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Abstract. A number of recent studies have focused on en-
hancing runoff prediction via the assimilation of remotely-
sensed surface soil moisture retrievals into a hydrologic
model. The majority of these approaches have viewed the
problem from purely a state or parameter estimation per-
spective in which remotely-sensed soil moisture estimates
are assimilated to improve the characterization of pre-storm
soil moisture conditions in a hydrologic model, and con-
sequently, its simulation of runoff response to subsequent
rainfall. However, recent work has demonstrated that soil
moisture retrievals can also be used to filter errors present
in satellite-based rainfall accumulation products. This result
implies that soil moisture retrievals have potential benefit for
characterizing both antecedent moisture conditions (required
to estimate sub-surface flow intensities and subsequent sur-
face runoff efficiencies) and storm-scale rainfall totals (re-
quired to estimate the total surface runoff volume). In re-
sponse, this work presents a new sequential data assimilation
system that exploits remotely-sensed surface soil moisture
retrievals to simultaneously improve estimates of both pre-
storm soil moisture conditions and storm-scale rainfall accu-
mulations. Preliminary testing of the system, via a synthetic
twin data assimilation experiment based on the Sacramento
hydrologic model and data collected from the Model Param-
eterization Experiment, suggests that the new approach is
more efficient at improving stream flow predictions than data
assimilation techniques focusing solely on the constraint of
antecedent soil moisture conditions.
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(wade.crow@ars.usda.gov)

1 Introduction

Enhancement of runoff and/or flood forecasts is frequently
cited as a key benefit of satellite-based surface soil mois-
ture retrievals (Entekhabi et al., 2003; Lakshmi 2004; NRC
2007). This potential is likely to receive greater attention in
the next decade as attempts are made to demonstrate opera-
tional applications for soil moisture data products emerging
from both current and next-generation satellite missions. Of
particular importance are upcoming launches of the first two
dedicated soil moisture missions: the ESA Soil Moisture and
Ocean Salinity (SMOS) mission in 2009 (Kerr et al., 2001)
and the NASA Soil Moisture Active/Passive (SMAP) mis-
sion in 2012 (NRC, 2007).

As represented in traditional hydrologic models, surface
runoff prediction is a dual estimation problem requiring in-
formation describing both the volume of rainfall occurring
within a storm and the ability of a watershed to infiltrate such
rainfall. This infiltration capacity is largely determined by
prevailing soil moisture conditions. Therefore, to date, most
strategies for integrating remotely-sensed soil moisture into
the rainfall/runoff prediction (or forecasting) problem have
focused solely on improving the estimation of antecedent
soil moisture conditions. A variety of methodologies have
been applied to this goal including the direct use of remotely-
sensed soil moisture fields to initialize a hydrologic model
(Goodrich et al., 1994; Jacobs et al., 2003; Weissling et al.,
2007), the calibration of hydrologic model soil moisture pre-
dictions using remotely-sensed soil moisture retrievals (Para-
jka et al., 2006) and the optimal merging of modeled and
remotely-sensed soil moisture using sequential data assimi-
lation techniques (Pauwels et al., 2002; Aubert et al., 2003;
Francois et al., 2003; Crow et al., 2005; Kantamneni et al.,
2005).
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To date, results from such experiments have been mixed
and there is currently little compelling evidence that
remotely-sensed soil moisture retrievals can aid runoff pre-
diction in ungauged basins (Parajka et al., 2006). Somewhat
typical is Crow et al. (2005) who found an improved corre-
lation between antecedent precipitation index (API) values
and subsequent storm-scale runoff ratios when soil mois-
ture retrievals from a passive microwave radiometer were
sequentially assimilated into the API model. However, the
marginal advantage of assimilating soil moisture disappeared
when the API model was modified slightly to incorporate
air temperature observations into estimates of soil water loss
due to evapotranspiration. Other studies were able to iden-
tify improvement (upon the integration of remotely-sensed
soil moisture) in only a subset of the total basins examined
(Pauwels et al., 2002; Parajka et al., 2006).

The above-mentioned approaches are all based on the as-
sumption that an improved representation of antecedent soil
moisture conditions in hydrologic models will ensure im-
proved runoff prediction. However, a number of important
cases exist where antecedent soil moisture conditions are of
relatively minor importance for determining eventual basin
response to rainfall. For example, theoretical arguments sug-
gest that the role of antecedent soil moisture is diminished
for very intense runoff events that are of primary impor-
tance for flood forecasting (Wood et al., 1990). In addition,
for basins lacking adequate rain-gauge coverage, constrain-
ing antecedent soil moisture represents only a fraction of the
overall stream flow prediction problem – the larger fraction
of uncertainty being due to error in observed rainfall (Oki et
al., 1999). Finally, the relationship between antecedent soil
moisture and runoff is strongly nonlinear and characterized
by sharp thresholds which are ill-suited for the application of
data assimilation techniques designed for linear models.

These difficulties suggest that some merit exists in ef-
forts to reformulate the basis for integrating remote sens-
ing retrievals into hydrologic models. For example, Crow
et al. (2009) demonstrates that remotely-sensed surface soil
moisture retrievals can also be used to directly improve the
accuracy of satellite-based rainfall accumulation estimates.
At least in data-poor areas of the world heavily reliant on
satellite-based rainfall retrievals, this result broadens the ba-
sis of attempts to enhance runoff prediction via surface soil
moisture retrievals. Specifically, it presents an opportunity to
simultaneously reduce the impact of antecedent soil moisture
and rainfall accumulation uncertainty on hydrologic model
predictions.

This paper attempts to realize this potential by refram-
ing the remotely-sensed soil moisture/hydrologic forecasting
problem in such a way that potential benefits of remotely-
sensed soil moisture on both state (i.e. antecedent soil mois-
ture) and flux (i.e. observed rainfall) estimation are cap-
tured. Given the dual use of remotely-sensed soil moisture
retrievals in this framework, special emphasis will be placed
on designing a system that avoids the potentially deleterious

effect of correlated errors between hydrologic model fore-
casts and assimilated observations.

2 Modeling and data

All hydrologic modeling here is based on application of the
Sacramento (SAC) hydrologic model. In the United States,
the SAC model has been used extensively for operational
stream flow forecasting within medium-sized (∼1000 km2)
river basins (Burnash et al., 1973; Geogakakos, 2005). Soil
moisture accounting in the model is based on the estima-
tion of six interdependent soil water states: upper-zone
free water content (UZFWC), upper-zone tension water con-
tent (UZTWC), lower-zone tension water content (LZTWC),
lower-zone free primary water content (LZFPC), lower-zone
free supplemental water content (LZFSC) and basin satu-
rated fraction (ADIMP). The movement of water between
these states is based on the SAC model parameterization de-
scribed in Sorooshian et al. (1993).

