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Abstract. The most important climatological inputs required
for the calibration and validation of hydrological models
are temperature and precipitation that can be derived from
observational records or alternatively from regional climate
models (RCMs). In this paper, meteorological station ob-
servations and results of the PRECIS (Providing REgional
Climate for Impact Studies) RCM driven by the outputs
of reanalysis ERA 40 data and HadAM3P general circula-
tion model (GCM) results are used as input in the hydro-
logical model. The objective is to investigate the effect
of precipitation and temperature simulated with the PRE-
CIS RCM nested in these two data sets on discharge sim-
ulated with the HBV model for three river basins in the
Hindukush-Karakorum-Himalaya (HKH) region. Six HBV
model experiments are designed: HBV-Met, HBV-ERA and
HBV-Had, HBV-MetCRU−corrected, HBV-ERABenchmark and
HBV-HadBenchmark where HBV is driven by meteorolog-
ical stations data, data from PRECIS nested in ERA-40
and HadAM3P, meteorological stations CRU corrected data,
ERA-40 reanalysis and HadAM3P GCM data, respectively.
Present day PRECIS simulations possess strong capacity to
simulate spatial patterns of present day climate character-
istics. However, also some quantitative biases exist in the
HKH region, where PRECIS RCM simulations underesti-
mate temperature and overestimate precipitation with respect
to CRU observations. The calibration and validation results
of the HBV model experiments show that the performance
of HBV-Met is better than the HBV models driven by other
data sources. However, using input data series from sources
different from the data used in the model calibration shows
that HBV-Had is more efficient than other models and HBV-
Met has the least absolute relative error with respect to all
other models. The uncertainties are higher in least efficient

Correspondence to:M. Akhtar
(akhtarme@yahoo.com)

models (i.e. HBV-MetCRU−correctedand HBV-ERABenchmark)
where the model parameters are also unrealistic. In terms
of both robustness and uncertainty ranges the HBV models
calibrated with PRECIS output performed better than other
calibrated models except for HBV-Met which has shown a
higher robustness. This suggests that in data sparse regions
such as the HKH region data from regional climate models
may be used as input in hydrological models for climate sce-
narios studies.

1 Introduction

Pakistan’s economy is agro-based and highly dependent
on the large scale Indus irrigation system. Most of the
flow of the river Indus and its tributaries originates from
the Hindukush-Karakorum-Himalaya (HKH) region (SIHP,
1990). Impacts of climate change and climate variability on
the water resources are likely to affect irrigated agriculture
and installed power capacity. Changes in flow magnitudes
are likely to raise tensions among provinces, in particular
with the downstream areas (Sindh province), with regard to
reduced water flows in the dry season and higher flows and
resulting flood problems during the wet season. Therefore,
modeling the hydrological regime of the HKH region is crit-
ical for current and future water resources estimation, plan-
ning and operation in Pakistan.

To drive a hydrological model reliable information on lo-
cal and regional climatological variables (e.g. temperature,
precipitation, evapotranspiration) and their distribution in
space and time is required. In many cases, the necessary
information can be derived from observational data sets. For
large scale hydrological applications and to investigate the
impact of climate change on future water resources a hydro-
logical model can be driven with the output from a general
circulation model (GCM) (Watson et al., 1996). However,
the spatial resolution of GCMs (generally about 250 km)
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might be too coarse for hydrological modeling at the basin
scale. One way to bridge this scale gap is through statis-
tical downscaling (e.g. Wilby et al., 1999; Bergström et al.,
2001; Pilling and Jones, 2002; Guo et al., 2002; Arnell, 2003;
Booij, 2005) and an alternative approach is through dynami-
cal downscaling (e.g. Hay et al., 2002; Hay and Clark, 2003;
Fowler and Kilsby, 2007; Leander and Buishand, 2007; Bell
et al., 2007; Graham et al., 2007). In dynamical downscal-
ing, a regional climate model (RCM) uses GCM output as
initial and lateral boundary conditions over a region of in-
terest. The high horizontal resolution of a RCM (about 10–
50 km) is more appropriate for resolving the small-scale fea-
tures of topography and land use, that have a major influence
on climatological variables such as precipitation in the cli-
mate models. Moreover, the high resolution of the RCM is
ideal to capture the spatial variability of precipitation as input
to hydrological models (Gutowski et al., 2003). If the reso-
lution of the RCM is not fine enough the bias of the modeled
precipitation may lead to an unrealistic hydrological simula-
tion.

Hydrological simulation in data sparse regions as the HKH
region using RCM output as input involves a number of prob-
lems, including uncertainties in inputs, model parameters and
model structure. The most important contribution to the input
uncertainty comes from the GCM with additional uncertain-
ties linked to the local scale patterns in downscaling of tem-
perature, precipitation and evapotranspiration in a specific
drainage basin (Bergström et al., 2001; Guo et al., 2002).
Uncertainties in RCMs for specific parameters can be eval-
uated and quantified through ensemble simulation (Murphy
et al., 2004; Giorgi and Francisco, 2000). Herein, a multi-
tude of model runs is carried out under standardized condi-
tions using either different models or using the same model
but with different parameterization schemes, boundary con-
ditions, initializations, resolutions etc.

In many hydrological studies statistical downscaling
(Bergstr̈om et al., 2001; Pilling and Jones, 2002; Guo et al.,
2002; Arnell, 2003; Booij, 2005) and dynamical downscal-
ing (Fowler and Kilsby, 2007; Leander and Buishand, 2007;
Bell et al., 2007; Graham et al., 2007) of different GCMs
have been used to translate the assumed climate change into
hydrological response. However, RCMs could also be used
for generating time series of precipitation that are consis-
tent across the region of the RCM. Kay et al. (2006) demon-
strated the feasibility of dynamically downscaled data (with-
out bias correction) for flood frequency estimation. The re-
sults showed that the RCM has a relatively good ability to
reproduce flood frequency curves as compared to the flood
frequency curves estimated using observed input data. In re-
cent studies, outputs from RCMs have been used in hydro-
logical models by firstly applying a bias correction to RCM
simulated precipitation and temperature series (Fowler and
Kilsby, 2007; Leander and Buishand, 2007; Bell et al., 2007;
Graham et al., 2007).

