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Abstract. A number of recent studies have focused on en-1 Introduction
hancing runoff prediction via the assimilation of remotely-
sensed surface soil moisture retrievals into a hydrologicEnhancement of runoff and/or flood forecasts is frequently
model. The majority of these approaches have viewed th&ited as a key benefit of satellite-based surface soil mois-
problem from purely a state or parameter estimation periure retrievals (Entekhabi et al., 2003; Lakshmi 2004; NRC
spective in which remotely-sensed soil moisture estimate007). This potential is likely to receive greater attention in
are assimilated to improve the characterization of pre-stornihe next decade as attempts are made to demonstrate opera-
soil moisture conditions in a hydrologic model, and con- tional applications for soil moisture data products emerging
sequently, its simulation of runoff response to subsequenfrom both current and next-generation satellite missions. Of
rainfall. However, recent work has demonstrated that soilParticular importance are upcoming launches of the first two
moisture retrievals can also be used to filter errors preser{ﬂedicated soil moisture missions: the ESA Soil Moisture and
in satellite-based rainfall accumulation products. This resultOcean Salinity (SMOS) mission in 2009 (Kerr et al., 2001)
implies that soil moisture retrievals have potential benefit forand the NASA Soil Moisture Active/Passive (SMAP) mis-
characterizing both antecedent moisture conditions (requiregion in 2012 (NRC, 2007).
to estimate sub-surface flow intensities and subsequent sur- As represented in traditional hydrologic models, surface
face runoff efficiencies) and storm-scale rainfall totals (re-runoff prediction is a dual estimation problem requiring in-
quired to estimate the total surface runoff V0|ume)_ In re- formation describing both the volume of rainfall occurring
sponse, this work presents a new 5equentia| data assimilatiofithin a storm and the ability of a watershed to infiltrate such
system that exploits remotely-sensed surface soil moisturédinfall. This infiltration capacity is largely determined by
retrievals to simultaneously improve estimates of both pre-prevailing soil moisture conditions. Therefore, to date, most
storm soil moisture conditions and storm-scale rainfall accu-strategies for integrating remotely-sensed soil moisture into
mulations. Preliminary testing of the system, via a syntheticthe rainfall/runoff prediction (or forecasting) problem have
twin data assimilation experiment based on the SacramentéPcused solely on improving the estimation of antecedent
hydrologic model and data collected from the Model Param-S0il moisture conditions. A variety of methodologies have
eterization Experiment, suggests that the new approach igeen applied to this goal including the direct use of remotely-
more efficient at improving stream flow predictions than datasensed soil moisture fields to initialize a hydrologic model
assimilation techniques focusing solely on the constraint of(Goodrich et al., 1994; Jacobs et al., 2003; Weissling et al.,
antecedent soil moisture conditions. 2007), the calibration of hydrologic model soil moisture pre-
dictions using remotely-sensed soil moisture retrievals (Para-
jka et al., 2006) and the optimal merging of modeled and
remotely-sensed soil moisture using sequential data assimi-
lation techniques (Pauwels et al., 2002; Aubert et al., 2003;
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2 W. T. Crow and D. Ryu: Improving hydrologic prediction using data assimilation

To date, results from such experiments have been mixeeffect of correlated errors between hydrologic model fore-
and there is currently little compelling evidence that casts and assimilated observations.
remotely-sensed soil moisture retrievals can aid runoff pre-
diction in ungauged basins (Parajka et al., 2006). Somewhat
typical is Crow et al. (2005) who found an improved corre-
lation between antecedent precipitation index (API) values2 Modeling and data
and subsequent storm-scale runoff ratios when soil mois-
ture retrievals from a passive microwave radiometer were
sequentially assimilated into the APl model. However, theAll hydrologic modeling here is based on application of the
marginal advantage of assimilating soil moisture disappearedacramento (SAC) hydrologic model. In the United States,
when the APl model was modified slightly to incorporate the SAC model has been used extensively for operational
air temperature observations into estimates of soil water losstream flow forecasting within medium-sizes 000 knf)
due to evapotranspiration. Other studies were able to identiver basins (Burnash et al., 1973; Geogakakos, 2005). Soil
tify improvement (upon the integration of remotely-sensedmoisture accounting in the model is based on the estima-
soil moisture) in only a subset of the total basins examinedion of six interdependent soil water states: upper-zone
(Pauwels et al., 2002; Parajka et al., 2006). free water content (UZFWC), upper-zone tension water con-
The above-mentioned approaches are all based on the atent (UZTWC), lower-zone tension water content (LZTWC),
sumption that an improved representation of antecedent solpwer-zone free primary water content (LZFPC), lower-zone
moisture conditions in hydrologic models will ensure im- free supplemental water content (LZFSC) and basin satu-
proved runoff prediction. However, a number of important rated fraction (ADIMP). The movement of water between
cases exist where antecedent soil moisture conditions are dhese states is based on the SAC model parameterization de-
relatively minor importance for determining eventual basin scribed in Sorooshian et al. (1993).
response to rainfall. For example, theoretical arguments sug- Combined with measurements of rainfall accumulation,
gest that the role of antecedent soil moisture is diminishedhese six states are used to predict four separate runoff pro-
for very intense runoff events that are of primary impor- cesses: surface infiltration-excess runoff (SER) occurring
tance for flood forecasting (Wood et al., 1990). In addition, when rainfall accumulation within a given time step is large
for basins lacking adequate rain-gauge coverage, constrairenough to fill available upper-zone tension and free water
ing antecedent soil moisture represents only a fraction of thestorage capacity, surface saturation runoff (SSR) occurring
overall stream flow prediction problem — the larger fraction when rainfall falls on saturated portions of the basin (as de-
of uncertainty being due to error in observed rainfall (Oki et fined by ADIMP), shallow sub-surface interflow (SIF) ex-
al., 1999). Finally, the relationship between antecedent soipressed as a direct function of UZFWC, and deep base flow
moisture and runoff is strongly nonlinear and characterized BF) expressed as a direct function of LZFSC and LZFPC.
by sharp thresholds which are ill-suited for the application of Here, we will make a distinction between “direct” surface
data assimilation technigues designed for linear models.  runoff components (SER and SSR) that are driven primar-
These difficulties suggest that some merit exists in ef-ily by incident rainfall and exhibit only a secondary depen-
forts to reformulate the basis for integrating remote sens-dence on antecedent soil moisture conditions and “indirect”
ing retrievals into hydrologic models. For example, Crow sub-surface runoff generating processes (SIF and BF) that are
et al. (2009) demonstrates that remotely-sensed surface soitholly a function of soil moisture and do not require the si-
moisture retrievals can also be used to directly improve themultaneous presence of non-zero rainfall to generate runoff.
accuracy of satellite-based rainfall accumulation estimates. Potential evapotranspiration (PET), daily rainfat)( and
At least in data-poor areas of the world heavily reliant on stream flow time series data are acquired for specific basins
satellite-based rainfall retrievals, this result broadens the bafrom data sets prepared as part of the Model Parameteriza-
sis of attempts to enhance runoff prediction via surface soittion Experiment (MOPEX) (Schaake et al., 2001). Inclu-
moisture retrievals. Specifically, it presents an opportunity tosion into the United States portion of the MOPEX exper-
simultaneously reduce the impact of antecedent soil moisturément was predicated on individual basins meeting thresh-
and rainfall accumulation uncertainty on hydrologic model old requirements related to a lack of anthropogenic stream
predictions. flow impoundment and/or diversion and possessing adequate
This paper attempts to realize this potential by refram-spatial rain gauge coverage. Here, we additionally subset
ing the remotely-sensed soil moisture/hydrologic forecastingthe original United States MOPEX datasets to include only
problem in such a way that potential benefits of remotely-basins located below 3@ latitude (to minimize snow ef-
sensed soil moisture on both state (i.e. antecedent soil moidects) with an area greater than 100%(to eliminate basins
ture) and flux (i.e. observed rainfall) estimation are cap-smallerthan the resolution of soil moisture products expected
tured. Given the dual use of remotely-sensed soil moisturdrom next-generation satellite sensors). Of the 438 United
retrievals in this framework, special emphasis will be placedStates MOPEX basins, 97 meet these two additional criteria.
on designing a system that avoids the potentially deleterioug-igure 1 plots long-term runoff ratios (mean annual stream
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Here, two separate data assimilation approaches are consi Sed in the study.

