPs) of the water column as (GSM model:Mari-
torena et al., 2002):

Rsw(λ) =
t

n2
w

2∑
i=1

gi

(
bb(λ)

bb(λ) + a(λ)

)i

(2)

whereg1, g2 are subsurface expansion coefficients due to in-
ternal refraction, reflection and sun zenith;t andnw are the
sea air transmission and water index of refraction, respec-
tively. Their values are taken from literature (Gordon et al.,
1988b; Maritorena et al., 2002; Lee, 2006). The parameters
bb(λ) and a(λ) are the bulk backscattering and absorption
coefficients of the water column. Case II water is consid-
ered with three independently varying constituents, namely:
chlorophyll-a (Chl-a), detritus and dissolved organic matter
(dg) and suspended particulate matter (SPM). The absorption
and backscattering coefficients are modeled as being the sum
of absorption and backscattering from all water constituents:

a(λ) = aw(λ) + aph(λ) + adg(λ) (3)

bb(λ) = 0.5bw(λ) + αbspm(λ) (4)

The absorption and scattering coefficients of water
molecules,aw and bw, were assumed constants. Their
values were obtained from (Pop and Fry, 1997; Mobley,
1994), respectively.

The total absorption of phytoplankton pigmentsaph is ap-
proximated as (Lee et al., 1999):

aph(λ) = a0(λ)aph(0.44) + a1(λ)aph(0.44) ln aph(0.44) (5)

wherea0(λ) anda1(λ) are empirical coefficients. The ab-
sorption effects of detritus and dissolved organic matter are
combined due to the similar spectral signature (Maritorena
et al., 2002) and approximated using the model (Bricaud
et al., 1981):

adg(λ) = adg(440) exp[−s(λ − 440)] (6)

wheres is an unknown spectral exponent. The scattering
coefficient of SPMbspm is parameterized as (Kopelevich,
1983):

bspm(λ) = bspm(550)

(
550

λ

)y

(7)

where y is the unknown spectral shape parameter. The
backscattering fractionα is estimated from the “San Diego
harbor” scattering phase function (Petzold, 1977).

The inversion of the GSM model is adapted to derive five
parameters in visible bands covering the wavelengths from
400 nm to 850 nm. These parameters are called the set of
IOPs and denoted as a vectoriop:

iop =


aph(440)
adg(440)
bspm(550)

s

y

 (8)

The Levenberg-Marquardt Algorithm (LMA) is employed
using a constrained nonlinear optimization (Press et al.,
2002). The constraints are set such that they guarantee posi-
tive values of retrieved IOPs. Both parameters, concentration
and absorption/(back)scattering coefficients, are denoted us-
ing the same abbreviation of the constituent itself i.e., dg,
Chl-a, SPM.

3 Materials

3.1 Field measurements and study areas

This study will use two sets of field measurements covering
in the Veluwe and the Vecht lakes in the Netherlands. The
first set, contains water leaving reflectance and concentra-
tions of suspended sediment and chlorophyll-a at eight sites
in the Wolderwijd and Veluwemeer, i.e. the Veluwe lakes,
centered at 52◦19′12.0′′ N, 05◦36′12.0′′ E. Field measure-
ments of the Veluwe lakes were collected during the EAGLE
2006 campaign and reported in (Timmermans et al., 2007; Su
et al., 2009). Table1 shows the locations of these sites and
measured concentrations of SPM and Chl-a in the lab. Mea-
sured spectra of water leaving reflectance are shown in Fig.1.
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Fig. 1. Measured water leaving reflectance in the Veluwe lakes during the EAGLE 2006 campaign.
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Fig. 1. Measured water leaving reflectance in the Veluwe lakes dur-
ing the EAGLE 2006 campaign.