The aim of this study is to examine the effect of precip-
itation and temperature simulated with the PRECIS RCM
nested in different global data sets on discharge simulated
with the HBV model for three river basins in the HKH re-
gion. The focus is on the comparison of spatial and temporal
observed and simulated climate patterns and calibration and
validation of HBV models including the assessment of the ro-
bustness of these models. Another study (Akhtar et al., 2008)
has investigated expected changes in these climate patterns in
the future and the impacts of these changes on the hydrolog-
ical regime under different glacier coverage scenarios. The
study area is described in Sect. 2. The HBV climatological
inputs and the hydrological model are described in Sect. 3.
The results of the PRECIS RCM simulations and calibra-
tion and validation results of HBV models are presented in
Sect. 4. Finally, the conclusions and recommendations are
given in Sect. 5.

2 Description of study area

Three river basins are selected for analysis: Hunza river
basin, Gilgit river basin and Astore river basin. Daily ob-
served discharge data for these three river basins are avail-
able at the outlets of the basins. These data cover the pe-
riods, 1975–1996 for the Hunza basin, 1962–1996 for the
Gilgit basin and 1975–1996 for the Astore basin. The length
of the records in the three river basins is not the same and
there are some missing years in the discharge data. There-
fore, in some cases the calibration and validation periods in
the three river basins are not the same. Table 1 lists some
features of the study basins and Fig. 1 shows the location of
the three river basins. These three river basins are situated
in the high mountainous HKH region with many peaks ex-
ceeding 7000 m and contain a large area of perennial snow
and ice. The surface hydrology of these three river basins is
dominated by snow and glacial melt. Climatic variables are
strongly influenced by altitude. The HKH region receives
a total annual rainfall amount of between 200 and 500 mm,
but these amounts are derived from valley-based stations and
not representative for elevated zones. High-altitude precipi-
tation estimates derived from accumulation pits runoff above
4000 m range from 1000 mm to more than 3000 mm. These
estimates depend on the site and time of investigation, as well
as on the method applied (Winger et. al., 2005).

3 Methodology

3.1 Climatological input

3.1.1 Observed data

Daily observed meteorological data from the Gilgit and As-
tore meteorological stations are selected for the Gilgit and
Astore river basins. There is no meteorological station in the
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Fig. 1. Location of three river basins

Table 1. Characteristics of study area.

River basin

Hunza Gilgit Astore
Discharge gauging station Dainyor Gilgit Doyian
Latitude 35◦ 56′ 35◦ 56′ 35◦ 33′

Longitude 74◦ 23′ 74◦ 18′ 74◦ 42′

Elevation of gauging station (m) 1450 1430 1583
Drainage area (km2) 13 925 12 800 3750
Glacier covered area (km2) 4688 915 612
Mean elevation (m) 4472 3740 3921
% area above 5000 m 35.8 2.9 2.8
No. of meteorological stations
Precipitation − 1 1
Temperature − 1 1
No. of PRECIS grid points 6 5 2

Hunza river basin, therefore neighboring Skardu meteorolog-
ical station is used for calibration and validation of HBV. The
meteorological station data are available for the period 1981-
2002. The simulated PRECIS RCM precipitation and tem-
perature data are compared with CRU observations (Mitchell
and Jones, 2005) on a monthly basis. This data set is a 0.5◦

latitude/longitude gridded dataset of monthly terrestrial sur-
face climate for the period 1901–2002 derived from meteo-
rological station observations. The uncertainties in CRU cli-
matology averaged for multi-decadal periods are of the order
of 0.5–1.3◦C for temperature and 10–25% for precipitation,
and are largest in regions having a sparse station network and
high spatial variability, such as in many mountainous areas
(New et al., 1999, 2000).

3.1.2 Regional Climate Model outputs

The RCM used in this study is PRECIS (Providing REgional
Climate for Impact Studies) developed by the Hadley Cen-
tre of the UK Meteorological Office. The PRECIS RCM is
based on the atmospheric component of the HadCM3 climate
model (Gordon et al., 2000) and is extensively described in
Jones et al. (2004). The atmospheric dynamics module of
PRECIS is a hydrostatic version of the full primitive equa-
tions and uses a regular longitude-latitude grid in the hor-
izontal and a hybrid vertical coordinate. For this study, the
PRECIS model domain for South Asia has been set up with a
horizontal resolution of 50×50 km. Some recent studies also
have used RCM output at 50×50 km resolution in hydrolog-
ical studies (e.g. Graham et al., 2007; De Wit et al., 2007).
Our domain roughly stretches over latitudes 12.5 to 40.5◦ N
and longitudes 55.5 to 96.5◦ E. This domain covers India,
Pakistan, Afghanistan, the Tibetan Plateau and the HKH re-
gion (see Fig. 2). This domain allows full development of
internal mesoscale circulation (e.g. monsoon circulation) and
includes relevant regional forcings.

The representation of topography is an important feature
of climate models as it has a strong impact on the simu-
lated climate fields, in particular spatial precipitation dis-
tribution. Where terrain is flat for thousands of kilometers
and away from coasts, the coarse resolution of a GCM may
not matter. However, the HKH region has complex oro-
graphic features and several mountains exceed 7000 m. Fig-
ure 2 shows the topography of the HadAM3P GCM, PRECIS
RCM, GTOPO30 2MIN Digital Elevation Model (DEM) and
the difference of representation of topography in the driving
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Fig. 2. Topography (m) of selected domain.(a) HadAM3P GCM.(b) PRECIS.(c) GTOPO30 2MIN DEM(d) Difference PRECIS RCM
and GCM topography.