Combined with measurements of rainfall accumulation,
these six states are used to predict four separate runoff pro-
cesses: surface infiltration-excess runoff (SER) occurring
when rainfall accumulation within a given time step is large
enough to fill available upper-zone tension and free water
storage capacity, surface saturation runoff (SSR) occurring
when rainfall falls on saturated portions of the basin (as de-
fined by ADIMP), shallow sub-surface interflow (SIF) ex-
pressed as a direct function of UZFWC, and deep base flow
(BF) expressed as a direct function of LZFSC and LZFPC.
Here, we will make a distinction between “direct” surface
runoff components (SER and SSR) that are driven primar-
ily by incident rainfall and exhibit only a secondary depen-
dence on antecedent soil moisture conditions and “indirect”
sub-surface runoff generating processes (SIF and BF) that are
wholly a function of soil moisture and do not require the si-
multaneous presence of non-zero rainfall to generate runoff.

Potential evapotranspiration (PET), daily rainfall (P ), and
stream flow time series data are acquired for specific basins
from data sets prepared as part of the Model Parameteriza-
tion Experiment (MOPEX) (Schaake et al., 2001). Inclu-
sion into the United States portion of the MOPEX exper-
iment was predicated on individual basins meeting thresh-
old requirements related to a lack of anthropogenic stream
flow impoundment and/or diversion and possessing adequate
spatial rain gauge coverage. Here, we additionally subset
the original United States MOPEX datasets to include only
basins located below 36◦ N latitude (to minimize snow ef-
fects) with an area greater than 100 km2 (to eliminate basins
smaller than the resolution of soil moisture products expected
from next-generation satellite sensors). Of the 438 United
States MOPEX basins, 97 meet these two additional criteria.
Figure 1 plots long-term runoff ratios (mean annual stream
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flow divided by mean annual rainfall) and drainage area for
each of these 97 basins. Note the wide range of basic climatic
conditions and basins scales considered in the analysis.

Based on MOPEXP and PET forcing data, the SAC
model was run on a daily time step over each of the basins
in Fig. 1 during the 55-year period between 1 January 1949
and 31 December 2003. Basin specific model parameters are
obtained from SAC model stream flow calibration performed
as part of the MOPEX experiment. Based on these calibrated
parameters, Figure 2 provides representative examples of ob-
served and predicted stream flow for five of the US MOPEX
basins considered here. Stream flow routing is based on con-
voluting runoff using a simple exponentially decaying unit
hydrograph with a folding length varied between 1 and 5
days (depending on basin size). The reasonable performance
of the SAC model over a range of climate and basin size con-
ditions suggests that it forms a reliable basis for the synthetic
data assimilation experiments to follow.

3 Data assimilation

Here, two separate data assimilation approaches are consid-
ered for the integration of remotely-sensed soil moisture in-
formation into the SAC model. First, the use of a simpli-
fied Kalman filtering methodology to correct rainfall input
fed into the SAC model. Second, the application of either
an Ensemble Kalman filter (EnKF) or smoother (EnKS) to
correct SAC soil moisture states based on the availability of
remotely-sensed surface soil moisture retrievals. The data
assimilation approach utilized for both correction strategies
are described in the following two sub-sections (Sect. 3.1 and
3.2). As noted in Sect. 1, the central theme of this paper is
unifying these two methodologies and developing a data as-
similation system capable of simultaneously correcting both
SAC model soil moisture states and rainfall inputs.

3.1 Rainfall correction using the Kalman filter

Using remotely-sensed soil moisture retrievals from the Ad-
vanced Microwave Scanning Radiometer (AMSR-E) aboard
the NASA Aqua satellite, Crow et al. (2009) demonstrated
the feasibility of correcting uncertain short-term rainfall
accumulation estimates using remotely-sensed surface soil
moisture retrievals. Their approach is based the assimilation
of surface soil moisture retrievals into a simple Antecedent
Precipitation Index (API) model

APIj = γj APIj−1 + P ′

j (1)

wherej is a daily time index,P ′ an (uncertain) estimate of
daily rainfall accumulation [mm], andγ varies according to
day-of-year (d) as

γj = α + β cos(2π dj/365). (2)

Fig. 1. Drainage size and long-term runoff ratio (mean annual
runoff/mean annual rainfall) at the outlet of the 97 MOPEX basins
used in the study.

Here, the dimensionless parametersα andβ are held con-
stant at values of 0.85 and 0.05. Remotely-sensed surface
soil moisture estimatesθ are used to update Eq. (1) via a
Kalman filter

API+j = API−j + Kj (θj − API−j ), (3)

and “-” and “+” denote API values before and after Kalman
filter updating, respectively. Following Reichle and Koster
(2005), dailyθ estimates are obtained by rescaling raw volu-
metric soil moisture retrievalsθ◦ [m3m−3] following

θj = (θo
j -µθ )(σAPI/σ θ )+µAPI (4)

to match the API model in expressing soil moisture in wa-
ter depth units [mm] and ensure that rescaled retrievals pos-
sess a long-term mean (µ) and standard deviation (σ ) match-
ing those derived from a multi-year integration of API for
the same pixel. Soil moisture retrieval mean (µθ ) and stan-
dard deviation (σ θ ) estimates are obtained by sampling a
long-term time series ofθ◦. Likewise, the API mean (µAPI)
and standard deviation (σAPI) statistics in Eq. (4) are sam-
pled from an API time series generated using Eq. (1) and no
Kalman filter updating. The Kalman gainK in Eq. (3) is then
given by

Kj = T −

j /(T −

j + R) (5)

whereT − is the scalar error variance in API forecasts andR

is the error variance of a rescaledθ retrieval. At measurement
times,T − is updated via

T +

j = (1 − Kj )T
−

j . (6)
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Figure 2.  Comparison of SAC model stream flow predictions (in red) with observed 
hydrographs (in black) for five representative MOPEX basins.  United States Geologic 
Survey (USGS) basin identification number, latitude/longitude coordinates, long-term runoff 
ratio (RR) and drained area at basin outlet are listed for each basin. 
 
 
 
 

Fig. 2. Comparison of SAC model stream flow predictions (in red) with observed hydrographs (in black) for five representative MOPEX
basins. United States Geologic Survey (USGS) basin identification number, latitude/longitude coordinates, long-term runoff ratio (RR) and
drained area at basin outlet are listed for each basin.

Between soil moisture retrievals, and the adjustment of
API andT via (3) and (6), API is forecasted in time using
observedP ′ and (1). In parallel,T + is updated in time as

T −

j = γ 2
j T +

j−1 + Q (7)

whereQ relates the forecast uncertainty added to an API es-
timate during propagation between timesj -1 andj . Here
temporally constant values ofR andQ are calibrated on a
pixel-by-pixel basis using the innovation tuning procedure
described in Crow and Bolten (2007).