ered for the integration of remotely-sensed soil moisture in-

formation into the SAC model. First, the use of a simpli-

fied Kalman filtering methodology to correct rainfall input  Here, the dimensionless parameterandg are held con-

fed into the SAC model. Second, the application of eitherstant at values of 0.85 and 0.05. Remotely-sensed surface
an Ensemble Kalman filter (EnKF) or smoother (EnKS) to soil moisture estimateg are used to update Eq. (1) via a
correct SAC soil moisture states based on the availability ofKalman filter

remotely-sensed surface soil moisture retrievals. The dat _ _

assimilation approach utilized for both correction strategies%‘Plj = APlj + K;(6; — APL}), (3)
are described in the following two sub-sections (Sect. 3.1 andand “-” and “+” denote API values before and after Kalman
3.2). As noted in Sect. 1, the central theme of this paper idfilter updating, respectively. Following Reichle and Koster
unifying these two methodologies and developing a data as{2005), dailyd estimates are obtained by rescaling raw volu-
similation system capable of simultaneously correcting bothmetric soil moisture retrievals® [m3m—3] following

SAC model soil moisture states and rainfall inputs. 6, = (ef_ug)(o_Ap|/O_9)+MAp| )

3.1 Rainfall correction using the Kalman filter to match the APl model in expressing soil moisture in wa-
ter depth units [mm] and ensure that rescaled retrievals pos-

Using remotely-sensed soil moisture retrievals from the Ad-goqq 5 long-term mean) and standard deviation{ match-
vanced Microwave Scanning Radiometer (AMSR-E) aboarty, those derived from a multi-year integration of API for

the NASA Aqua satellite, Crow et al. (2009) demonstratedpa same pixel. Soil moisture retrieval meaf { and stan-

the feasibility of correcting uncertain short-term rainfall 4o.4 geviation €°) estimates are obtained by sampling a
accumulation estimates using remotely-sensed surface SOIiJ)ng-term time series af°. Likewise, the APl meany(*"")
moisture retrievals. Their approach is based the assimilation, 4 standard deviatiow {P') statistics in Eq. (4) are sam-
of surface soil moisture retrievals into a simple Antecedentp|ed from an API time series generated using Eq. (1) and no

Precipitation Index (API) model Kalman filter updating. The Kalman gakiin Eq. (3) is then
API; = y;API;_1 + P 1y 9gvenby
Kj=T; /(T +R) (®)

where is a daily time index,P’ an (uncertain) estimate of
daily rainfall accumulation [mm], ang varies according to
day-of-year {) as

yj = a + B cos2r d;/365). )

whereT ~ is the scalar error variance in API forecasts @&d
is the error variance of a rescalg@detrieval. At measurement
times, T~ is updated via

T)=1-K)T; . (6)

www.hydrol-earth-syst-sci.net/13/1/2009/ Hydrol. Earth Syst. Sci., 186,12009



4 W. T. Crow and D. Ryu: Improving hydrologic prediction using data assimilation

T T T T T
USGS# 08172000, Lat/Long = -97.65, 29.67, RR = 0.13, Area = 838 km?

— Observed

—
i

Ly QN O D

e

W
I

—

| usGs# 2228000, Lat/Long =-81.87, 31.22, RR = 0.33, Area = 2790 km’

Daily Streamflow [mm]

[\]
N S = o OO

]
(=)

15

Pl 05 T

25 USGS# 03451500, Lat/Long = -82.58, 35.61, RR = 0.59, Area = 945 km®

20
15
10

5

|
Jan. 1972  Jan. 1973 Jan. 1974 Jan. 1975 Jan. 1976
Date

Fig. 2. Comparison of SAC model stream flow predictions (in red) with observed hydrographs (in black) for five representative MOPEX
basins. United States Geologic Survey (USGS) basin identification number, latitude/longitude coordinates, long-term runoff ratio (RR) and
drained area at basin outlet are listed for each basin.