GCM and PRECIS RCM. The topography of PRECIS RCM
(Fig. 2b) is very similar to the topography of GTOPO30
2MIN DEM (Fig. 2c). The difference in representation of
topography in the driving GCM and PRECIS RCM (Fig. 2d)
clearly shows that the higher resolution of PRECIS RCMs
provides much better topographic details over the HKH re-
gion.

Two global data sets are used to drive the PRECIS model:
data from the ERA-40 reanalysis project and the HadAM3P
GCM. The horizontal resolution of HadAM3P boundary data
is 150 km and for the present climate, it covers the period
1960–1990 (Wilson et al., 2005). ERA-40 is a re-analysis
of meteorological observations produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF). It
covers the period 1957–2002, has a horizontal resolution of
1.875 by 1.25 degrees (∼187.5 by 125 km) and is extensively
described in Uppala et al. (2005).

The PRECIS RCMs driven by HadAM3P and ERA-40 re-
analysis boundary data are hereafter referred to as PRECIS
Had and PRECIS ERA respectively. The time periods for
PRECIS ERA and PRECIS Had are 1975–2001 and 1960–
1990 respectively. The first year in each PRECIS experiment
is considered as a spin-up period and these data are not used
in any analysis. After post processing of each experiment the
time series of temperature and precipitation for three river
basins are generated.

To test the feasibility of runoff modeling in the HKH re-
gion there are two possibilities to use RCM data as input to
hydrological models. One approach is to calibrate a hydro-
logical model using bias corrected RCM data. Another ap-
proach is to calibrate a hydrological model using RCM data
without applying any bias correction. However, in the second
approach there is a risk that potential biases in RCM simu-
lations may lead to unrealistic parameter values (see Akhtar
et al., 2008). The PRECIS RCM simulated temperature and
precipitation have biases as will be discussed in Sect. 4.2.
These biases are corrected before applying the temperature
and precipitation series as input to HBV. In data sparse re-
gions like the HKH region CRU data can be used as reference
data for bias correction. A simple bias correction approach
as used by Durman et al. (2001) is applied. A correction fac-
tor is derived to correct for differences between the modeled
monthly average and the CRU monthly average. Daily tem-
perature and precipitation data series are bias corrected with
these monthly correction factors. This approach provides a
correction of monthly mean climate only and does not con-
sider day to day variability. Recently, Fowler et al. (2007)
also used this approach to study the impact of climate change
on the water resources in north-west England.
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Fig. 3. Schematisation of the hydrological model HBV (based on
Lindström et al., 1997).

3.2 HBV hydrological model

For the river discharge simulation, the hydrological model
HBV of the Swedish Meteorological and Hydrological In-
stitute (SMHI) is used (Bergström, 1995; Lindstr̈om et al.,
1997). Using inputs from RCMs this model can reproduce
the discharge fairly well, e.g. for the river Suir in Ireland
(Wang et. al., 2006). It has been widely used in Europe and
other parts of the world in e.g. climate change impact stud-
ies (Liden and Harlin, 2000; Bergström et al., 2001; Men-
zel and B̈urger, 2002; Booij, 2005, Menzel et. al., 2006).
In a recent study, Te Linde et al. (2008) compared the per-
formances of two rainfall-runoff models (HBV and VIC) us-
ing different atmospheric forcing data sets and recommended
the HBV model for climate change scenarios studies. HBV
is a semi-distributed, conceptual hydrological model using
sub-basins as the primary hydrological units. It takes into
account area-elevation distribution and basic land use cate-
gories (glaciers, forest, open areas and lakes). Sub-basins
are considered in geographically or climatologically hetero-
geneous basins. The model consists of six routines, which
are a precipitation routine representing rainfall and snow, a
soil moisture routine determining actual evapotranspiration
and controlling runoff formation, a quick runoff routine and
a base flow routine which together transform excess water
from the soil moisture routine to local runoff, a transforma-
tion function and a routing routine (see Fig. 3).

Catchments in the HKH-region have extreme altitude dif-
ferences and these affect the meteorological input variables
strongly. The average basin altitude applied in HBV is
4472 m for the Hunza river basin, 3740 m for the Gilgit river
basin and 3921 m for the Astore river basin whereas the av-
erage altitude applied for meteorological stations is 2210 m
for the Hunza river basin, 1460 m for the Gilgit river basin
and 2394 m for the Astore river basin. Default values of the
elevation correction factor of precipitation and temperature
are applied in HBV beingpcalt= 0.1 (i.e. 10%/100 m) for
precipitation andtcalt= 0.6◦C/100 m for temperature. Pre-
cipitation values are multiplied with 1 +h×pcalt, whereh is
the altitude difference (hundreds of meters) between the av-
erage elevation of the catchment and the average elevation of
precipitation stations (or grid cells). Temperature differences
are added to or subtracted from the original temperature data.

In order to assess the performance of the model in simu-
lating observed discharge behaviour an objective functionY

is used, which combines the Nash-Sutcliffe efficiency coeffi-
cientNS(Nash and Sutcliffe, 1970) and the relative volume
errorREand is defined as

Y =
NS

1 + |RE|
(1)

where

NS = 1 −

i=N∑
i=1

[Qs (i) − Qo (i)]2

i=N∑
i=1

[
Qo (i) −Qo

]2
(2)

RE =

i=N∑
i=1

[Qs (i) − Qo (i)]

i=N∑
i=1

Qo (i)

(3)

wherei is the time step,N is the total number of time steps,
Qs represents simulated discharge,Qo is observed discharge
andQo is the mean ofQo over the calibration or validation
period. For a favorable model performance, the efficiencyNS
should be close to 1 and theREvalue should be close to zero
resulting in aY value close to 1.