To correct rainfall, Crow et al. (2009) utilize analysis in-
crementsδ calculated during the updating of API withθ via
(3)

δj = API+j − API−j = Kj (θj − API−j ) (8)

Values ofδ reflect the depth of water [mm] added to an
API forecast in response to information contained in surface
soil moisture retrievals. As such, it contains information con-
cerning errors in near-pastP ′ estimates used to forecast API.
To this end, Crow et al. (2009) propose a simple additive
correction which utilizesδ to correct errors in uncertainP ′

estimates

P ∗

j = P ′

j + λ δj . (9)
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The rescaling parameterλ is required to capture the im-
pact of processes which may lead to differences betweenδ

and rainfall errors. Foremost of which is the near certainty
that not all errors in API predictions are directly attributable
to rainfall uncertainty. Some portion ofδ will almost cer-
tainly be associated with our simplistic representation of soil
water loss (i.e. the combined effect of soil drainage and evap-
otranspiration) in (1). This implies aλ value less than one is
required to filter the impact of such error before it can be
misattributed to rainfall. Likewise some portion of the orig-
inal rainfall error is damped via either runoff or infiltration
beyond the shallow surface zone prior to the acquisition of a
θ retrieval used to calculateδ. Such processes will require an
increase inλ to compensate for the volume of rainfall error
that is not directly detectable by the remote sensing observa-
tions.

As a practical solution, Crow et al. (2009) propose estimat-
ing temporally constant values ofλ via the minimization of
the root-mean-square difference between corrected rainfall
P ∗ and some additional estimate of rainfall accumulation.
Here, such tuning is performed relative to the benchmarkP

obtained from dense rain gauges within each MOPEX basin.
Such tuning against high-quality rain gauge data will not
be feasible in many data-poor settings; however, Crow et
al. (2009) demonstrates thatλ can also be accurately spec-
ified using an additional, independently-acquired, satellite-
based rainfall product.

An additional concern is the possibility that the applica-
tion of (9) will lead to non-physical negative values ofP ∗.
Simply resetting such values to zero creates a long-term bias
in P∗ values relative toP ′. As an alternative we define a pos-
itive thresholdτ such thatPj∗=0 for P ∗

j <τ andPj∗=Pj *-τ
for P ∗

j >=τ . The value ofτ is then iteratively varied until the
application of these rules leads to a resultingP ∗ time series
which is unbiased with respect toP ′.

3.2 State correction using the Ensemble Kalman filter or
smoother

The Ensemble Kalman filter (EnKF) is based on the genera-
tion and propagation of a Monte Carlo ensemble of model
replicates to provide the error covariance information re-
quired by the Kalman filter to update state estimates based
on the availability of observations. Here, this ensemble is
generated using a combination of noise applied to both SAC
model forcing (i.e. PET andP ) and SAC model soil moisture
states (see Sect. 4 for details). At timej , the vector of SAC
model states associated with theith Monte Carlo replicate is

Si,j = [UZFWCi,j , UZTWCi,j , LZTWCi,j , (10)

LZPFWi,j , LZSFWi,j , ADIMPi,j ]
T

This vector can be transformed into an estimate of vol-
umetric surface soil moisture (assumed to correspond to a
remote sensing observation) via the application of the linear
observation operator

H = [ρ/(UZFWCmax + UZTWCmax), ρ/ (11)

(UZFWCmax + UZTWCmax), 0, 0, 0, 0]

whereρ is soil porosity, UZFWCmax [m] the maximum ca-
pacity of free water in the surface zone and UZTWCmax [m]
the maximum capacity of tension water in the surface zone.
Given the concurrent availability of a remotely-sensed sur-
face soil moisture observationθ◦ with error varianceR◦,
replicates ofS are updated following

S+

i,j = S−

i,j + K j (θ
◦

j + νi,j−HSi,j ) (12)

where the perturbation termν is a mean-zero Gaussian ran-
dom variable with scalar varianceR◦ andK is

K j = HCj/(HCj HT
+ R◦). (13)

Here, the forecast error covariance matrixC is sampled
from a 35-member Monte Carlo ensemble of background
SAC modelS predictions. Final EnKF state predictions are
obtained by averaging replicates across the entire ensemble.

The EnKF is designed to update model-forecasted state
predictions at the same time an observation is acquired. No
attempt is made to reanalyze previous model predictions in
response to a particular observation. In contrast, the En-
semble Kalman Smoother (EnKS) can be used to update
all model states predictions within a fixed lag of past time
(Dunne and Entekhabi, 2005). While the SAC model is run
on a daily time step, variations in the three free water states
(i.e. UZFWC, LZPFW, and LZSFW) and ADIMP are ac-
tually calculated on a three-hourly basis using an sub-daily
model time loop. For our application of the EnKS, an aug-
mentedSj vector is created (S∗

j−1→j ) which contains not
only the six SAC model soil moisture state variables at timej

but also all SAC model state predictions between timesj−1
andj (inclusive of end points) and including 3-hourly wa-
ter balance calculations of UZFWC, LZPFW, LZSFW and
ADIMP. The matrixC∗ is the new covariance matrix for this
40-element augmented state vectorS∗. As in the EnKF, com-
ponents of this augmented covariance matrix are sampled di-
rectly from the SAC model ensemble and updated with an
expression analogous to (10)

S∗,+
i,j−1→j = S∗,−

i,j−1→j + K∗

j (θ
◦

j + νi,j − H∗S∗,−
i,j−1→j ) (14)

where

K∗

j = H∗C∗

j/(H
∗C∗

j H∗T
+ R◦) (15)

andH∗ is a 40-element vector of the form

H∗
= [ρ/(UZFWCmax + UZTWCmax), ρ/ (16)

(UZFWCmax + UZTWCmax), 0, ..., 0].

As in the EnKF, final EnKS state predictions are obtained by
averaging across the updated soil moisture ensemble.
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Fig. 3. Schematics for the assimilation of remotely-sensed soil moisture retrievalsθ◦ into the SAC model (to improve its internal soil moisture
statesS) using both an Ensemble Kalman filtering (EnKF; top) and fixed-lag Ensemble Kalman Smoothing (EnKS; bottom) approach.

Figure 3 provides a brief illustration of differences be-
tween the EnKF and a fixed-lag EnKS approach. For a real-
time filtering problem (Fig. 3a), a soil moisture observation
at timej is used to update concurrent SAC model state repli-
cates at timej using an EnKF. These updated forecasts, and
an estimation of total rainfall accumulation occurring be-
tween timej andj+1, are then used to initiate a SAC model
ensemble of states predictions between timesj andj+1. Al-
ternatively, the entire analysis could be delayed until a soil
moisture observation is obtained at timej+1. In this formu-
lation, the one-day, fixed-lag EnKS is employed to update
all SAC model state replicates betweenj andj+1 using the
soil moisture observation at timej+1 (Fig. 3b). Note that,
unlike the EnKF, the EnKS allows for SAC model states be-
tweenj and j+1 to be corrected based on the observation
obtained at timej+1. The key advantage of the EnKS is
that state estimates at timej (as well as intermediate free
water states calculated betweenj andj+1) are constrained
via information gleaned from the subsequent observation at
time j+1. In contrast, the EnKF is only forward propagat-
ing in the sense that EnKF estimates at any particular time
are not impacted by subsequent observations. Consequently,
flux and state predictions obtained from the EnKS should be
relatively more accurate than comparable predictions by the
EnKF (Dunne and Entekhabi, 2005).