Between soil moisture retrievals, and the adjustment of To correct rainfall, Crow et al. (2009) utilize analysis in-
API andT via (3) and (6), API is forecasted in time using crements calculated during the updating of API withvia
observedP’ and (1). In parallelT  is updated in time as 3)

T =y2TF 40 (7) 8 =API] —API; = K;(6; — API}) (8)
_ Values of§ reflect the depth of water [mm] added to an
whereQ relates the forecast uncertainty added to an APl €S\p) forecast in response to information contained in surface

timate during propagation between timgd and,. Here soil moisture retrievals. As such, it contains information con-

temporally constant values d and Q are calibrated on @ ;orhing errors in near-pat estimates used to forecast API.

p|xel-py-p|?<el basis using the innovation tuning procedure-l-o this end, Crow et al. (2009) propose a simple additive

described in Crow and Bolten (2007). correction which utilizes to correct errors in uncertaift’
estimates

P} = Pj+13;. ©)
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The rescaling parameteris required to capture the im-
pact of processes which may lead to differences between
and rainfall errors. Foremost of which is the near certainty
that not all errors in API predictions are directly attributable
to rainfall uncertainty. Some portion éfwill almost cer-
tainly be associated with our simplistic representation of soil
water loss (i.e. the combined effect of soil drainage and evap
otranspiration) in (1). This impliesavalue less than one is
required to filter the impact of such error before it can be
misattributed to rainfall. Likewise some portion of the orig-
inal rainfall error is damped via either runoff or infiltration

5

This vector can be transformed into an estimate of vol-
umetric surface soil moisture (assumed to correspond to a
remote sensing observation) via the application of the linear
observation operator

H = [p/(UZFWCnax+ UZTWCnax), o/
(UZFWCax+ UZTWChav, 0,0, 0, 0]
wherep is soil porosity, UZFWGax [Mm] the maximum ca-
pacity of free water in the surface zone and UZT\W[m]

the maximum capacity of tension water in the surface zone.
Given the concurrent availability of a remotely-sensed sur-

(11)

beyond the shallow surface zone prior to the acquisition of a&ace soil moisture observatioff with error variancer®,

o retrieval used to calculate Such processes will require an
increase in to compensate for the volume of rainfall error

that is not directly detectable by the remote sensing observa=i.j

tions.

As a practical solution, Crow et al. (2009) propose estimat-
ing temporally constant values afvia the minimization of
the root-mean-square difference between corrected rainfa
P* and some additional estimate of rainfall accumulation.

replicates ofS are updated following
=S + K +vij—HS; ;) (12)

where the perturbation termis a mean-zero Gaussian ran-
dom variable with scalar variand andK is

[Kj =HC;j/(HC;HT + R?). (13)
Here, the forecast error covariance mattxs sampled

Here, such tuning is performed relative to the benchnfark from a 35-member Monte Carlo ensemble of background
obtained from dense rain gauges within each MOPEX basinSAC modelS predictions. Final EnKF state predictions are
Such tuning against high-quality rain gauge data will not obtained by averaging replicates across the entire ensemble.
be feasible in many data-poor settings; however, Crow et The EnKF is designed to update model-forecasted state
al. (2009) demonstrates thatcan also be accurately spec- predictions at the same time an observation is acquired. No
ified using an additional, independently-acquired, satellite-attempt is made to reanalyze previous model predictions in
based rainfall product. response to a particular observation. In contrast, the En-
An additional concern is the possibility that the applica- semble Kalman Smoother (EnKS) can be used to update
tion of (9) will lead to non-physical negative values Bf. all model states predictions within a fixed lag of past time
Simply resetting such values to zero creates a long-term biagdunne and Entekhabi, 2005). While the SAC model is run
in P« values relative ta®’. As an alternative we define a pos- on a daily time step, variations in the three free water states
itive thresholdr such thatP;+=0 for PJ’.“<r and P;*=P;*-t (i.e. UZFWC, LZPFW, and LZSFW) and ADIMP are ac-
for P*>=t. The value of: is then iteratively varied until the tually calculated on a three-hourly basis using an sub-daily
application of these rules leads to a resultiPiytime series ~ model time loop. For our application of the EnKS, an aug-
which is unbiased with respect . mentedS; vector is created?.;_l_)j) which contains not
only the six SAC model soil moisture state variables at tjme
but also all SAC model state predictions between tiges
and j (inclusive of end points) and including 3-hourly wa-
ter balance calculations of UZFWC, LZPFW, LZSFW and
ADIMP. The matrixC* is the new covariance matrix for this
The Ensemble Kalman filter (EnKF) is based on the generaz0-element augmented state ve@bdr As in the EnKF, com-
tion and propagation of a Monte Carlo ensemble of modelyonents of this augmented covariance matrix are sampled di-

replicates to provide the error covariance information re-rectly from the SAC model ensemble and updated with an
quired by the Kalman filter to update state estimates basegdypression analogous to (10)

on the availability of observations. Here, this ensemble is

3.2 State correction using the Ensemble Kalman filter or
smoother

generated using a combination of noise applied to both SACT /-1 = Si.j—1; + K7 +vij —H"'S /7, ) (14)
model forcing (i.e. PET ané&) and SAC model soil moisture where
states (see Sect. 4 for details). At timethe vector of SAC " S Lo kL T o
model states associated with tilk Monte Carlo replicate is Ky =HC)/(HTCH™ + k) (15)
andH* is a 40-element vector of the form
Si.j = [UZFWG; j, UZTWC; j, LZTWC, ;, (10)
H* = [p/(UZFWCnax+ UZTWCnax), o/ (16)

LZPFW; j, LZSFW; ;, ADIMP; ;17
' ’ ' (UZFWCrax + UZTWCnmax), O, ..., O].

As in the EnKF, final EnKS state predictions are obtained by
averaging across the updated soil moisture ensemble.
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Fig. 3. Schematics for the assimilation of remotely-sensed soil moisture retrigvait the SAC model (to improve its internal soil moisture
statesS) using both an Ensemble Kalman filtering (EnKF; top) and fixed-lag Ensemble Kalman Smoothing (EnKS; bottom) approach.