Table 1. Locations of the sampling sites and measured concentra-
tions in the Veluwe lakes during the EAGLE 2006 campaign.

site Lat Long SPM g m−3 Chl-a mg m−3

P1 52.37481 5.63524 5.84 10.4
P2 52.38326 5.63874 4.47 6.8
P3 52.37735 5.65598 1.86 2.3
P4 52.37566 5.66849 3.04 5.7
P5 52.39295 5.65845 2.78 9.4
P6 52.38732 5.64361 3.96 6.2
P7 52.37570 5.62356 3.44 6.7
P8 52.36788 5.63584 0.93 4.2

The second set consists of measured under-water irradiance
reflectance, inherent optical properties and concentrations of
water constituents at 20 sites in the Vecht lakes, centered at
52◦10′9.0′′ N, 05◦10′15.0′′ E. Data on the optical and physi-
cal properties of the Vecht lakes were obtained fromDekker
(1993) andDekker et al.(1997).

3.2 Remote sensing data set

The EAGLE 2006 campaign was associated with hyperspec-
tral airborne measurements from the Airborne Hyperspec-
tral Spectrometer (AHS) (Ferńandez-Renau et al., 2005).
MEdium Resolution Imaging Spectrometer (MERIS) and
Advanced Space borne Thermal Emission and Reflection Ra-
diometer (ASTER) observations were also available during
the EAGLE 2006 campaign. Table2 summarizes the used
data sets in this work. For more details on data availabilities
and specifications, the reader is encouraged to consult the
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Fig. 2. Comparison between the derived IOPs and measured concentrations in the Veluwe lakes of (a):

chlorophyll-a and (b): SPM. The bold line is a linear regression through the data. The dashed lines denote

the 95% confidence interval of the regression results. The R2 values are for the data points.
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Fig. 2. Comparison between the derived IOPs and measured con-
centrations in the Veluwe lakes of(a): chlorophyll-a and(b): SPM.
The bold line is a linear regression through the data. The dashed
lines denote the 95% confidence interval of the regression results.
TheR2 values are for the data points.

EAGLE 2006 data acquisition reports (Timmermans et al.,
2007; Su et al., 2009) and the works ofDekker(1993) and
Dekker et al.(1997).

4 Results

4.1 Model validation

The modified inversion model is validated with in-situ mea-
surements in the Veluwe and the Vecht lakes. Figure2
shows the derived IOPs versus measured concentrations in
the Veluwemeer and Wolderwijd, i.e. the Veluwe lakes.
There is a strong linear relationship between derived IOPs
and measured concentrations. TheR2 values of model-I re-
gression (Laws, 1997) is about 0.74 and 0.9 for chlorophyll-
a and SPM respectively. Following the Lambert-Beer law
one can easily derive the specific inherent optical properties
(SIOPs) of chlorophyll-a and SPM, i.e. the amount of ab-
sorption/scattring per unit concentration. For demonstration,
the regression line and the 95% confidence interval between
the IOPs and corresponding concentrations are also shown in
Fig. 2.

Figure3 shows derived versus measured values of IOPs in
the Vecht lakes. Four IOPs are shown: three absorption coef-
ficientsaph(440), adg(440), atotal(440) and one scattering co-
efficientbspm(550). Model II regression (Laws, 1997) is used
to evaluate the match between derived and measured values
in Table3 for log-transformed data. The derived IOPs are
within acceptable accuracy, i.e. theR2 is higher than 0.85 for
the four derived IOPs. The derived scattering coefficient at
550 nm has the highest accuracy with RMSE value less than
0.56 g m−3 andR2

∼0.95. The uncertainties in the retrieved
absorption coefficients are large, particularly the value of
aph(440) with a RMSE value∼0.95 mg m−3.

www.hydrol-earth-syst-sci.net/13/1113/2009/ Hydrol. Earth Syst. Sci., 13, 1113–1121, 2009
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Table 2. Summary of the data sets used in this study.