4 Synthetic experiment methodology

Our overall approach is based on the application of the Sacra-
mento (SAC) hydrologic model to 97 MOPEX study basins
along the southern tier of the US. A series of synthetic data
assimilation experiments are individually conducted for each
basin. All such experiments are based on the designation of
output from a single SAC model realization as “truth”. The
approximate realism of these truth simulations is supported
by comparisons between their stream flow predictions and
long-term hydrographs obtained from stream flow observa-
tions taken at the outlet of MOPEX basins (Fig. 2). Runoff
and soil moisture predictions from the truth SAC runs are
withheld to serve as a benchmark for future runs and surface
soil moisture predictions (perturbed by a suitable amount of
additive Gaussian noise) are assumed to represent remotely-
sensed surface soil moisture retrievals. Using either an EnKF
or EnKS approach (see Fig. 3), these retrievals are subse-
quently assimilated back into a perturbed representation of
the SAC model to examine the degree to which their integra-
tion can correct the perturbed SAC model simulation back to
benchmark results obtained in the “truth” SAC model sim-
ulation. Results obtained directly from the perturbed rep-
resentation of the SAC model (prior to the implementation
of any data assimilation technique) are referred to as “open
loop” results which define the baseline by which the relative
improvement in subsequent data assimilation results is quan-
tified.
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Figure 4.  Schematics for five cases of incorporating remotely-sensed surface soil moisture 
retrievals (θ or θº) into SAC model runoff (RunoffSAC) and soil moisture (SSAC) predictions.  
The dashed box in Case 1, 4 and 5 represents the observed rainfall (P') rainfall correction 
procedure outlined in Section 3a.  The solid box in Cases 2, 3, 4 and 5 represents either the 
EnKF or EnKS-based assimilation of surface soil moisture retrievals into the SAC model.   
 
 

Fig. 4. Schematics for five cases of incorporating remotely-sensed surface soil moisture retrievals (θ or θ◦) into SAC model runoff
(RunoffSAC) and soil moisture (SSAC) predictions. The dashed box in Case 1, 4 and 5 represents the observed rainfall (P ′) rainfall cor-
rection procedure outlined in Sect. 3a. The solid box in Cases 2, 3, 4 and 5 represents either the EnKF or EnKS-based assimilation of surface
soil moisture retrievals into the SAC model.

Perturbations to the SAC model are based on additive
noise applied directly to SAC water balance states inS and
the daily PET input time series. Daily perturbations applied
to individual states are assumed to be serially uncorrelated
and mutually independent random variables sampled from a
mean zero, Gaussian distribution with a standard deviation
equal to 5% of the total capacity of each state. Additive PET
perturbations are similarity uncorrelated and sampled from a
mean-zero, Gaussian distribution with a standard deviation

of 1 mm. Negative PET values resulting from such perturba-
tions are simply reset to zero. In addition to internal model
and PET errors, uncertainty in rainfall is captured through the
multiplicative scaling of observed rainfallP with a random
factorχ sampled from a mean-one, log-normal distribution
with a dimensionless standard deviation of one

P ′
= χ P , χ∼LogN (1, 1). (17)
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For our particular representation of a synthetic twin ex-
periment, all model perturbations (presented above) are ac-
tually applied twice. During their first application, they are
applied to degrade the SAC model truth simulation and cre-
ate a perturbed open-loop SAC model simulation. Subse-
quently, they are re-applied to the open model simulation
(on top of the original set of perturbations) to create an en-
semble of SAC model runs (calculated around the perturbed
SAC model simulation) during the application of an EnKF
or EnKS to correct the perturbed SAC model simulation
back to the truth simulation. In addition, the same set of
synthetically-generated soil moisture retrievals assimilated
into the SAC model are also assimilated into an API model
(see Sect. 3.1) in an attempt to correct for precipitation error
introduced into SAC precipitation forcing via (17). In this
way, the synthetic experiment accounts for the possibility of
correcting both SAC model state and rainfall forcing error.

Remotely-sensed surface soil moisture retrievals are as-
sumed to be available at a daily frequency with a root-mean-
squared (RMS) accuracy of 0.03 m3 m−3 (defined as the frac-
tion of total soil volume occupied by water).R◦ is the square
of this value andR=R◦ (σAPI/σ θ )2. During the application
of the EnKS and EnKF within the synthetic experiment, all
model and observational error covariances are assumed to be
known. However, the sensitivity of key experimental results
to the magnitude of these covariance values is examined in
Sect. 6.3.

5 State and/or Rainfall Correction strategies

Our primary analysis will focus on comparing soil moisture
and runoff results derived from the five separate data assim-
ilation strategies outlined in Fig. 4. The first “Rainfall Cor-
rection” strategy (Case 1) is based on the application of the
Crow et al. (2009) procedure reviewed in Sect. 3.1 to correct
rainfall forcing data prior to its use as a SAC model forcing
variable. Note that this approach does not involve the actual
assimilation of soil moisture retrievals into the SAC model.
Instead, the “Rainfall Correction” approach attempts to im-
prove runoff prediction solely through the correction of SAC
rainfall forcing. Conversely, the “State Correction Only –
EnKF/EnKS” approach (comprising Cases 2 and 3 in Fig. 4)
employs the assimilation of surface soil moisture retrievals
into the SAC model using an EnKF (or EnKS) without at-
tempting to correct model rainfall input. Starting with Case
2, we reference the SAC model twice in the schematic for
each case. The first reference occurs as part of an ensemble
created to run the EnKF or EnKS and predict SAC model soil
moisture states inS (or S∗). The second occurrence is dur-
ing a post-processing step in which the ensemble-mean of
these state predictions are directly inserted into a single real-
ization of the SAC model for the sole purpose of predicting
runoff (RunoffSAC in Fig. 4). Note that the ensemble-mean
soil moisture prediction made by this post-processing run is

not used to initialize any subsequent SAC model forecast. At
least for the Case 2 implementation of the EnKF, it is also
possible to neglect this post-processing stage and simply av-
erage SAC/EnKF runoff predictions across the ensemble to
obtain a single EnKF runoff prediction. However, we found
that the inclusion of the post-processing stage had a generally
beneficial impact on EnKF runoff predictions relative to this
alternative approach. Consequently, we retained the use of
a post-processing step for all EnKF-based data assimilation
results.

The “State Correction Only – EnKS” approach (Case 3) is
identical to Case 2 except that estimation of the augmented
SAC model state vectorS* is based on implementation of a
one-day, fixed-lag EnKS – rather than an EnKF – to update
SAC model soil moisture states (Fig. 3). Both the EnKF and
EnKS are applied to produce Cases 2 and 3, respectively.
However, to reduce the proliferation of cases, only the EnKS
is employed for Cases 4 and 5 described below.