Figure 3 provides a brief illustration of differences be- 4 Synthetic experiment methodology
tween the EnKF and a fixed-lag EnKS approach. For a real-
time filtering problem (Fig. 3a), a soil moisture observation Our overall approach is based on the application of the Sacra-
attime; is used to update concurrent SAC model state repli-mento (SAC) hydrologic model to 97 MOPEX study basins
cates at timg using an EnKF. These updated forecasts, andalong the southern tier of the US. A series of synthetic data
an estimation of total rainfall accumulation occurring be- assimilation experiments are individually conducted for each
tween timej and j+1, are then used to initiate a SAC model basin. All such experiments are based on the designation of
ensemble of states predictions between tihaadj+1. Al-  output from a single SAC model realization as “truth”. The
ternatively, the entire analysis could be delayed until a soilapproximate realism of these truth simulations is supported
moisture observation is obtained at tifrel. In this formu- by comparisons between their stream flow predictions and
lation, the one-day, fixed-lag EnKS is employed to updatelong-term hydrographs obtained from stream flow observa-
all SAC model state replicates betwegand j+1 using the  tions taken at the outlet of MOPEX basins (Fig. 2). Runoff
soil moisture observation at timgr1l (Fig. 3b). Note that, and soil moisture predictions from the truth SAC runs are
unlike the EnKF, the EnKS allows for SAC model states be-withheld to serve as a benchmark for future runs and surface
tween; and j+1 to be corrected based on the observationsoil moisture predictions (perturbed by a suitable amount of
obtained at timej+1. The key advantage of the EnKS is additive Gaussian noise) are assumed to represent remotely-
that state estimates at time(as well as intermediate free sensed surface soil moisture retrievals. Using either an EnKF
water states calculated betwegrand j+1) are constrained or EnKS approach (see Fig. 3), these retrievals are subse-
via information gleaned from the subsequent observation atjuently assimilated back into a perturbed representation of
time j+1. In contrast, the EnKF is only forward propagat- the SAC model to examine the degree to which their integra-
ing in the sense that EnKF estimates at any particular timeion can correct the perturbed SAC model simulation back to
are not impacted by subsequent observations. Consequentlyenchmark results obtained in the “truth” SAC model sim-
flux and state predictions obtained from the EnKS should beulation. Results obtained directly from the perturbed rep-
relatively more accurate than comparable predictions by theesentation of the SAC model (prior to the implementation
EnKF (Dunne and Entekhabi, 2005). of any data assimilation technique) are referred to as “open
loop” results which define the baseline by which the relative
improvement in subsequent data assimilation results is quan-
tified.
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Fig. 4. Schematics for five cases of incorporating remotely-sensed surface soil moisture rettiegalg°j into SAC model runoff
(Runoffsac) and soil moisture §sac) predictions. The dashed box in Case 1, 4 and 5 represents the observed raifedir{fall cor-

rection procedure outlined in Sect. 3a. The solid box in Cases 2, 3, 4 and 5 represents either the EnKF or EnKS-based assimilation of surface
soil moisture retrievals into the SAC model.

Perturbations to the SAC model are based on additiveof 1 mm. Negative PET values resulting from such perturba-
noise applied directly to SAC water balance stateSand  tions are simply reset to zero. In addition to internal model
the daily PET input time series. Daily perturbations appliedand PET errors, uncertainty in rainfall is captured through the
to individual states are assumed to be serially uncorrelatednultiplicative scaling of observed rainfalt with a random
and mutually independent random variables sampled from dactor y sampled from a mean-one, log-normal distribution
mean zero, Gaussian distribution with a standard deviatiorwith a dimensionless standard deviation of one
equal to 5% of the total capacity of each state. Additive PET
perturbations are similarity uncorrelated and sampled from &P’ = x P, x~Logy (1, 1). a7
mean-zero, Gaussian distribution with a standard deviation
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8 W. T. Crow and D. Ryu: Improving hydrologic prediction using data assimilation

For our particular representation of a synthetic twin ex- not used to initialize any subsequent SAC model forecast. At
periment, all model perturbations (presented above) are adeast for the Case 2 implementation of the EnKF, it is also
tually applied twice. During their first application, they are possible to neglect this post-processing stage and simply av-
applied to degrade the SAC model truth simulation and cre-erage SAC/EnKF runoff predictions across the ensemble to
ate a perturbed open-loop SAC model simulation. Subseebtain a single EnKF runoff prediction. However, we found
quently, they are re-applied to the open model simulationthat the inclusion of the post-processing stage had a generally
(on top of the original set of perturbations) to create an en-beneficial impact on EnKF runoff predictions relative to this
semble of SAC model runs (calculated around the perturbedilternative approach. Consequently, we retained the use of
SAC model simulation) during the application of an EnKF a post-processing step for all EnKF-based data assimilation
or EnKS to correct the perturbed SAC model simulation results.
back to the truth simulation. In addition, the same set of The “State Correction Only — EnKS” approach (Case 3) is
synthetically-generated soil moisture retrievals assimilateddentical to Case 2 except that estimation of the augmented
into the SAC model are also assimilated into an APl modelSAC model state vectd@®* is based on implementation of a
(see Sect. 3.1) in an attempt to correct for precipitation errorone-day, fixed-lag EnKS — rather than an EnKF — to update
introduced into SAC precipitation forcing via (17). In this SAC model soil moisture states (Fig. 3). Both the EnKF and
way, the synthetic experiment accounts for the possibility of EnKS are applied to produce Cases 2 and 3, respectively.
correcting both SAC model state and rainfall forcing error. However, to reduce the proliferation of cases, only the EnKS

Remotely-sensed surface soil moisture retrievals are ass employed for Cases 4 and 5 described below.
sumed to be available at a daily frequency with a root-mean- None of the first three cases in Fig. 4 take the next step of
squared (RMS) accuracy of 0.03m~3 (defined as the frac-  simultaneously attempting both rainfall and state correction
tion of total soil volume occupied by wate®° is the square  based on remotely-sensed surface soil moisture retrievals.
of this value andR=R° (¢”"'/c?)2. During the application  This possibility is first examined in Case 4 where corrected
of the EnKS and EnKF within the synthetic experiment, all rainfall is used to both force an EnKS state correction pro-
model and observational error covariances are assumed to ®edure and during the post-processing calculation of runoff.
known. However, the sensitivity of key experimental results This type of approach is potentially problematic in that sur-
to the magnitude of these covariance values is examined iffiice soil moisture retrievals are used both to modify forcing
Sect. 6.3. data for SAC model forecasts and as observations which are

subsequently assimilated into the SAC model via the EnKS.

Such dual use of soil moisture retrievals can conceivably lead
5 State and/or Rainfall Correction strategies to correlation between forecasting and observations errors