Depending on the source of input data, i.e. meteoro-
logical stations data, PRECIS ERA, PRECIS Had, mete-
orological stations CRU corrected data, ERA-40 reanal-
ysis and HadAM3P GCM, six HBV models are devel-
oped hereafter referred to as HBV-Met, HBV-ERA, HBV-
Had, HBV-MetCRU−corrected, HBV-ERABenchmarkand HBV-
HadBenchmarkrespectively. The first step in the calibration
of the HBV models is the selection of calibration parame-
ters. The parameters are selected on the basis of physical
reasoning, previous studies and univariate sensitivity analy-
ses. For each river basin, a univariate sensitivity analysis is
performed to assess the influence of individual parameters
on the performance of the model. This is done by varying
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Table 2. Biases in mean temperature (◦C) as simulated with PRECIS ERA, PRECIS Had, ERA-40 and HadAM3P relative to CRU reference
data for different seasons and river basins (Summer = April–September, Winter = October–March).

Season PRECIS ERA PRECIS Had ERA-40 HadAM3P

Astore Gilgit Hunza Astore Gilgit Hunza Astore Gilgit Hunza Astore Gilgit Hunza

Temperature (◦C)

Summer −1.1 −4.5 −6.6 −2.4 −2.2 −5.5 −1.8 −5.3 −3.8 −2.6 −3.3 −6.3
Winter −2.9 −7.2 −7.3 −8.1 −7.1 −8.9 −3.6 −7.7 −4.1 −7.6 −8.5 −10.9
Annual −2.0 −5.9 −7.0 −5.2 −4.6 −7.2 −2.7 −6.5 −3.9 −5.1 −5.9 −8.6

Fig. 4. Observed and simulated patterns of annual mean temperature (◦C) for (a) CRU data,(b) GCM HadAM3P,(c) PRECIS Had and(d)
PRECIS ERA.

the value of one parameter while keeping other parameters
constant (default value). For the three river basins, the pa-
rametersgmelt(Glacier melting factor),FC (Maximum soil
moisture storage),TT (threshold temperature for precipita-
tion), DTTM (value added toTT to give the threshold tem-
perature for snowmelt),PERC(Percolation from the upper
to the lower response box), andcfmax(Snowmelt factor) are
found to be most sensitive. There appears to be a strong in-
terdependence among four of these parameters (gmelt, FC,
DTTM andTT). In the second step, a multivariate sensitiv-
ity analysis is performed to optimize these interdependent
and sensitive parameters of HBV-Met, HBV-ERA, HBV-
Had, HBV-MetCRU−corrected, HBV-ERABenchmarkand HBV-

HadBenchmarkfor each river basin. The values of the remain-
ing key parameters (PERCandcfmax)are optimized by uni-
variate sensitivity analysis. For the remaining parameters de-
fault values as described in SMHI (2005) are used.

4 Results and discussion

4.1 Spatial patterns of observed and simulated climate
for South Asia

Figure 4 shows that HadAM3P, PRECIS Had and PRECIS
ERA capture the basic spatial patterns of CRU climatology
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Fig. 5. Observed and simulated patterns of annual mean precipitation (mm/day) for(a) CRU data,(b) GCM HadAM3P,(c) PRECIS Had
and(d) PRECIS ERA. The shaded area indicates precipitation above 4 mm/day in all panels.

reasonably well. Compared to the CRU observations the sim-
ulated PRECIS Had and PRECIS ERA temperature is rela-
tively low in the Tibetan Plateau and in the HKH region. The
sharply rising escarpment over the Tibetan Plateau and HKH
region results in cooler mountain areas in the PRECIS simu-
lations. In many of these areas, the differences in temperature
are due to the higher resolution of topography in PRECIS
RCM as compared to the driving GCM.

The spatial patterns of annual mean precipitation as sim-
ulated by HadAM3P, PRECIS Had, PRECIS ERA and CRU
observations are shown in Fig. 5. The precipitation is maxi-
mum over Western Ghats, Eastern Ghats and over the HKH
region. The PRECIS RCM simulated precipitation pattern
is quite similar to the CRU observations, indicating that the
PRECIS RCM simulations provide an adequate representa-
tion of present day conditions. However, some quantitative
biases in the spatial patterns exist. In both PRECIS Had and
PRECIS ERA wet biases are present over the HKH region.
Since the biases are present in both PRECIS Had and PRE-
CIS ERA, some of these biases may be due to errors in the
internal model physics of PRECIS RCM and may be related
to the inadequate representation of the land surface. The
model currently uses vegetation distribution and soil prop-
erties based on the climatology of Wilson and Henderson-

Sellers (1985). However, this data set does not vary tem-
porally, and seasonal variations in surface albedo, roughness
and leaf area index could have a significant effect on the cli-
mate (Hudson and Jones, 2002).

4.2 Temporal patterns of observed and simulated cli-
mate over selected river basins

4.2.1 Temperature

For three river basins, the mean annual cycles of temper-
ature from CRU data, meteorological stations observations
and PRECIS RCM simulations are shown in Fig. 6. The
CRU data and meteorological stations observations show that
a mean annual cycle is present in all river basins. The highest
mean temperature is reached in July while the lowest mean
temperature is observed in January. The meteorological sta-
tions recorded temperature is higher compared to CRU tem-
perature and PRECIS simulated temperature. This differ-
ence is mainly because of the fact that meteorological sta-
tions are located in valleys and do not represent the temper-
ature in high mountains. The influence of height is observed
in CRU observations i.e. the highest mean temperature is
observed in the lowest river basin (Astore) while the low-
est mean temperature is observed in the highest river basin
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Table 3. Biases in precipitation (%) as simulated with PRECIS ERA, PRECIS Had, ERA-40 and HadAM3P relative to CRU reference data
for different seasons and river basins (Summer = April–September, Winter = October–March).