None of the first three cases in Fig. 4 take the next step of
simultaneously attempting both rainfall and state correction
based on remotely-sensed surface soil moisture retrievals.
This possibility is first examined in Case 4 where corrected
rainfall is used to both force an EnKS state correction pro-
cedure and during the post-processing calculation of runoff.
This type of approach is potentially problematic in that sur-
face soil moisture retrievals are used both to modify forcing
data for SAC model forecasts and as observations which are
subsequently assimilated into the SAC model via the EnKS.
Such dual use of soil moisture retrievals can conceivably lead
to correlation between forecasting and observations errors
within the EnKF, and, consequently, sub-optimal filter per-
formance. A final potential strategy (Case 5) tries to mit-
igate this possibility by utilizing corrected rainfall only in
the post-processing calculation of runoff (Fig. 4) and using
uncorrected rainfall (P ′) for generation of the SAC model
forecast ensemble in the EnKS. Since soil moisture predic-
tions made during the post-processing stage are not fed back
into the EnKS, this strategy avoids the potential for cross-
correlated errors within the EnKS while still allowing for the
dual correction of errors present in both antecedent soil mois-
ture and rainfall.

A possible simplified structure for Case 4 and 5 schematics
in Fig. 4 is to eliminate the API model and instead use SAC
analysis increments (produced during the EnKS-based state
correction procedure) to correct rainfall. However, it is cur-
rently unclear whether the API-based approach in Sect. 3.1
can be successfully applied to the SAC model. In partic-
ular, adaption of the rainfall correction scheme to a multi-
state hydrologic model is complicated by large variations in
water storage capacity existing between various soil water
model states. These variations imply that analysis incre-
ments applied to each soil water state will respond to an-
tecedent rainfall errors occurring over different time scales.
Unless an arbitrary decision is made to exclude analysis in-
crements applied to certain states, such variation requires a
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more complex form of (9) (currently limited to operating at a
single time scale) and the specification of additionalλ scaling
factors. In addition, nonlinear, multi-state land surface mod-
els like the SAC model can badly confound the innovation-
based tuning procedure required to implement the procedure
(Crow and Van Loon, 2006). While these problems are po-
tentially resolvable, real-data verification of a rainfall correc-
tion procedure has been limited to the API rainfall correction
approach presented in Sect. 3.1, and current prospects for
basing the approach on more complex models are unclear.
Consequently, in an attempt to maximize the realism of the
synthetic experiments presented here, our analysis will fol-
low Crow et al. (2009) and retain the use of an API model
for the rainfall correction procedure. Further discussion of
this point is presented in Sects. 7 and 8.

6 Results

Figure 4 lays out a number of possible approaches for inte-
grating remotely-sensed surface soil moisture retrievals into
runoff estimates produced by a hydrologic model. To date,
most data assimilation studies focusing on this goal have fol-
lowed Case 2 by formulating the problem purely in a state es-
timation framework and applying a sequential filtering algo-
rithm to improve the estimation of pre-storm antecedent soil
moisture conditions in the hope that this will aid in the sub-
sequent estimation of storm-scale runoff. As stated above,
our primary focus is on evaluating the added benefit of re-
formulating the runoff estimation problem as a smoothing
reanalysis problem (e.g. Case 3) and attempting the simulta-
neous correction of both model soil moisture states and the
rainfall forcing used to drive the model (e.g. Cases 4 and
5). Figure 5 shows sample time-series results for a single
MOPEX basin. Given the availability of remotely-sensed
surface soil moisture retrievals, one can correct a time se-
ries of daily rainfall accumulations (Fig. 5a) and/or imple-
ment an EnKF (or EnKS) to correct SAC model soil moisture
predictions (Fig. 5b). Both types of corrections should aid
in the subsequent calculations of runoff by the SAC model.
Cases 1, 2 and 3 explore the application of one type of correc-
tion (antecedent soil moisture or rainfall) in isolation. How-
ever, Cases 4 and 5 explore the possibility of obtaining better
SAC model runoff estimates by simultaneously implement-
ing both corrections (Fig. 5c).

6.1 MOPEX basin results

Based on the synthetic twin experimental methodology intro-
duced in Sect. 4, Fig. 6 compares runoff and upper-zone soil
moisture root-mean-square error (RMSE) results calculated
for all 97 MOPEX basins and the five separate data assim-
ilation cases described in Fig. 4. Unless otherwise noted,
all subsequent results are presented as normalized RMSE in
which open loop SAC model RMSE results are used to nor-

malize RMSE results obtained after the implementation of
various data assimilation techniques. Since normalized val-
ues reflect the fraction of modeling error that is addressed by
a particular technique, an improvement in performance rela-
tive to the uncorrected open loop case is captured by a nor-
malized RMSE value less than one (see dotted line in Fig. 6).
All RMSE results are based on daily SAC model predictions
made during the 55-year period between 1 January 1949 and
31 December 2003. Symbols in Fig. 6 represent the mean
for all basins and error bars reflect the one-standard devia-
tion spread of normalized RMSE across all 97 basins.

In Fig. 6, results for the case of rainfall correction only
(Case 1) and of EnKF-based state correction (Case 2) are
diametrically opposed in that Case 1 reduces daily rainfall
RMSE relative to the open loop case, but provides little, if
any, net improvement to upper-zone soil moisture predic-
tions – defined as the product ofH in (11) andS in (12).
In contrast, application of the EnKF to correct antecedent
soil moisture predictions yields a significant improvement to
upper-zone soil moisture estimates but leads to no net im-
provement in daily runoff. Modifying the state-estimation
technique to be based on a fixed-lag EnKS reanalysis (Case
3) clearly enhances the accuracy of both runoff predictions
and soil moisture estimates relative to the analogous EnKF-
based case (Case 2).

Despite this improvement, Case 3 results are still based
solely on the application of a state-correction strategy. Cases
4 and 5 results in Figure 6 demonstrate how optimal aspects
of Case 1, 2 and 3 runoff and soil moisture results can be
combined, and even enhanced, by reformulating the estima-
tion problem using either of the dual state/rainfall strategies
(Cases 4 and 5) outlined in Fig. 4. In particular, Case 5 is
able to match the high soil moisture accuracy of Case 3 while
providing runoff results which are even slightly better than
already good Case 1 results.

As noted in Sect. 1, a danger in our strategy for simul-
taneously correcting both rainfall and internal soil moisture
states is that information contained in surface soil moisture
retrievals will be overexploited – leading to the possibility of
degenerate runoff predictions. Case 4 results in Fig. 6 illus-
trate such an example. Here, surface soil moisture retrievals
are used both to correct rainfall amounts used to forecast the
SAC model ensemble and as the observation assimilated into
the ensemble via an EnKS. This leads to cross-correlation
between SAC model forecasting error and observation error
in remotely-sensed soil moisture retrievals assimilated into
the SAC model by the EnKS. Such correlation violates a
key Kalman filtering assumption and degrades Case 4 soil
moisture and runoff results relative to their Case 5 equiva-
lents (Fig. 6). By withholding the use of corrected rainfall
until the post-processing calculation of runoff (and discard-
ing soil moisture predictions made by the SAC model dur-
ing this calculation), Case 5 avoids the negative impact of
cross-correlated errors and produces superior runoff and soil
moisture predictions.
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Figure 5.  For USGS basin #02228000, example time series of truth, open case and corrected 
(Case 5) a) rainfall, b) SAC upper-zone soil moisture and c) SAC runoff results. 

Fig. 5. For USGS basin #02228000, example time series of truth, open case and corrected (Case 5)(a) rainfall, (b) SAC upper-zone soil
moisture and(c) SAC runoff results.