Acquisition Type Description Date

Space borne ocean color, MERIS FR level L1b 08-06-2006
Space borne multispectral, ASTER level L1b 08-06-2006
Airborne hyperspectral, AHS Level L1b 13-06-2006
Field measurements above water radiance and water samples Veluwe lakes 04-07-2006
Field measurements above/under water radiance, IOPs and water samples Vecht lakes 1993–1997
IOCCG simulated data set spectra and IOPs 2006
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Fig. 3. Comparison between the derived and measured values in the Vecht lakes of (a): chlorophyll-a absorption

coefficient at 440 nm, (b): dg absorption coefficient at 440 nm, (c): SPM scattering coefficient at 550 nm and

(d): total absorption coefficient at 440 nm. The bold line denote the 1:1 line.
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Fig. 3. Comparison between the derived and measured values in the
Vecht lakes of(a): chlorophyll-a absorption coefficient at 440 nm,
(b): dg absorption coefficient at 440 nm,(c): SPM scattering coeffi-
cient at 550 nm and(d): total absorption coefficient at 440 nm. The
bold line denote the 1:1 line.

4.2 Intercomparison of remotely sensed products

Available images during the EAGLE 2006 campaign are
geo-referenced and converted to at-sensor-reflectance. At-
mospheric path correction is then preformed using the ra-
diative transfer method ofVermote et al.(1997). Gaseous
transmittances of ozone, oxygen, carbon dioxide, methane
and nitrous oxide are assumed constant over the study re-
gion. Measured values of aerosol optical thickness during
the the EAGLE 2006 campaign are used to run the com-
putation, assuming an urban aerosol. The adjacency ef-
fects from the surrounding lands was accounted for in the
computation. The IOPs are derived using the constrained
LMA. This method is applied on MERIS and AHS spec-
tra, while another method is used for ASTER image. The

Table 3. RMSE and type-II regression parameters between mea-
sured and derived IOPs in the Vecht Lakes.n is the number of data
points.

Parameter n Intercept Slope R2 RMSE

aph(440) 20 −0.73 0.83 0.89 0.93
adg(440) 20 −0.58 1.98 0.85 0.61
a(440) 20 −0.54 1.40 0.88 0.39
bspm(550) 20 0.37 0.67 0.95 0.56

spectral characteristics of ASTER constrain the application
of such nonlinear fit method. There are several methods
that were successfully applied to ASTER and other sensors
with few visible bands (Kishino et al., 2005; Salama et al.,
2004). For ASTER’s two visible bands, the matrix inversion
method (Hoge and Lyon, 1996) was applied assuming known
value ofadg(440)=0.25 m−1. In consequence only two vari-
ables were retrieved from ASTER image, namely SPM scat-
tering and Chl-a absorption coefficients. An intercompari-
son between retrieved values of SPM scattering and Chl-a

and dg absorptions are shown in Fig.4 for two cross sections
over the Veluwemeer (start 52.38307, 5.63710, end 52.3681,
5.65516) and the Wolderwijd (start 52.34515, 5.60731, end
52.3579, 5.59198). There is a very good match between the
products of AHS and MERIS while retrieved values from
ASTER are patchy and don’t correspond to derived IOPs
from other sensors.

4.3 Inversion-uncertainties of AHS derived IOPs

The nonlinear regression method ofBates and Watts(1988)
is used to estimate the inversion-uncertainties of derived
IOPs. However, this approach is only applicable with non-
linear optimization techniques. Nonlinear optimization is
used with AHS and MERIS but not with ASTER. To de-
rive the uncertainty of ASTER products, other methods
are needed. However we will limit the discussion to the
inversion-uncertainty maps associated with AHS products.
The standard deviation (STD) at 95% of confidence will
be used as quantitative measure of uncertainty. The un-
certainties of AHS derived IOPs are shown in Fig.5. The

Hydrol. Earth Syst. Sci., 13, 1113–1121, 2009 www.hydrol-earth-syst-sci.net/13/1113/2009/
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Fig. 5. Intercomparison of IOPs derived from MERIS (gray thick-line), ASTER (dashed line) and AHS (black

thin-line) for a cross-section at the Veluwemeer (Fig. a, c, e) and a cross-section at the Wolderwijd (Fig. b, d,

f). The derived IOPs are: Chl-a (a and b), dg (c and d) and SPM (e and f).
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Fig. 4. Intercomparison of IOPs derived from MERIS (gray thick-
line), ASTER (dashed line) and AHS (black thin-line) for a cross-
section at the Veluwemeer (Fig.a, c, e) and a cross-section at the
Wolderwijd (Fig.b, d, f). The derived IOPs are: Chl-a (a and b), dg
(c and d) and SPM (e and f).

inversion-uncertainty maps of IOPs have similar spatial vari-
ations and their values increase proportionally to water tur-
bidity as shown in Fig.6.