Season PRECIS ERA PRECIS Had ERA-40 HadAM3P

Astore Gilgit Hunza Astore Gilgit Hunza Astore Gilgit Hunza Astore Gilgit Hunza

Precipitation (%)

Summer 91 31 310 37 3 248 273 115 794 52 13 243
Winter 345 118 305 82 −12 112 238 75 13 155 87 105
Annual 218 74 308 59 −4 180 255 95 403 103 50 174
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Fig. 6. Mean annual cycle of temperature over(a) Hunza river
basin(b) Gilgit river basin(c) Astore river basin as simulated with
PRECIS RCMs, CRU data and meteorological stations observations
[◦C].

(Hunza). The influence of height is also present in mete-
orological stations observations e.g. the highest mean tem-
perature is observed at the lowest station (Gilgit at 1460 m)

while the lowest mean temperature is observed at the high-
est station (Astore at 2394 m). Generally, in all river basins
the characteristics of the mean annual cycle of temperature in
PRECIS RCM simulations are similar to CRU observations,
i.e. the highest mean temperature is observed in July and the
lowest in January. This is a sign indicating the correctness of
the representation of basic physical processes in the model.
In some months, PRECIS Had and PRECIS ERA simula-
tions have some close agreement with each other. The biases
in temperature in driving data and PRECIS RCM simulations
with respect to CRU observations are presented in Table 2. In
all three river basins, both driving forcing data and PRECIS
RCM simulations underestimate mean temperature. Gener-
ally, PRECIS RCM simulated bias is somewhat less com-
pared to the respective biases in driving forcing data. The
cold bias in PRECIS RCM simulations may be because of
the deficiencies of the GCM simulations (McGregor, 1997).
Moreover, the cold bias observed over mountain regions is
a common feature of regional climate simulations over dif-
ferent regions of the world (Giorgi et al., 2004; Solman et
al., 2008). Therefore, the PRECIS RCM itself may intro-
duce some of the cold bias as well. It is also observed that
cold biases in the winter half-year (i.e. October to March)
are relatively higher than in the summer half-year (i.e. April
to September). This may be because of the fact that PRE-
CIS RCM simulations give excessive precipitation during the
winter half-year (Fig. 7), which tends to result in excessively
wet soils, which cause high latent heat flux, low sensible heat
flux, and as a result surface cooling (Bonan, 1998). The mag-
nitude of the cold bias depends on the driving boundary data,
e.g. the cold bias during winter is higher in PRECIS Had
simulations while it is somewhat less during summer when
compared with PRECIS ERA simulations. This latter phe-
nomenon might occur because of less precipitation during
these months in PRECIS Had compared to PRECIS ERA.

4.2.2 Precipitation

For three river basins, the mean annual cycles of precipitation
from CRU data, meteorological stations observations and
PRECIS RCM simulations are shown in Fig. 7. Generally,
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Fig. 7. Mean annual cycle of precipitation over(a) Hunza river
basin(b) Gilgit river basin(c) Astore river basin as simulated with
PRECIS RCMs, CRU data and meteorological stations observations
[mm/day].

valley-based meteorological stations underestimate precipi-
tation compared to CRU data mainly because of the fact that
meteorological stations are not representative for elevated
zones (Winger et al., 2005). The mean annual cycle of pre-
cipitation exhibits a stronger variability than the annual cycle
of temperature. Overall, for a particular PRECIS RCM ex-
periment all three-study basins have the same patterns. Gen-
erally, all PRECIS RCM simulations overestimate precipita-
tion in all three river basins. They give higher precipitation
during the winter half-year (October to March) compared to
the summer half-year (April to September). Table 3 presents
the biases in precipitation of driving forcing data and PRE-
CIS RCM simulations with respect to CRU data. Generally,
the PRECIS RCM simulated precipitation bias is somewhat
less compared to the respective biases in driving forcing sim-
ulated precipitation. The magnitude of biases in PRECIS

Had are somewhat less compared to PRECIS ERA, although
one may expect the opposite. A detailed regional analysis of
the South Asian domain shows that this fact is observed only
in the HKH region (Akhtar, 2008) which is may be due to de-
ficiencies in global forcing data. Another reason for large bi-
ases may be due to the fact that the HKH region receives (rel-
atively) small amounts of precipitation and a small absolute
increase/decrease in precipitation data derived from PRECIS
simulations gives a larger percentual precipitation bias. The
wet bias can have different causes. Giorgi and Marinucci
(1996) showed that the simulation of precipitation may be
sensitive to model resolution regardless of the topographic
forcing. In particular, in their experiments precipitation tends
to increase at finer resolutions. Greater topographic forcing
at higher resolution would then further strengthen this effect.
Since the study area has a steep topography, this may lead
to excessive accumulated orographic precipitation in RCMs
(Giorgi et al., 1994).

4.3 Calibration and validation of HBV model

The results of the multiple sensitivity analyses with six cali-
brated HBV models for different data sources are described
in this section. Table 4 shows the calibrated HBV param-
eter values for three river basins with different input data
sets. It shows that the parameter values of HBV-Met, HBV-
ERA, HBV-Had and HBV-HadBenchmarkfalls within the lim-
its described in other studies whereas the parameter values of
HBV-MetCRU−correctedand HBV-ERABenchmarkexceeds the
limits described in other studies (e.g. Uhlenbrook et al.,1999;
Krysanova et al., 1999; SMHI, 2005; Booij, 2005). The
parameter values vary between the different data sources in
three river basins. During calibration the threshold tempera-
tureTT turned out to be the most critical parameter, because
generally all PRECIS RCM simulations (Figs. 6 and 7) show
that most of the precipitation in the HKH region occurs under
freezing conditions.