within the EnKF, and, consequently, sub-optimal filter per-
Our primary analysis will focus on comparing soil moisture formance. A final potential strategy (Case 5) tries to mit-
and runoff results derived from the five separate data assimigate this possibility by utilizing corrected rainfall only in
ilation strategies outlined in Fig. 4. The first “Rainfall Cor- the post-processing calculation of runoff (Fig. 4) and using
rection” strategy (Case 1) is based on the application of theuncorrected rainfall ®’) for generation of the SAC model
Crow et al. (2009) procedure reviewed in Sect. 3.1 to correcforecast ensemble in the EnKS. Since soil moisture predic-
rainfall forcing data prior to its use as a SAC model forcing tions made during the post-processing stage are not fed back
variable. Note that this approach does not involve the actuainto the EnKS, this strategy avoids the potential for cross-
assimilation of soil moisture retrievals into the SAC model. correlated errors within the EnKS while still allowing for the
Instead, the “Rainfall Correction” approach attempts to im- dual correction of errors present in both antecedent soil mois-
prove runoff prediction solely through the correction of SAC ture and rainfall.
rainfall forcing. Conversely, the “State Correction Only — A possible simplified structure for Case 4 and 5 schematics
EnKF/EnKS” approach (comprising Cases 2 and 3 in Fig. 4)in Fig. 4 is to eliminate the APl model and instead use SAC
employs the assimilation of surface soil moisture retrievalsanalysis increments (produced during the EnKS-based state
into the SAC model using an EnKF (or EnKS) without at- correction procedure) to correct rainfall. However, it is cur-
tempting to correct model rainfall input. Starting with Case rently unclear whether the API-based approach in Sect. 3.1
2, we reference the SAC model twice in the schematic forcan be successfully applied to the SAC model. In partic-
each case. The first reference occurs as part of an ensembldar, adaption of the rainfall correction scheme to a multi-
created to run the EnKF or EnKS and predict SAC model soilstate hydrologic model is complicated by large variations in
moisture states i% (or S*). The second occurrence is dur- water storage capacity existing between various soil water
ing a post-processing step in which the ensemble-mean afmodel states. These variations imply that analysis incre-
these state predictions are directly inserted into a single realments applied to each soil water state will respond to an-
ization of the SAC model for the sole purpose of predicting tecedent rainfall errors occurring over different time scales.
runoff (Runofkac in Fig. 4). Note that the ensemble-mean Unless an arbitrary decision is made to exclude analysis in-
soil moisture prediction made by this post-processing run iscrements applied to certain states, such variation requires a
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more complex form of (9) (currently limited to operating at a malize RMSE results obtained after the implementation of
single time scale) and the specification of additionstaling  various data assimilation techniques. Since normalized val-
factors. In addition, nonlinear, multi-state land surface mod-ues reflect the fraction of modeling error that is addressed by
els like the SAC model can badly confound the innovation-a particular technique, an improvement in performance rela-
based tuning procedure required to implement the proceduréve to the uncorrected open loop case is captured by a nor-
(Crow and Van Loon, 2006). While these problems are po-malized RMSE value less than one (see dotted line in Fig. 6).
tentially resolvable, real-data verification of a rainfall correc- All RMSE results are based on daily SAC model predictions
tion procedure has been limited to the API rainfall correction made during the 55-year period between 1 January 1949 and
approach presented in Sect. 3.1, and current prospects f@&1 December 2003. Symbols in Fig. 6 represent the mean
basing the approach on more complex models are uncleafor all basins and error bars reflect the one-standard devia-
Consequently, in an attempt to maximize the realism of thetion spread of normalized RMSE across all 97 basins.
synthetic experiments presented here, our analysis will fol- In Fig. 6, results for the case of rainfall correction only
low Crow et al. (2009) and retain the use of an API model (Case 1) and of EnKF-based state correction (Case 2) are
for the rainfall correction procedure. Further discussion ofdiametrically opposed in that Case 1 reduces daily rainfall
this point is presented in Sects. 7 and 8. RMSE relative to the open loop case, but provides little, if
any, net improvement to upper-zone soil moisture predic-
tions — defined as the product bf in (11) andS in (12).
6 Results In contrast, application of the EnKF to correct antecedent
soil moisture predictions yields a significant improvement to
Figure 4 lays out a number of possible approaches for inteupper-zone soil moisture estimates but leads to no net im-
grating remotely-sensed surface soil moisture retrievals intgorovement in daily runoff. Modifying the state-estimation
runoff estimates produced by a hydrologic model. To date,technique to be based on a fixed-lag EnKS reanalysis (Case
most data assimilation studies focusing on this goal have fol3) clearly enhances the accuracy of both runoff predictions
lowed Case 2 by formulating the problem purely in a state es-and soil moisture estimates relative to the analogous EnKF-
timation framework and applying a sequential filtering algo- based case (Case 2).
rithm to improve the estimation of pre-storm antecedent soil Despite this improvement, Case 3 results are still based
moisture conditions in the hope that this will aid in the sub- solely on the application of a state-correction strategy. Cases
sequent estimation of storm-scale runoff. As stated above4 and 5 results in Figure 6 demonstrate how optimal aspects
our primary focus is on evaluating the added benefit of re-of Case 1, 2 and 3 runoff and soil moisture results can be
formulating the runoff estimation problem as a smoothing combined, and even enhanced, by reformulating the estima-
reanalysis problem (e.g. Case 3) and attempting the simultation problem using either of the dual state/rainfall strategies
neous correction of both model soil moisture states and théCases 4 and 5) outlined in Fig. 4. In particular, Case 5 is
rainfall forcing used to drive the model (e.g. Cases 4 andable to match the high soil moisture accuracy of Case 3 while
5). Figure 5 shows sample time-series results for a singleproviding runoff results which are even slightly better than
MOPEX basin. Given the availability of remotely-sensed already good Case 1 results.
surface soil moisture retrievals, one can correct a time se- As noted in Sect. 1, a danger in our strategy for simul-
ries of daily rainfall accumulations (Fig. 5a) and/or imple- taneously correcting both rainfall and internal soil moisture
ment an EnKF (or EnKS) to correct SAC model soil moisture states is that information contained in surface soil moisture
predictions (Fig. 5b). Both types of corrections should aid retrievals will be overexploited — leading to the possibility of
in the subsequent calculations of runoff by the SAC model.degenerate runoff predictions. Case 4 results in Fig. 6 illus-
Cases 1, 2 and 3 explore the application of one type of correctrate such an example. Here, surface soil moisture retrievals
tion (antecedent soil moisture or rainfall) in isolation. How- are used both to correct rainfall amounts used to forecast the
ever, Cases 4 and 5 explore the possibility of obtaining betteSAC model ensemble and as the observation assimilated into
SAC model runoff estimates by simultaneously implement-the ensemble via an EnKS. This leads to cross-correlation

ing both corrections (Fig. 5c). between SAC model forecasting error and observation error
in remotely-sensed soil moisture retrievals assimilated into
6.1 MOPEX basin results the SAC model by the EnKS. Such correlation violates a

key Kalman filtering assumption and degrades Case 4 soil
Based on the synthetic twin experimental methodology intro-moisture and runoff results relative to their Case 5 equiva-
duced in Sect. 4, Fig. 6 compares runoff and upper-zone soilents (Fig. 6). By withholding the use of corrected rainfall
moisture root-mean-square error (RMSE) results calculatedintil the post-processing calculation of runoff (and discard-
for all 97 MOPEX basins and the five separate data assiming soil moisture predictions made by the SAC model dur-
ilation cases described in Fig. 4. Unless otherwise noteding this calculation), Case 5 avoids the negative impact of
all subsequent results are presented as normalized RMSE itross-correlated errors and produces superior runoff and soil
which open loop SAC model RMSE results are used to nor-moisture predictions.
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While mildly degraded results are noted in Fig. 6, the full pling between its upper and lower soil zones, all cases in
effect of this degeneracy appears only in SAC lower-zone soilFig. 4 provide only a modest correction relative to the open
moisture results. Figure 7 is identical to Figure 6 except theloop. However, Case 4 results cannot even meet this minimal
y-axis is re-plotted as normalized lower-zone soil moisturethreshold and instead clearly degrade lower-zone soil mois-
RMSE (instead of daily runoff). Lower-zone soil moisture is ture predictions relative to the open loop. The source of this
defined as degradation is the cross-correlation of modeling and obser-
vational error induced by using corrected rainfall accumula-