5 Discussion

5.1 Validation

For the Veluwe lakes, the model was able to derive the linear
relationship between measured concentrations and estimated
IOPs. TheR2 values of model-I regression were above 0.7
for chlorophyll-a and up to 0.9 for SPM. The SIOPs val-
ues of the Veluwe lakes are not documented yet. There-
fore, using reported values of SIOPs for other Dutch lakes,
e.g. (Hakvoort et al., 2002), will lead to significant errors in
the derived concentrations.

Fig. 6. The standard deviation (STD) maps for each of the retrieved IOPs from AHS data set of (a): Chl-a , (c):

dg and (e): SPM. Right panels (Fig. b, d, f) illustrate the scatter plot between standard deviations values on the

Y-axis and the corresponding IOPs values on the X-axis.
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Fig. 5. The standard deviation (STD) maps for each of the retrieved
IOPs from AHS data set of(a): Chl-a , (c): dg and(e): SPM.
Right panels (Fig.b, d, f) illustrate the scatter plot between standard
deviations values on the Y-axis and the corresponding IOPs values
on the X-axis.

In the Vecht lakes, the modified model succeeded in de-
riving the IOPs withR2 higher than 0.85 and 100% of valid
retrievals. While, the RMSE values of the retrieved absorp-
tion coefficients were large, particularly for Chl-a, the RMSE
value of SPM were less than 0.6 g m−3 with R2

=0.95. The
high accuracy of derived SPM scattering coefficient is due to
including the red and Near Infra Red (NIR) bands in the in-
version. At this part of the spectrum, water absorption and
SPM backscattering are the major contributors to the ob-
served reflectance. For example, at wavelength 780 nm the
water absorption is invariant to water temperature (Hakvoort,
1994) and thus the reflectance will linearly respond to any
increase in SPM concentration. This linearity between re-
flectance and SPM backscattering at the red and NIR region
will stabilize the inversion and reduce the uncertainty.
The modified GSM model-inversion performed well for
moderate values of IOPs: up to 0.28 m−1, 3 m−1 and 4 m−1

www.hydrol-earth-syst-sci.net/13/1113/2009/ Hydrol. Earth Syst. Sci., 13, 1113–1121, 2009
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Fig. 7. The standard deviation (STD) of derived: (a) Chl-a and (b) dg absorption coefficients as function of the

estimated values of SPM scattering.
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Fig. 6. The standard deviation (STD) of derived:(a) Chl-a and
(b) dg absorption coefficients as function of the estimated values of
SPM scattering.

for aph(440), adg(440) and bspm(550) respectively. How-
ever, the modified model could not derive accurate IOPs val-
ues when the scattering and absorption coefficients are above
20 m−1 and 10 m−1 respectively. We think that model param-
eterizations in Eq. (5), Eq. (6) and Eq. (7) are not adequate
for inland waters with extreme values of absorption and scat-
tering. Each of these parameterizations poses one limitation
on the model: (i) Eq. (5) ignores the different phytoplank-
ton species that may co-exist in inland water; (ii) Eq. (5)
also ignores the great variability of Chl-a absorption as mea-
sured in nature (Bricaud et al., 1995, 1998; Carder et al.,
1999); (iii) Eq. (6) combines the absorption effect of detri-
tus and CDOM in one spectral shape and magnitude; (iv) the
overlapped absorption spectra of CDOM, detritus and Chl-a

at 440 nm will also encumber their retrievals. For instance,
Fig.3a and b show that the trend of derived Chl-a absorption,
w.r.t. actual values, is inversely correlated to that of derived
absorption of CDOM and detritus, i.e. underestimated val-
ues ofaph(440) are associated with overestimated values of
adg(440) and vice versa. The effects of over/under estima-
tions will compensate each other when the total absorption
coefficient is evaluated, as shown in Fig.3d.