Table 5 presents the efficiencyY , Nash-Sutcliffe coeffi-
cientNSand relative volume errorRE for the six HBV mod-
els during calibration and validation periods for the three
river basins. All six HBV models show that during the cali-
bration period the relative volume error is very small which
indicates that the average simulated and observed discharge
are close to each other. General testing of conceptual models
(Rango, 1992) has shown thatNSvalues higher than 0.8 are
above average for runoff modeling in glaciated catchments.
Therefore,NSvalues during calibration are satisfactory for
all HBV models and the highest values are achieved by HBV-
ERABenchmark(e.g. 0.67<NS<0.92). Figure 8 presents the
observed and simulated discharge of six HBV models during
the hydrological year 1986 for the Hunza river basin. The
figures for the other two river basins during the calibration
period and figures for all river basins during the validation
period are not given for redundancy. During the calibra-
tion period the peak values are generally underestimated and
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Table 4. Parameter values for HBV for three river basins with six different input data sets.

Model River basin Parameter

cfmax (mm/◦C/d) DTTM (◦C) FC (mm) gmelt (mm/◦C/d) PERC (mm/d) TT (◦C)
HBV-Met Hunza 3 0 1500 3.5 0.5 0

Gilgit 3 −2.5 700 4 0.8 −2
Astore 4.5 −2.5 700 4.5 0.8 −2.5

HBV-ERA Hunza 3.2 −1 100 3.5 0.5 −0.3
Gilgit 3 −1.5 700 3.5 0.5 −1.5
Astore 3.5 −1.5 700 4 0.5 0

HBV-Had Hunza 3 −1.5 1100 4 0.5 0.4
Gilgit 3 −2.5 700 3.4 0.9 −2
Astore 3.5 −2.5 700 4.5 0.5 −1.5

HBV-MetCRU−correected Hunza 2.9 −6.5 1400 5 0.5 −1.5
Gilgit 3 −6 500 5 0.5 −6
Astore 5.5 −6 100 5.5 0.5 −6

HBV-ERABenchmark Hunza 3 −8 1500 4 0.5 −6
Gilgit 3.1 −8 100 4 0.5 −48
Astore 4 −6.25 200 4 0.5 −6

HBV-HadBenchmark Hunza 3 −2 1600 4 0.5 0
Gilgit 3 −2 700 5 0.5 0.5
Astore 3 −2.5 500 4 0.5 −1.5

Table 5. Performance of six HBV models during calibration and validation in different river basins.

Model River basin Calibration Validation

Period NS RE % Y Period NS RE % Y
HBV-Met Hunza 1981–1990 0.87 −0.4 0.87 1991–1996 0.91 −1.4 0.90

Gilgit 1981–1990 0.83 −0.4 0.82 1991–1996 0.77 −11.7 0.69
Astore 1981–1990 0.68 −1.2 0.67 1991–1996 0.73 −15.2 0.63

HBV-ERA Hunza 1981–1990 0.89 0 0.89 1991–1996 0.83 1.6 0.81
Gilgit 1981–1990 0.75 0.2 0.75 1991–1996 0.76−10.6 0.69
Astore 1981–1990 0.58 0 0.58 1991–1996 0.52−22.7 0.42

HBV-Had Hunza 1981–1990 0.77 0 0.77 1975–1980 0.70−25.4 0.56
Gilgit 1981–1990 0.74 0.3 0.74 1965–1970 0.76−8.8 0.70
Astore 1981–1990 0.62 −2.3 0.61 1975–1980 0.62 5.0 0.59

HBV-MetCRU−corrected Hunza 1981–1990 0.84 0 0.84 1991–1996 0.91−2.7 0.88
Gilgit 1981–1990 0.73 −1.4 0.71 1991–1996 0.71 −8.4 0.65
Astore 1981–1990 0.61 −2.7 0.60 1991–1996 0.70 −14.4 0.61

HBV-ERABenchmark Hunza 1981–1990 0.92 0.4 0.92 1991–1996 0.91 10.5 0.82
Gilgit 1981–1990 0.82 −0.2 0.82 1991–1996 0.75 −7.1 0.70
Astore 1981–1990 0.67 −0.6 0.66 1991–1996 0.68 −13.6 0.60

HBV-HadBenchmark Hunza 1981–1990 0.74 −0.1 0.74 1975–1980 0.67 −22.3 0.55
Gilgit 1981–1990 0.64 −5.8 0.61 1965–1970 0.70 −9.8 0.64
Astore 1981–1990 0.60 −1.4 0.59 1975–1980 0.62 12.7 0.55

discharge during low flow periods is well simulated by the
HBV models. During the calibration period efficiency (Y )
values and visual inspection of hydrographs show that per-
formance of all HBV models is satisfactory.

During validation theRE values show that in most cases
all models underestimate discharge in the three river basins.
Overall, only two out of eighteen combinations of river

basins and HBV models shows a higher efficiency (Y ) in
the validation compared to the calibration mainly due to the
large volume errors. The values of the performance criteria
show that during the validation period overall performance of
HBV-Met (e.g. 0.63<Y<0.90) is somewhat better compared
to the overall performance of HBV models driven by PRE-
CIS outputs and driving forcing data (e.g. 0.42<Y<0.82).
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Fig. 8. Observed and simulated discharge (m3/s) of (a) HBV-Met, (b) HBV-ERA, (c) HBV-Had, (d) HBV-MetCRU−corrected, (e) HBV-
ERABenchmarkand(f) HBV-HadBenchmarkfor the Hunza river basin during hydrological year 1986.