Ozone2= p(LZTWC + LZPFC+ LZSFO/ (18) tions during the EnKS forecast step. The long-term effects
(LZTWChax + LZPFGnax + LZSFCnax) of this correlation are particularly pernicious for lower-zone
where LZTWGhax, LZPFGnax and LZSFGuax are maxi- soil moisture estimates since these values cannot be directly

mum capacities of SAC model states LZTWC, LZPFC and constrained via surface observations and can therefore accu-

LZSFC, respectively. Because the states underlying lowerMulate unchecked over long time periods. As a result of this
zone soil moisture are not directly observed Mi&in (16), problem, Case 4 results will be dropped from the remainder

and the SAC model predicts relatively little vertical cou- Of the analysis.
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Fig. 6. Upper-zone soil moisture and runoff results for the five casesFig. 7. Upper- and lower-zone soil moisture results for the five cases

outlined in Fig. 4. Plotted symbols represent the mean of RMSEoutlined in Fig. 3. Plotted symbols represent the mean of RMSE

results (normalized by open loop RMSE results) for all basins. Er-results (normalized by openloop RMSE results) for all basins. Error

ror bars represent the one-standard deviation spread of normalizeldars represent the one-standard deviation spread of results across alll

RMSE results across all 97 MOPEX basins. 97 MOPEX basins. Case 3 results (not shown) correspond exactly
to shown Case 5 results.

6.2 Sensitivity of results to climate and runoff processes
low sub-surface interflow (SIF) and deep sub-surface base

As demonstrated in Fig. 1, MOPEX basins selected for thisflow (BF). A useful classification is to divide these four sep-
study capture a wide range of long-term runoff ratio values.arate processes into “direct” and “indirect” runoff generation
Such variability is lost upon the averaging performed to con-processes. Indirect runoff components SIF and BF are runoff
struct Figs. 6 and 7. In order to examine any possible trendgrocesses in which the rainwater path to channel flow pro-
with regards to climate, Figure 8 re-plots normalized daily ceeds through one (or more) of the SAC model soil moisture
runoff RMSE results as a function of long-term basin runoff states. The rate at which these processes operate is therefore
ratio (sorted from the driest to the wettest of the 97 MOPEX a direct function of soil moisture and only indirectly linked
basins). Despite a large range of overall basin wetness, litto antecedent rainfall. Consequently, they can be adequately
tle variation is observed when moving from drier to wetter constrained by state estimation techniques. The impact of
basins. For all basins, regardless of long-term climate charthis is seen in Fig. 9, where no added advantage (in terms of
acteristics, Case 2 provides little or no added skill to runoff RMSE accuracy) is associated with adding our rainfall cor-
predictions; however roughly equal added skill is obtainedrection approach on top of EnKS state estimation results (i.e.
upon reformulating the problem using a smoothing approactequivalent results for SIF and BF are obtained in Cases 3 and
(Case 3) and, subsequently, adding a rainfall correction com5). Overall better correction results for SIF relative to BF
ponent (Case 5). can be attributed to the sensitivity of SIF to upper-zone soil

Despite a lack of strong variation of results with climate, moisture states that are assumed to be directly observed by

insight into Figs. 6 and 8 can be obtained by decomposing©MOtely-sensed surface soil moisture retrievals.

total runoff results into various individual runoff processes In contrast, direct runoff processes are those in which
captured by the SAC model. Here, total SAC model runoff — during saturated surface conditions — rainfall is directly
consists of four separate components: surface infiltrationrouted to runoff without first transitioning through an inter-
excess runoff (SER), surface saturation runoff (SSR), shalmediate soil moisture state. Consequently, antecedent soil
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runoff events relative to RMSE and would seem to indicate
Fig. 8. The impact of basin runoff ratio (mean annual runoff/mean that the marginal benefit of our dual state/rainfall correction
annual rainfall) on Case 2, 3 and 5 runoff results. procedure (as expressed by the difference between Case 5
and Case 3 results) lies primarily in constraining relatively
high flow events dominated by direct surface runoff.