The consistency of the adapted inversion, with respect to
the original GSM model, is analyzed using the same data set
(Lee, 2006, IOCCG data set). Figure7 shows derived versus
known values of IOPs using the IOCCG data set. The sta-
tistical parameters of model II regression (Laws, 1997) were
also used to evaluate the match between derived and known
values as shown in Table4. The modified GSM succeeded
in deriving the IOPs withR2 higher than 0.9 and 100% of
valid retrievals from the IOCCG data set, for comparison one
may consult (Lee, 2006, p. 83–84). Moreover, the valida-
tion results of IOCCG data set are consistent with the val-
idation results of in-situ measured parameters in the Vecht
lakes: (i) derivedaph(440) has the highest RMSE; (ii) de-
rived aph(440) and adg(440) are opposite to each other in
their trends; (iii) the opposite trend ofaph(440) andadg(440)
is compensated in theatot(440); (iv) the accuracy of SPM
scattering is the highest among other derived IOPs.
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Fig. 4. Comparison between the derived and simulated IOCCG values of (a): chlorophyll-a absorption coef-

ficient at 440 nm, (b): dg absorption coefficient at 440 nm, (c): SPM scattering coefficient at 550 nm and (d):

total absorption coefficient at 440 nm. The bold line denote the 1:1 line.
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Fig. 7. Comparison between the derived and simulated IOCCG val-
ues of(a): chlorophyll-a absorption coefficient at 440 nm,(b): dg
absorption coefficient at 440 nm,(c): SPM scattering coefficient at
550 nm and(d): total absorption coefficient at 440 nm. The bold
line denote the 1:1 line.

Table 4. RMSE and type-II regression parameters between known
and derived values form the IOCCG data set.n is the number of
data points.

Parameter n Intercept Slope R2 RMSE

aph(440) 500 0.0039 0.92 0.91 1.15
adg(440) 500 0.0097 1.35 0.94 0.21
a(440) 500 −0.0041 1.27 0.97 0.12
bspm(550) 500 −0.0515 1.02 0.98 0.05

However the RMSE values between derived and measured
data in the Vecht lakes are larger by three folds, for the ab-
sorption, to an order of magnitude for the scattering. This
increase in RMSE values is related to the optical-complexity
of inland waters and emphasizes our previous findings that
new parameterizations should be adapted for, case 2, inland
waters.

5.2 Remotely sensed products

MERIS case 2 processors are well established methods
for atmospheric correction and derivation of IOPs from
MERIS images in case 2 waters (Doerffer and Schiller, 2007;
Schroeder et al., 2007). The same atmospheric correction
procedure is applied on ASTER, AHS and MERIS to avoid
possible bias and errors that may arise when using different
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atmospheric correction methods. The derived values of SPM
scattering and Chl-a absorption from ASTER are patchy and
did not reflect the spatial variability as observed from MERIS
and AHS. This can be attributed to the retrieval method ap-
plied on ASTER. The inversion of ASTER was based on
matrix inversion of Eq. (2) in two bands with a constant
value of dg absorption coefficient at 440 nm (=0.25 m−1).
On the other hand, the retrieval method of MERIS and AHS
was based on nonlinear optimization for five variables in
all visible bands i.e. 15 for MERIS and 16 for AHS. There
is a very good match in the retrieved values of SPM scat-
tering at the Veluwemeer (Fig.4e) and Chl-a absorptions
at the Wolderwijd (Fig.4b). However, slight overestima-
tion of Chl-a absorption and underestimation of SPM scat-
tering coefficients with-respect-to (w.r.t.) AHS can be ob-
served in Fig.4a and Fig.4f respectively. The values of
dg absorption coefficient are generally overestimated w.r.t.
AHS retrieved values, with the same spatial variation, how-
ever. The differences between MERIS and AHS results may
be attributed to imperfect atmospheric correction and inap-
propriate spectral coverage of AHS for Chl-a retrieval. On
the one hand, the longer atmospheric path of MERIS w.r.t.
AHS signals increases the contributions of aerosol scattering
and illumination-viewing variations to the top of atmosphere
(TOA) reflectance. It is also noted that AHS spectral range
does not cover chlorophyll-a absorption feature centered at
440 nm. This absorption feature is of quite importance for
reliable estimation of Chl-a and dg absorption coefficients.
The combined effects of the longer atmospheric path and the
absence of 440 nm absorption feature will increases the un-
certainties on the retrieved values of dg and Chl-a. A ma-
jor limitation in this work is that air and space borne images
were not concurrent with field measurements such that in-
dependent validation of remotely sensed products was not
possible.