Table 6. EfficiencyY of six HBV models using data sources different from the calibration sources in different river basins. The values of
absolute relative deviations (ARD) are given in parentheses. The italic values indicate efficiencyY during calibration.

River Basin Model Data Source Applied

Met Observations PRECIS ERA PRECIS Had Met Observations CRU corrected ERA-40 Reanalyses HadAM3P GCM
Hunza HBV-Met 0.87 0.65 (25) 0.53 (39) −0.04 (105) −0.25 (128) 0.41 (53)

HBV-ERA 0.49 (45) 0.89 0.73 (18) 0.13 (86) −0.17 (119) 0.59 (34)
HBV-Had 0.56 (27) 0.86 (12) 0.77 0.06 (92) −0.22 (129) 0.63 (18)
HBV-MetCRU−corrected −1.61 (292) −1.16 (239) −1.19 (242) 0.84 0.20 (76) −0.95 (213)
HBV-ERABenchmark −2.38 (359) −1.94 (312) −1.95 (313) −0.09 (110) 0.92 −41.77 (293)
HBV-HadBenchmark 0.43 (42) 0.73 (1) 0.67 (9) 0.08 (89) −0.21 (129) 0.74

Gilgit HBV-Met 0.82 0.55 (33) 0.62 (24) −0.01 (101) −0.12 (114) 0.40 (52)
HBV-ERA 0.57 (24) 0.75 0.63 (16) −0.02 (103) −0.16 (121) 0.57 (24)
HBV-Had 0.67 (9) 0.64 (14) 0.74 −0.02 (103) −0.13 (118) 0.57 (23)
HBV-MetCRU−corrected −1.22 (271) −1.44 (301) −1.31 (283) 0.71 0.46 (35) −1.47 (305)
HBV-ERABenchmark −1.35 (265) −1.58 (293) −1.45 (278) 0.29 (64) 0.82 −1.65 (302)
HBV-HadBenchmark 0.66 (9) 0.71 (17) 0.60 (1) −0.09 (115) −0.20 (133) 0.61

Astore HBV-Met 0.67 0.20 (70) 0.55 (18) −0.02 (103) 0.12 (83) 0.47 (30)
HBV-ERA 0.31 (46) 0.58 0.37 (36) −0.13 (123) −0.09 (115) 0.40 (30)
HBV-Had 0.57 (6) 0.35 (43) 0.61 −0.08 (113) 0.02 (97) 0.57 (6)
HBV-MetCRU−corrected −0.67 (212) −1.39 (333) −0.89 (249) 0.60 0.51 (15) −0.98 (264)
HBV-ERABenchmark −0.07 (111) −0.66 (200) −0.23 (134) 0.44 (33) 0.66 −0.31 (147)
HBV-HadBenchmark 0.51 (15) 0.39 (35) 0.55 (7) −0.09 (114) −0.01 (102) 0.59

The efficiency is highest for the Hunza river basin compared
to the Gilgit and Astore river basins as already observed dur-
ing calibration. However, comparison ofY values between

different river basins has to be regarded carefully, because
this statistical measure is strongly influenced by runoff vari-
ability. This may explain the relatively low values for the
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Fig. 9. Observed discharge (black line) and uncertainties (gray shade) in simulated discharge (m3/s) of (a) HBV-Met, (b) HBV-ERA, (c)
HBV-Had, (d) HBV-MetCRU−corrected, (e) HBV-ERABenchmarkand(f) HBV-HadBenchmarkfor the Hunza river basin during hydrological
year 1986.

Astore river basin, where runoff variability is highest due to
the small size of the river basin.

4.4 Robustness of HBV models

The robustness of HBV models is tested by calibrating the
model with one data source and applying the data from the
other five data sources. The Absolute Relative Deviation
(ARD) in the efficiency (Y ) is quantified by equation (4)

ARD = 100

∣∣∣∣Ya − Yc

Yc

∣∣∣∣ (4)

whereYc is the efficiency of the model during calibration and
Ya is the efficiency of the model during the application of a
different data source.

The efficiency (Y ) and Absolute Relative Error (ARD) of
the six HBV models using input data series from sources
different from the data used in the model calibration are
shown in Table 6. The values of the efficiencies show that
overall performance of HBV-Had (e.g.−0.22<Y<0.86) is

somewhat higher compared to the other five models (e.g.
−2.38<Y<0.73). TheARD values indicate that the er-
rors in HBV-Met (e.g. 18%<ARD<128%) are somewhat
less compared to the errors in the other five models (e.g.
1%<ARD<359%). The overall efficiency of HBV models
driven by PRECIS RCM simulations is somewhat better (e.g.
−0.08<Y<0.86) compared to HBV models driven by driv-
ing forcing data (e.g. -2.38<Y<0.73). The errors in HBV-
Had and HBV-ERA (e.g. 9%< ARD< 129%) are somewhat
less compared to the errors in HBV-HadBenchmarkand HBV-
ERABenchmark models (e.g. 1%<ARD<359%). The mod-
els HBV-MetCRU−corrected and HBV-ERABenchmark are the
least efficient (e.g.−2.38<Y<0.51) compared to the other
four models (e.g.−0.25<Y<0.86) and have higher ARD
values (e.g. 15%<ARD<359%) compared to the other four
models (e.g. 1%<ARD<134%). This may be due to the
fact that in ERA-40 reanalysis data assimilation system pre-
cipitation is not relaxed towards observations. Therefore,
ERA-40 precipitation might not be close to observations,
particularly in a region with complex orography and lack-
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ing a dense observation station network as the HKH region
of Pakistan (Wilfran Moufouma-Okia, Personal communica-
tion). Hence, the bias correction of ERA-40 data with re-
spect to CRU data might have affected the inputs for the
HBV model and consequently resulting in a poor perfor-
mance of HBV-ERABenchmark. Moreover, the poor perfor-
mance of HBV-MetCRU−correctedmay be due to the fact that
for each river basin only one meteorological station is used
as input of temperature and precipitation which introduces
too much extreme behavior resulting in a poor performance
of HBV-MetCRU−corrected. Therefore, the less robust results
of HBV-MetCRU−correctedand HBV-ERABenchmarkcompared
with other HBV models may be due to poor inputs to these
models. The bias correction approach used only corrects
the monthly mean and does not consider corrections in the
variability. More sophisticated approaches in bias correction
(e.g. Leander and Buishand, 2007) may give different results.
The good performance of HBV-Met in terms ofARDvalues
may be related to the small precipitation biases (see Fig. 6).
All these results indicate that the robustness of HBV models
is affected by the input forcing data.