moisture impacts these processes only indirectly through the
specification of a pre-storm infiltration capacity or the ex- 6.3 Sensitivity of results to error assumptions
tent of saturated contributing areas. Improved specification
of these soil moisture states via application of the EnKS lead#\ large number of assumptions underlie synthetic data as-
to improved SER and SSR results relative to the EnKF basesimilation results presented in Figs. 5 to 9. Perhaps most
line (compare Cases 2 and 3 in Fig. 9). However, becauseritically, the magnitude of synthetic noise, introduced to
of their direct link to rainfall, SER and SSR estimates can berepresent observational and modeling uncertainty in the syn-
further enhanced through the application of our dual rain-thetic experiment, is specified in a somewhat arbitrary man-
fall/state correction procedure (compare Cases 3 and 5 imer. Here we examine the sensitivity of key results to these
Fig. 9). Therefore the relative advantage of Case 5 (noted irvalues.
Figs. 6 and 8) is based solely on the improved constraint of The introduction of error in rainfall observations is based
direct, surface runoff processes captured by the SAC modelon the multiplicative rescaling of daily rainfall values by a
The importance of direct runoff processes can also be ob¥andom variable sampled from a mean-one, log-normal dis-
served when varying the performance metric by which SACtribution. By varying the standard deviation of this distri-
runoff predictions are evaluated in Fig. 6. Qualitatively simi- bution, various levels of RMSE error in estimates of daily
lar results are obtained when regenerating Fig. 6 using mearginfall accumulation can be obtained. For instance, the de-
absolute error (MAE), as opposed to RMSE, as the perforfault choice of one for the standard deviation )ofin (17)
mance metric for SAC runoff predictions (not shown). How- produces an average daily rainfall RMSE of about 8.5 mm.
ever, the relative magnitude of correction observed in Casdrigure 10 recalculates Case 1, 2, 3 and 5 results for a range
5 results is reduced. For instance, defining the relative fracof specified standard deviations, and thus long-term RMSE,
tion of open loop error in terms of MAE (i.e. assimilation in daily rainfall accumulations. For computational reasons,
MAE/open loop MAE) as opposed to RMSE, increases thethese sensitivity results are derived for only the sub-set of 5
fraction of open loop error for Case 5 results from 0.44 to MOPEX basins shown in Fig. 2.
0.75 and decreases the marginal advantage of Case 5 resultsFor small rainfall errors, Fig. 10 demonstrates minor
versus Case 3 results from 0.31 to 0.11. This reduction is asrunoff corrections relative to the open loop. This suggests
sociated with the reduced weight that MAE applies to largethat, for well-instrumented basins in which highly accurate
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rainfall accumulation estimates can be obtained, none of our
proposed strategies for integrating surface soil moisture regig. 11. The sensitivity of Case 1, 2, 3 and 5 runoff resultéipthe
trievals are effective for correcting SAC model runoff pre- accuracy(b) the frequency an¢t) the vertical measurement depth
dictions relative to the open loop. However, as rainfall er- of remotely-sensed surface soil moisture retrievals.
ror increases, substantial improvement is noted for Case 1
(“Rainfall Correction Only”), Case 3 (“EnKS State Correc-
tion Only”) and Case 5 (“Dual State/Rainfall Correction”)  Conversely, one might expect a reverse trend when vary-
results. Of particular relevance is the relative difference be-ing the magnitude of perturbations applied directly to inter-
tween the best state correction-only case (clearly Case 3) angal model states and/or SAC PET inputs (see Sect. 4). Since
the dual state/rainfall correction case (Case 5). A substanthese perturbations are not tied to rainfall uncertainty, an in-
tial difference between the two cases does not appear untidrease in their magnitude will increase the fraction of total
a moderate 4 mm) level of rainfall accumulation RMSE modeling error that cannot be addressed through our rain-
is reached. Above this point, however, the relative advan-all correction scheme. Consequently, the additional advan-
tage of Case 5 is clear and a substantial relative advantagege of the dual correction strategy in Case 5 might be less-
is associated with the implementation of our rainfall correc-ened relative to the application of the state-correction only
tion scheme. Over continental areas, levels of daily RMSEapproach in Case 3. However, this tendency is not noted in
between 6 and 10mm are common in many satellite rain-sensitivity results in which the magnitude of these perturba-
fall accumulation products lacking rain gauge correction (seetions is increased. Such results (not shown) demonstrate little
e.g. Crow and Bolten, 2007). Consequently, it appears thayariation in the performance of Case 3 and Case 5 relative to
the largest applicability of our approach will be for regions the open loop. One potential reason for this lack of sensi-
in which operational hydrologic forecasting applications de-tivity may be known bias problems encountered when prop-
pend heavily on uncorrected satellite retrievals for real-timeagating mean-zero model state perturbations (as required by
rainfall information. The procedure will be of substantially the Monte Carlo nature of the EnKS and EnKF) through a
less value for heavily instrumented regions in which accuratenonlinear model (Ryu et al., 2009). These biases limit the
real-time rainfall accumulation information is available from effectiveness of EnKF or EnKS state correction techniques
ground-based instrumentation. when applied to models with higher levels of internal un-
certainty. This tendency may counter the relative advantage
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enjoyed by state-correction techniques when internal modelface runoff relative to indirect, sub-surface runoff. Such a
ing errors are large compared to external rainfall forcing er-shift is critical because the basis of improved Case 5 results
rors. Regardless of the specific cause, the relative advantadeelative to Case 3) is the presence of substantial amounts of
of Case 5 versus Case 3 seen in Figs. 6 and 8 is essentialljirect surface runoff (Fig. 9). In addition, the use of a thin-
maintained for a wide range of error variances assumed foner upper-zone decreases correlation between observations
perturbations to internal SAC model states and PET input. of the upper-zone and the non-observed lower-zone. This,
in turn, limits the ability of the EnKS to accurately constrain
lower-zone soil moisture variables. Consequently, our choice
7 Sensitivity of results to observation characteristics of an unrealistically thick upper-zone likely reduces the rel-
ative positive impact of introducing our rainfall correction
In addition to assumptions concerning modeling uncertain-scheme into hydrologic forecasting.
ties, a series of attributes are also assumed for remotely-
sensed surface soil moisture retrievals. Specifically, they are
assumed to be available on a daily frequency, measure ap- _
proximately the top 10 centimeters of the soil column and8 Operational prospects
have a RMSE accuracy of 0.03 [émm~2] volumetric. In
general, these assumptions are optimistic reflections of exAll results presented here are based on a synthetic twin ex-
pectations for next-generation satellite retrievals and the imperimental methodology in which remotely-sensing surface
pact of less ideal retrieval conditions must be considered. soil moisture retrievals are artificially generated and assimi-
Figure 11 displays Case 1, 2, 3 and 5 results for a seriedated into a hydrologic model. Such experiments are required
of synthetic data assimilation experiments in which the accu-as an initial proof-of-concept for new data assimilation sys-
racy, frequency and measurement depth of surface soil moigems. Nevertheless, it is important to consider the likelihood
ture retrievals have been systematically varied. With regard®f duplicating encouraging synthetic results when using ac-
to retrieval accuracy (Figure 11a) and frequency (Fig. 11b) tual remote sensing data.
there exists a systematic narrowing of the difference between For instance, a key result in this analysis is the demon-
Case 3 and Case 5 as retrieval error increases and/or fr&tration that adaptation of our dual rainfall and soil moisture
quency decreases. This suggests that benefits of our rainfadlorrection scheme (Case 5 in Fig. 3) can improve SAC model
correction approach are relative more sensitive to limitationsrunoff results above and beyond levels obtainable using the
in the accuracy and frequency of retrievals than EnKF/EnKS-best state correction technique (Case 3 in Fig. 3). Conse-
based state correction approaches. Given the need to corregtiently, an important issue is the degree to which assump-
daily rainfall accumulation amounts, the reduction in accu-tions and design decisions imbedded in our synthetic exper-
racy observed in Fig. 11b for retrieval frequencies of less thariment methodology affect the magnitude of this difference.
once per day is not surprising. However, it is worth noting On this point, it should be noted that — in our particular syn-
that from the mid-latitudes to the poles, combining ascend-thetic twin methodology — state correction-only cases (Cases
ing and descending overpass data from passive microwavg and 3) retain an artificial advantage in that synthetic sur-
sensors (e.g. AMSR-E) typically provides measurements foiface soil moisture retrievals are generated by the same model
at least 4 out of every 5 days. (the SAC model) that they are subsequently assimilated into.
Of all the assumptions underlying the generation of syn-In the terminology of synthetic data assimilation experiments
thetic retrievals, the least realistic is probably the assumptiorthis is referred to as an identical-twin experiment. In contrast,
of a 10-cm vertical measurement depth. This assumption waginfall correction results are based on the cross-assimilation
made in order to make the observational support of remotef synthetic surface soil moisture retrievals (generated by the
sensing retrievals consistent with calibrated values of SACSAC model) into an API model. This difference means that
model upper-zone layer depth obtained from the MOPEXour rainfall correction strategy is tested using a more chal-
experiment. However, a 10-cm measurement depth is largelenging fraternal twin synthetic experiment in which obser-
than typical estimates for the vertical penetration depth ofvations generated by one model are assimilated into a sec-
remotely-sensed surface soil moisture retrievals (usually beend model. However, this lack of consistency is actually
tween 1 and 5cm). Consequently, the impact of smaller meabeneficial to the analysis. By choosing an easier identical
surement depths must be considered. Figure 11c displays réwin set-up for state correction, relatively to the more diffi-
sults for the systematic reduction of the upper-zone depth ircult fraternal twin experiment applied for rainfall correction,
the SAC model to values smaller than 10cm. It reveals awe minimize the probability that increased runoff skill asso-
general tendency for the difference between Case 3 and Casgated with our rainfall correction scheme is actually an arti-
5 results to increase upon a decrease in the upper-zone depfdct of our particular experimental approach. In this way, our
of the SAC model. There are several reasons for this tensynthetic approach is designed to maximize the credibility of
dency. First, utilizing a thin upper-zone in the SAC model key manuscript results. Likewise, our decision to assume a
prompts the model to produce higher amounts of direct surrelatively thick (10 cm) upper-zone depth for the SAC model
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may reduce the relative benefit of our proposed approachreld Summary
ative to existing state-correction procedures (Fig. 11c).