While mildly degraded results are noted in Fig. 6, the full
effect of this degeneracy appears only in SAC lower-zone soil
moisture results. Figure 7 is identical to Figure 6 except the
y-axis is re-plotted as normalized lower-zone soil moisture
RMSE (instead of daily runoff). Lower-zone soil moisture is
defined as

θzone2= ρ(LZTWC + LZPFC+ LZSFC)/ (18)

(LZTWCmax + LZPFCmax + LZSFCmax)

where LZTWCmax, LZPFCmax and LZSFCmax are maxi-
mum capacities of SAC model states LZTWC, LZPFC and
LZSFC, respectively. Because the states underlying lower-
zone soil moisture are not directly observed viaH∗ in (16),
and the SAC model predicts relatively little vertical cou-

pling between its upper and lower soil zones, all cases in
Fig. 4 provide only a modest correction relative to the open
loop. However, Case 4 results cannot even meet this minimal
threshold and instead clearly degrade lower-zone soil mois-
ture predictions relative to the open loop. The source of this
degradation is the cross-correlation of modeling and obser-
vational error induced by using corrected rainfall accumula-
tions during the EnKS forecast step. The long-term effects
of this correlation are particularly pernicious for lower-zone
soil moisture estimates since these values cannot be directly
constrained via surface observations and can therefore accu-
mulate unchecked over long time periods. As a result of this
problem, Case 4 results will be dropped from the remainder
of the analysis.
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Figure 6.   Upper-zone soil moisture and runoff results for the five cases outlined in Figure 4.  
Plotted symbols represent the mean of RMSE results (normalized by open loop RMSE 
results) for all basins.  Error bars represent the one-standard deviation spread of normalized 
RMSE results across all 97 MOPEX basins.   
 

Fig. 6. Upper-zone soil moisture and runoff results for the five cases
outlined in Fig. 4. Plotted symbols represent the mean of RMSE
results (normalized by open loop RMSE results) for all basins. Er-
ror bars represent the one-standard deviation spread of normalized
RMSE results across all 97 MOPEX basins.

6.2 Sensitivity of results to climate and runoff processes

As demonstrated in Fig. 1, MOPEX basins selected for this
study capture a wide range of long-term runoff ratio values.
Such variability is lost upon the averaging performed to con-
struct Figs. 6 and 7. In order to examine any possible trends
with regards to climate, Figure 8 re-plots normalized daily
runoff RMSE results as a function of long-term basin runoff
ratio (sorted from the driest to the wettest of the 97 MOPEX
basins). Despite a large range of overall basin wetness, lit-
tle variation is observed when moving from drier to wetter
basins. For all basins, regardless of long-term climate char-
acteristics, Case 2 provides little or no added skill to runoff
predictions; however roughly equal added skill is obtained
upon reformulating the problem using a smoothing approach
(Case 3) and, subsequently, adding a rainfall correction com-
ponent (Case 5).

Despite a lack of strong variation of results with climate,
insight into Figs. 6 and 8 can be obtained by decomposing
total runoff results into various individual runoff processes
captured by the SAC model. Here, total SAC model runoff
consists of four separate components: surface infiltration-
excess runoff (SER), surface saturation runoff (SSR), shal-
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Fig. 7. Upper- and lower-zone soil moisture results for the five cases
outlined in Fig. 3. Plotted symbols represent the mean of RMSE
results (normalized by open loop RMSE results) for all basins. Error
bars represent the one-standard deviation spread of results across all
97 MOPEX basins. Case 3 results (not shown) correspond exactly
to shown Case 5 results.

low sub-surface interflow (SIF) and deep sub-surface base
flow (BF). A useful classification is to divide these four sep-
arate processes into “direct” and “indirect” runoff generation
processes. Indirect runoff components SIF and BF are runoff
processes in which the rainwater path to channel flow pro-
ceeds through one (or more) of the SAC model soil moisture
states. The rate at which these processes operate is therefore
a direct function of soil moisture and only indirectly linked
to antecedent rainfall. Consequently, they can be adequately
constrained by state estimation techniques. The impact of
this is seen in Fig. 9, where no added advantage (in terms of
RMSE accuracy) is associated with adding our rainfall cor-
rection approach on top of EnKS state estimation results (i.e.
equivalent results for SIF and BF are obtained in Cases 3 and
5). Overall better correction results for SIF relative to BF
can be attributed to the sensitivity of SIF to upper-zone soil
moisture states that are assumed to be directly observed by
remotely-sensed surface soil moisture retrievals.

In contrast, direct runoff processes are those in which
– during saturated surface conditions – rainfall is directly
routed to runoff without first transitioning through an inter-
mediate soil moisture state. Consequently, antecedent soil
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Figure 8.  The impact of basin runoff ratio (mean annual runoff/mean annual rainfall) on 
Case 2, 3 and 5 runoff results. Fig. 8. The impact of basin runoff ratio (mean annual runoff/mean
annual rainfall) on Case 2, 3 and 5 runoff results.

moisture impacts these processes only indirectly through the
specification of a pre-storm infiltration capacity or the ex-
tent of saturated contributing areas. Improved specification
of these soil moisture states via application of the EnKS leads
to improved SER and SSR results relative to the EnKF base-
line (compare Cases 2 and 3 in Fig. 9). However, because
of their direct link to rainfall, SER and SSR estimates can be
further enhanced through the application of our dual rain-
fall/state correction procedure (compare Cases 3 and 5 in
Fig. 9). Therefore the relative advantage of Case 5 (noted in
Figs. 6 and 8) is based solely on the improved constraint of
direct, surface runoff processes captured by the SAC model.

The importance of direct runoff processes can also be ob-
served when varying the performance metric by which SAC
runoff predictions are evaluated in Fig. 6. Qualitatively simi-
lar results are obtained when regenerating Fig. 6 using mean
absolute error (MAE), as opposed to RMSE, as the perfor-
mance metric for SAC runoff predictions (not shown). How-
ever, the relative magnitude of correction observed in Case
5 results is reduced. For instance, defining the relative frac-
tion of open loop error in terms of MAE (i.e. assimilation
MAE/open loop MAE) as opposed to RMSE, increases the
fraction of open loop error for Case 5 results from 0.44 to
0.75 and decreases the marginal advantage of Case 5 results
versus Case 3 results from 0.31 to 0.11. This reduction is as-
sociated with the reduced weight that MAE applies to large

 34

 
 

 
Figure 9.  Case 2, 3 and 5 total runoff results decomposed into surface excess runoff (SER), 
surface saturation runoff (SSR), surface interflow (SIF) and base flow (BF) components.   Fig. 9. Case 2, 3 and 5 total runoff results decomposed into sur-

face excess runoff (SER), surface saturation runoff (SSR), surface
interflow (SIF) and base flow (BF) components.

runoff events relative to RMSE and would seem to indicate
that the marginal benefit of our dual state/rainfall correction
procedure (as expressed by the difference between Case 5
and Case 3 results) lies primarily in constraining relatively
high flow events dominated by direct surface runoff.