5.3 Inversion-uncertainties

The method ofBates and Watts(1988) was used to estimate
the uncertainties of derived IOPs. However, this approach is
adequate as long as model inversion has a well conditioned
Jacobian matrix of the minimum cost function. It reflects
how well the model can fit the observation but not how well
the derived parameters fit the measured values. The esti-
mated uncertainties (Fig.5), therefore do not reflect the ac-
tual uncertainties which are presented in Table4 as RMSE
values. This total uncertainty of derived values can roughly
be assigned to three main causes: residuals, numerical and
physical sources. Residuals are errors originated from sen-
sor noise and imperfect atmospheric correction or any other
correction. The numerical part is related to the used nu-
meric technique in the inversion. The physical uncertainty
is caused by two distinctive sources: bio-optical model ap-
proximations and the intrinsic relation between apparent and
inherent optical properties of the water column which causes

reflectance ambiguity. The later is an inherent problem to
remote sensing of water quality (Sydor et al., 2004). In this
sense, mainly model approximation and inversion accuracy
were quantified in Fig.5. Figure 5 shows that there are
weak relationships between derived values of absorption co-
efficients and associated uncertainties. This is not the case
for the scattering where a clear relationship can be observed
(Fig. 5c). The error increases exponentially with the magni-
tude of derived values. Actually, the uncertainty of all IOPs
increase proportionally to water turbidity (Fig.6). There-
fore, larger errors are expected in turbid waters. Two water
types can be distinguished from the right panels of Fig.5 and
Fig. 6. The pixels within the gray region have STD values
less than the value of the corresponding IOPs. These pixels
correspond to relatively smaller range of derived IOPs. The
remaining pixels, which form the majority, have their STD
values higher than the retrieved values of IOPs, i.e. uncer-
tainty is more than 100%. This grouping is caused by the
large inversion errors in case 2 waters with large values of
scattering and absorption. This was already predicted dur-
ing model validation in the Vecht lakes, Fig.3). This kind of
comparison between derived values and their uncertainties
has been found useful for resolving the sub-pixel variability
of earth observation hydrological products (Van der Velde
et al., 2008).

6 Conclusions

In this paper the GSM model was modified to retrieve five
parameters: three IOPs and two spectral exponents. The
method is applied on MERIS and AHS and validated using
measured and IOCCG data sets. From the presented work in
this paper we conclude the followings:

– The proposed modification improved the performance
of the GSM model for simulated data and derived reli-
able results for measured data.

– The red and NIR bands, with sufficient signal-to-noise
ratio, are necessary for remote sensing of inland water.
They improve the accuracy of derived IOPs.

– Improved parametrization of IOPs is needed for inland
waters. The improvement should account for: (i) differ-
ent phytoplankton species; (ii) the absorption of SPM as
linked to the concentration.

– Inversion-uncertainty of derived IOPs is proportional to
water turbidity and is not representative of our confi-
dence about the derived products from remote sensing
data. Therefore a better measure of uncertainty should
be investigated.
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