The effect of six different input forcing data series on the
simulated discharge of HBV is also analyzed by calculating
the uncertainty range. The uncertainty range in a HBV model
is the difference between the maximum and minimum values
of the six simulated discharge series. Figure 9 shows the un-
certainty range in the six HBV models by applying inputs
from six different data sources for the Hunza river basin dur-
ing the 1986 hydrological year. The figures for the other two
river basins are not given for redundancy. The uncertain-
ties in the six HBV models show that six forcing data series
have a large influence on the simulated discharge. The uncer-
tainty range varies among the three river basins. The uncer-
tainties are somewhat higher in HBV-MetCRU−correctedand
HBV-ERABenchmarkcompared to the uncertainties in HBV-
Met, HBV-ERA, HBV-Had and HBV-HadBenchmark. It is
also observed that the uncertainties are less in the Hunza
river basin compared to the Gilgit and Astore river basins.
This may be due to the fact that the Hunza river basin is
heavily glaciated (34%) and temperature play a major role
in the summer discharge, whereas the discharge of the less
glaciated Gilgit (7%) and Astore (16%) river basins depends
on the preceding winter precipitation (Archer, 2003). Since
in the six different forcing data sets the temperature series are
stable compared to the precipitation series and the bias cor-
rection technique applied has a larger impact on the precipi-
tation series compared to the temperature series, this resulted
in less uncertainties in the simulated discharge of the Hunza
river basin compared to Gilgit and Astore river basins.

5 Conclusions and recommendations

Analysis of present day simulations shows that PRECIS pos-
sesses strong capacity to simulate spatial patterns of present

climate characteristics. However, some quantitative biases
also exist in the spatial patterns especially in mountain re-
gions, where PRECIS RCM simulations underestimate tem-
perature and overestimate precipitation with respect to CRU
observations. The CRU temperature is also underestimated
with respect to meteorological stations observations. The bi-
ases are highly influenced by the driving forcing data. The
results of our PRECIS RCM simulations follow the same pat-
tern as observed in other studies in the region using PRECIS
(Kumar et al., 2006; Yinlong et al., 2006). In all three river
basins the annual seasonal temperature cycle is present in all
PRECIS simulations. The annual seasonal cycle of precipi-
tation exhibits a stronger variability than the annual cycle of
temperature. Overall, in the three river basins the magnitude
of temperature biases is somewhat higher in PRECIS Had
compared to PRECIS ERA simulation, whereas the magni-
tude of precipitation biases is somewhat less in PRECIS Had
compared to PRECIS ERA simulation.

The parameters for six HBV models are estimated through
univariate and multivariate sensitivity analysis. Univariate
sensitivity analysis identified that there is a strong inter-
dependence amonggmelt, FC, DTTMand TT. Therefore,
a multivariate sensitivity analysis is performed to optimize
these interdependent and sensitive parameters. The parame-
ter values of HBV-MetCRU−correctedand HBV-ERABenchmark
are overestimated with respect to values given in the litera-
ture whereas the parameters estimated for all other models
falls within the limits described in the literature. The calibra-
tion and validation results of the HBV model driven by six
different data sources show that the HBV models can repro-
duce the discharge reasonably well. This shows that under
present climate conditions the glacial component is well han-
dled by the HBV model and the daily meteorological fluctu-
ations are not very important for the hydrology of the re-
gion. This is also confirmed by the good performance of
the HBV models with direct (HBV-HadBenchmark) and down-
scaled (HBV-Had) GCM inputs. Namely, daily variations
in precipitation and temperature in these (downscaled) GCM
results do not have a direct relation with the actual observed
daily variations. Since HBV model performance at a daily
time scale is satisfactory using these inputs, processes oper-
ating at longer time scales (e.g. glacier melt and snow melt)
play a dominant role in this region and are well captured
by HBV. Generally, during calibration and validation peri-
ods the overall performance of HBV-Met is somewhat bet-
ter than the other models. Using the input data series from
sources different from the data used in the model calibration
shows that HBV-Had has the highest efficiency. However,
HBV-Met is the most robust model as it has the smallest ab-
solute relative errors. It is also observed that, the HBV mod-
els driven by PRECIS RCM simulations are more robust than
HBV models driven by driving forcing data. Therefore, dy-
namically downscaled data improve hydrological modeling
in data sparse regions and are preferred over GCM and re-
analysis data. The uncertainties are higher in least efficient
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models (i.e. HBV-MetCRU−correctedand HBV-ERABenchmark)
where the model parameters are also unrealistic. Moreover,
the magnitude of uncertainties is higher in the river basins
where discharge is dependent on the preceding winter pre-
cipitation (i.e. Gilgit and Astore river basins) compared to
the river basin when the discharge is driven by energy in-
puts (i.e. Hunza river basin). In terms of both robustness and
uncertainty ranges the HBV models calibrated with PRECIS
output performed better than other calibrated models except
for HBV-Met which has shown higher robustness. Therefore,
it is recommended that in data sparse regions as the HKH re-
gion data from regional climate models are used as input in
hydrological models for climate scenarios studies.
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