6.3 Sensitivity of results to error assumptions

A large number of assumptions underlie synthetic data as-
similation results presented in Figs. 5 to 9. Perhaps most
critically, the magnitude of synthetic noise, introduced to
represent observational and modeling uncertainty in the syn-
thetic experiment, is specified in a somewhat arbitrary man-
ner. Here we examine the sensitivity of key results to these
values.

The introduction of error in rainfall observations is based
on the multiplicative rescaling of daily rainfall values by a
random variable sampled from a mean-one, log-normal dis-
tribution. By varying the standard deviation of this distri-
bution, various levels of RMSE error in estimates of daily
rainfall accumulation can be obtained. For instance, the de-
fault choice of one for the standard deviation ofχ in (17)
produces an average daily rainfall RMSE of about 8.5 mm.
Figure 10 recalculates Case 1, 2, 3 and 5 results for a range
of specified standard deviations, and thus long-term RMSE,
in daily rainfall accumulations. For computational reasons,
these sensitivity results are derived for only the sub-set of 5
MOPEX basins shown in Fig. 2.

For small rainfall errors, Fig. 10 demonstrates minor
runoff corrections relative to the open loop. This suggests
that, for well-instrumented basins in which highly accurate
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Figure 10.   Sensitivity of Case 1, 2, 3 and 5 runoff results to the magnitude of rainfall error.    
Fig. 10. Sensitivity of Case 1, 2, 3 and 5 runoff results to the mag-
nitude of rainfall error.

rainfall accumulation estimates can be obtained, none of our
proposed strategies for integrating surface soil moisture re-
trievals are effective for correcting SAC model runoff pre-
dictions relative to the open loop. However, as rainfall er-
ror increases, substantial improvement is noted for Case 1
(“Rainfall Correction Only”), Case 3 (“EnKS State Correc-
tion Only”) and Case 5 (“Dual State/Rainfall Correction”)
results. Of particular relevance is the relative difference be-
tween the best state correction-only case (clearly Case 3) and
the dual state/rainfall correction case (Case 5). A substan-
tial difference between the two cases does not appear until
a moderate (>4 mm) level of rainfall accumulation RMSE
is reached. Above this point, however, the relative advan-
tage of Case 5 is clear and a substantial relative advantage
is associated with the implementation of our rainfall correc-
tion scheme. Over continental areas, levels of daily RMSE
between 6 and 10 mm are common in many satellite rain-
fall accumulation products lacking rain gauge correction (see
e.g. Crow and Bolten, 2007). Consequently, it appears that
the largest applicability of our approach will be for regions
in which operational hydrologic forecasting applications de-
pend heavily on uncorrected satellite retrievals for real-time
rainfall information. The procedure will be of substantially
less value for heavily instrumented regions in which accurate
real-time rainfall accumulation information is available from
ground-based instrumentation.
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Figure 11.  The sensitivity of Case 1, 2, 3 and 5 runoff results to a) the accuracy, b) the 

frequency and c) the vertical measurement depth of remotely-sensed surface soil moisture 

retrievals.  

 

Fig. 11.The sensitivity of Case 1, 2, 3 and 5 runoff results to(a) the
accuracy,(b) the frequency and(c) the vertical measurement depth
of remotely-sensed surface soil moisture retrievals.

Conversely, one might expect a reverse trend when vary-
ing the magnitude of perturbations applied directly to inter-
nal model states and/or SAC PET inputs (see Sect. 4). Since
these perturbations are not tied to rainfall uncertainty, an in-
crease in their magnitude will increase the fraction of total
modeling error that cannot be addressed through our rain-
fall correction scheme. Consequently, the additional advan-
tage of the dual correction strategy in Case 5 might be less-
ened relative to the application of the state-correction only
approach in Case 3. However, this tendency is not noted in
sensitivity results in which the magnitude of these perturba-
tions is increased. Such results (not shown) demonstrate little
variation in the performance of Case 3 and Case 5 relative to
the open loop. One potential reason for this lack of sensi-
tivity may be known bias problems encountered when prop-
agating mean-zero model state perturbations (as required by
the Monte Carlo nature of the EnKS and EnKF) through a
nonlinear model (Ryu et al., 2009). These biases limit the
effectiveness of EnKF or EnKS state correction techniques
when applied to models with higher levels of internal un-
certainty. This tendency may counter the relative advantage
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enjoyed by state-correction techniques when internal model-
ing errors are large compared to external rainfall forcing er-
rors. Regardless of the specific cause, the relative advantage
of Case 5 versus Case 3 seen in Figs. 6 and 8 is essentially
maintained for a wide range of error variances assumed for
perturbations to internal SAC model states and PET input.

7 Sensitivity of results to observation characteristics

In addition to assumptions concerning modeling uncertain-
ties, a series of attributes are also assumed for remotely-
sensed surface soil moisture retrievals. Specifically, they are
assumed to be available on a daily frequency, measure ap-
proximately the top 10 centimeters of the soil column and
have a RMSE accuracy of 0.03 [cm3 cm−3] volumetric. In
general, these assumptions are optimistic reflections of ex-
pectations for next-generation satellite retrievals and the im-
pact of less ideal retrieval conditions must be considered.

Figure 11 displays Case 1, 2, 3 and 5 results for a series
of synthetic data assimilation experiments in which the accu-
racy, frequency and measurement depth of surface soil mois-
ture retrievals have been systematically varied. With regards
to retrieval accuracy (Figure 11a) and frequency (Fig. 11b),
there exists a systematic narrowing of the difference between
Case 3 and Case 5 as retrieval error increases and/or fre-
quency decreases. This suggests that benefits of our rainfall
correction approach are relative more sensitive to limitations
in the accuracy and frequency of retrievals than EnKF/EnKS-
based state correction approaches. Given the need to correct
daily rainfall accumulation amounts, the reduction in accu-
racy observed in Fig. 11b for retrieval frequencies of less than
once per day is not surprising. However, it is worth noting
that from the mid-latitudes to the poles, combining ascend-
ing and descending overpass data from passive microwave
sensors (e.g. AMSR-E) typically provides measurements for
at least 4 out of every 5 days.

Of all the assumptions underlying the generation of syn-
thetic retrievals, the least realistic is probably the assumption
of a 10-cm vertical measurement depth. This assumption was
made in order to make the observational support of remote
sensing retrievals consistent with calibrated values of SAC
model upper-zone layer depth obtained from the MOPEX
experiment. However, a 10-cm measurement depth is larger
than typical estimates for the vertical penetration depth of
remotely-sensed surface soil moisture retrievals (usually be-
tween 1 and 5 cm). Consequently, the impact of smaller mea-
surement depths must be considered. Figure 11c displays re-
sults for the systematic reduction of the upper-zone depth in
the SAC model to values smaller than 10 cm. It reveals a
general tendency for the difference between Case 3 and Case
5 results to increase upon a decrease in the upper-zone depth
of the SAC model. There are several reasons for this ten-
dency. First, utilizing a thin upper-zone in the SAC model
prompts the model to produce higher amounts of direct sur-

face runoff relative to indirect, sub-surface runoff. Such a
shift is critical because the basis of improved Case 5 results
(relative to Case 3) is the presence of substantial amounts of
direct surface runoff (Fig. 9). In addition, the use of a thin-
ner upper-zone decreases correlation between observations
of the upper-zone and the non-observed lower-zone. This,
in turn, limits the ability of the EnKS to accurately constrain
lower-zone soil moisture variables. Consequently, our choice
of an unrealistically thick upper-zone likely reduces the rel-
ative positive impact of introducing our rainfall correction
scheme into hydrologic forecasting.