Conversely, there are additional aspects of our particularTo date, efforts to improve hydrologic model stream flow
approach which have the opposite effect and may artificiallyPredictions have focused on the sequential assimilation of
enhance the relative benefit of our new approach. Figure 118motely-sensed surface soil moisture to constrain pre-storm
and b appear to demonstrate a tendency for limitations irantecedent soil moisture conditions (see e.g. Crow et al.,
retrieval accuracy and frequency to disproportionately af-2005). However, such approaches have not generally been
fect our dual correction case (relative to state-correction onlysuccessful at demonstrating clear value for remotely-sensed
cases). This tendency suggests that overly optimistic assoil moisture retrievals in hydrologic applications. Here
sumptions concerning the frequency and accuracy of remot&#e propose an alternative reanalysis system (in Case 5 in
sensing retrievals will aid rainfall correction more than state Fig. 4) that reformulates the runoff prediction problem into
correction. In addition, the tuning aof in (9) is based here a smoothing framework which Simultaneously corrects both
on the assumption that high-quality MOPEX rain gauges arehydrologic model internal soil moisture states and external
available for calibration purposes. If comparably accuraterainfall input feed into the model. Preliminary testing of the
rain gauge data is not available in an operational setting i@Pproach using a synthetic twin methodology suggests that,
is possible to calibrata using only satellite-based rainfall for a wide range of climatic conditions (Fig. 1), the approach
data. However, such alternative calibration is associated witt¢an enhance the value of remotely-sensed soil moisture re-
a slight reduction in the performance of the rainfall correc- trievals for runoff and stream flow prediction applications
tion procedure (Crow et al., 2009). (Figs. 6 and 8) — particularly for high flow events in which

Another key consideration is the spatial and temporaldirect, surface runoff processes play a dominant role in gen-
scales at which our rainfall correction procedure is effective.erating stream flow (Fig. 9). Since the advantages of our
At best, it can correct rainfall at time/space scales consisdual approach emerge only at relatively high levels of rain-
tent with the ground resolution (typically 10-40 km) and re- fall error (Fig. 10), its primary utility will likely be for large-
visit times (1 to 3 days) of satellite-based soil moisture re-scale flood forecasting in areas of the world lacking sufficient
trievals. Real data results using the AMSR-E sensor indicat@round-based resources for real-time rainfall monitoring.
difficulties in correcting rainfall accumulations at time scales ~ All preliminary work presented here is based on synthetic
finer than about 2 days (Crow et al., 2009). Obviously, re-twin data assimilation experiments and must be confirmed
stricting correction to such coarse scales will limit the effec- by follow-on work aiming at verifying the approach with
tiveness of our approach when applied to hydrologic predicreal data. Nevertheless, it is worth noting that our overall
tion applications — such as flash flood forecasting — requir-synthetic methodology is fundamentally conservative in that
ing rainfall accumulation information at much finer space- state correction is attempted using a less challenging identi-
time scales. Consequenﬂy, the highest potentia| for an OperC&' twin set-up relative to the more ChaIIenging fraternal twin
ational application will likely be the prediction and monitor- Structure of the rainfall correction approach (see Sect. 7).
ing of large-scale flooding events associated with prolonged=ombined with completed validation studies (Crow et al.,
periods (days to weeks) of excessive rainfall and flooding2009), this suggests that expressions of added skill associ-
over large geographic regions {00? km?). The relatively ~ ated with our rainfall correction approach (above and beyond
large spatial scales associated with such events make redhat achieved using only EnKF or EnKS state correction tech-
time runoff monitoring a critical component of forecasting Niques) are likely credible representations of results obtain-
downstream flood peak timing stage height. able from real data.

A final concern is the degree to which the adaptation of
a reanalysis smoothing (rather than a sequential filteringn
formulation will degrade the real-time functioning of a hy-
drologic forecasting/prediction system. The adoption of a
smoothing framework will necessarily increase the latencyggited by: N. Verhoest
of SAC model runoff predictions since it requires the acqui-
sition of a soil moisture observation following a given storm
period prior to the calculation of soil moisture and runoff for
the same period. However, such delays may be small since,
even in the absence of any soil moisture data assimilation,
an operational system stills needs to wait until the acquisi-
tion of rainfall accumulation observations (presumably from
some real-time rainfall observing system) to forecast stream
flow. Consequently, the added delay required to obtain and
process a subsequent soil moisture observation may not add
substantial prediction latency to the system.
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