8 Operational prospects

All results presented here are based on a synthetic twin ex-
perimental methodology in which remotely-sensing surface
soil moisture retrievals are artificially generated and assimi-
lated into a hydrologic model. Such experiments are required
as an initial proof-of-concept for new data assimilation sys-
tems. Nevertheless, it is important to consider the likelihood
of duplicating encouraging synthetic results when using ac-
tual remote sensing data.

For instance, a key result in this analysis is the demon-
stration that adaptation of our dual rainfall and soil moisture
correction scheme (Case 5 in Fig. 3) can improve SAC model
runoff results above and beyond levels obtainable using the
best state correction technique (Case 3 in Fig. 3). Conse-
quently, an important issue is the degree to which assump-
tions and design decisions imbedded in our synthetic exper-
iment methodology affect the magnitude of this difference.
On this point, it should be noted that – in our particular syn-
thetic twin methodology – state correction-only cases (Cases
2 and 3) retain an artificial advantage in that synthetic sur-
face soil moisture retrievals are generated by the same model
(the SAC model) that they are subsequently assimilated into.
In the terminology of synthetic data assimilation experiments
this is referred to as an identical-twin experiment. In contrast,
rainfall correction results are based on the cross-assimilation
of synthetic surface soil moisture retrievals (generated by the
SAC model) into an API model. This difference means that
our rainfall correction strategy is tested using a more chal-
lenging fraternal twin synthetic experiment in which obser-
vations generated by one model are assimilated into a sec-
ond model. However, this lack of consistency is actually
beneficial to the analysis. By choosing an easier identical
twin set-up for state correction, relatively to the more diffi-
cult fraternal twin experiment applied for rainfall correction,
we minimize the probability that increased runoff skill asso-
ciated with our rainfall correction scheme is actually an arti-
fact of our particular experimental approach. In this way, our
synthetic approach is designed to maximize the credibility of
key manuscript results. Likewise, our decision to assume a
relatively thick (10 cm) upper-zone depth for the SAC model
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may reduce the relative benefit of our proposed approach rel-
ative to existing state-correction procedures (Fig. 11c).

Conversely, there are additional aspects of our particular
approach which have the opposite effect and may artificially
enhance the relative benefit of our new approach. Figure 11a
and b appear to demonstrate a tendency for limitations in
retrieval accuracy and frequency to disproportionately af-
fect our dual correction case (relative to state-correction only
cases). This tendency suggests that overly optimistic as-
sumptions concerning the frequency and accuracy of remote
sensing retrievals will aid rainfall correction more than state
correction. In addition, the tuning ofλ in (9) is based here
on the assumption that high-quality MOPEX rain gauges are
available for calibration purposes. If comparably accurate
rain gauge data is not available in an operational setting it
is possible to calibrateλ using only satellite-based rainfall
data. However, such alternative calibration is associated with
a slight reduction in the performance of the rainfall correc-
tion procedure (Crow et al., 2009).

Another key consideration is the spatial and temporal
scales at which our rainfall correction procedure is effective.
At best, it can correct rainfall at time/space scales consis-
tent with the ground resolution (typically 10–40 km) and re-
visit times (1 to 3 days) of satellite-based soil moisture re-
trievals. Real data results using the AMSR-E sensor indicate
difficulties in correcting rainfall accumulations at time scales
finer than about 2 days (Crow et al., 2009). Obviously, re-
stricting correction to such coarse scales will limit the effec-
tiveness of our approach when applied to hydrologic predic-
tion applications – such as flash flood forecasting – requir-
ing rainfall accumulation information at much finer space-
time scales. Consequently, the highest potential for an oper-
ational application will likely be the prediction and monitor-
ing of large-scale flooding events associated with prolonged
periods (days to weeks) of excessive rainfall and flooding
over large geographic regions (>1002 km2). The relatively
large spatial scales associated with such events make real-
time runoff monitoring a critical component of forecasting
downstream flood peak timing stage height.

A final concern is the degree to which the adaptation of
a reanalysis smoothing (rather than a sequential filtering)
formulation will degrade the real-time functioning of a hy-
drologic forecasting/prediction system. The adoption of a
smoothing framework will necessarily increase the latency
of SAC model runoff predictions since it requires the acqui-
sition of a soil moisture observation following a given storm
period prior to the calculation of soil moisture and runoff for
the same period. However, such delays may be small since,
even in the absence of any soil moisture data assimilation,
an operational system stills needs to wait until the acquisi-
tion of rainfall accumulation observations (presumably from
some real-time rainfall observing system) to forecast stream
flow. Consequently, the added delay required to obtain and
process a subsequent soil moisture observation may not add
substantial prediction latency to the system.

9 Summary

To date, efforts to improve hydrologic model stream flow
predictions have focused on the sequential assimilation of
remotely-sensed surface soil moisture to constrain pre-storm
antecedent soil moisture conditions (see e.g. Crow et al.,
2005). However, such approaches have not generally been
successful at demonstrating clear value for remotely-sensed
soil moisture retrievals in hydrologic applications. Here
we propose an alternative reanalysis system (in Case 5 in
Fig. 4) that reformulates the runoff prediction problem into
a smoothing framework which simultaneously corrects both
hydrologic model internal soil moisture states and external
rainfall input feed into the model. Preliminary testing of the
approach using a synthetic twin methodology suggests that,
for a wide range of climatic conditions (Fig. 1), the approach
can enhance the value of remotely-sensed soil moisture re-
trievals for runoff and stream flow prediction applications
(Figs. 6 and 8) – particularly for high flow events in which
direct, surface runoff processes play a dominant role in gen-
erating stream flow (Fig. 9). Since the advantages of our
dual approach emerge only at relatively high levels of rain-
fall error (Fig. 10), its primary utility will likely be for large-
scale flood forecasting in areas of the world lacking sufficient
ground-based resources for real-time rainfall monitoring.

All preliminary work presented here is based on synthetic
twin data assimilation experiments and must be confirmed
by follow-on work aiming at verifying the approach with
real data. Nevertheless, it is worth noting that our overall
synthetic methodology is fundamentally conservative in that
state correction is attempted using a less challenging identi-
cal twin set-up relative to the more challenging fraternal twin
structure of the rainfall correction approach (see Sect. 7).
Combined with completed validation studies (Crow et al.,
2009), this suggests that expressions of added skill associ-
ated with our rainfall correction approach (above and beyond
that achieved using only EnKF or EnKS state correction tech-
niques) are likely credible representations of results obtain-
able from real data.
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