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Abstract. The reduction of information contained in model
time series through the use of aggregating statistical perfor-
mance measures is very high compared to the amount of in-
formation that one would like to draw from it for model iden-
tification and calibration purposes. It has been readily shown
that this loss imposes important limitations on model identifi-
cation and -diagnostics and thus constitutes an element of the
overall model uncertainty. In this contribution we present an
approach using a Self-Organizing Map (SOM) to circumvent
the identifiability problem induced by the low discrimina-
tory power of aggregating performance measures. Instead, a
Self-Organizing Map is used to differentiate the spectrum of
model realizations, obtained from Monte-Carlo simulations
with a distributed conceptual watershed model, based on the
recognition of different patterns in time series. Further, the
SOM is used instead of a classical optimization algorithm
to identify those model realizations among the Monte-Carlo
simulation results that most closely approximate the pattern
of the measured discharge time series. The results are an-
alyzed and compared with the manually calibrated model
as well as with the results of the Shuffled Complex Evo-
lution algorithm (SCE-UA). In our study the latter slightly
outperformed the SOM results. The SOM method, however,
yields a set of equivalent model parameterizations and there-
fore also allows for confining the parameter space to a region
that closely represents a measured data set. This particular
feature renders the SOM potentially useful for future model
identification applications.

1 Introduction

Information from existing or additional observed sources is
crucial to decrease model uncertainty. Model evaluation and
model identification usually resort to aggregating statistical
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measures to compare observed and simulated time series
(Legates and McCabe Jr., 1999). In this context these mea-
sures involve considerable problems (Yapo et al., 1998; Lane,
2007): many objective functions imply assumptions about
the error properties that are often violated when dealing with
the agreement between measured and simulated time series:
very often the errors are (1) not normally distributed, (2) do
not have a mean of zero, (3) show autocorrelation or (4) are
heteroscedastic. To certain extent, the choice of performance
measures can be made such that the evaluation makes cer-
tain emphasis on different parts of the hydrograph (Gupta et
al., 1998). Yet aggregating measures of performance have in
common that the information contained in the errors is aggre-
gated into a single numerical value, regardless of the charac-
teristic and the actual pattern of the error. In consequence,
essentially different model results can be obtained with close
to identical performance measure values although the param-
eter sets used to generate them are widely scattered through-
out the parameter space. Therefore the information conveyed
by aggregating goodness-of-fit measures is likely to be insuf-
ficient to unambiguously differentiate between a number of
alternative model realizations (and thus cannot give evidence
of their equivalence, i.e. equifinality) (Gupta et al., 2003;
Beven and Binley, 1992). This lack of discriminatory power
imposes limitations on model identification and constitutes
an important source of model uncertainty (Wagener et al.,
2003). In contrast, one strong point of the manual calibration
procedure resides on the ability to use various complemen-
tary information sources, e.g. river discharge, groundwater
level or soil moisture observations (Franks et al., 1998; Lamb
et al., 1998; Seibert, 2000; Ambroise et al., 1995). In the first
instance, however, its success is due to the simultaneous eval-
uation of numerous different characteristics related to a time
series (Gupta et al., 2003) which allows for a much better
extraction of information from the available data. Multiple-
criteria approaches that seek to emulate this strategy to some
extent have therefore considerably improved model identifi-
ability. Important examples of successful applications of this
strategy can be found e.g. in Gupta et al. (1998), Boyle et
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al. (2000), Vrugt et al. (2003) and Wagener et al. (2004). Yet
model identification methods that depend on common sta-
tistical approaches might still not be able to extract enough
information relevant to this task (Gupta et al., 2003). An ex-
citing new point of view for model evaluation and identifica-
tion that tackles these shortcomings emerges from the trans-
formation of the existing data into the frequency domain and
the wavelet domain (e.g. Clemen, 1999; Lane, 2007; Monta-
nari and Toth, 2007).

In order to improve model identifiability (as proposed by
Gupta et al., 1998; Yapo et al., 1998; Boyle et al., 2000)
and the extraction of information from existing data we in-
troduce an approach that, in a sense, emulates the visual as-
sessment of model hydrographs. To circumvent the ambigu-
ity induced by standard objective functions a Self-Organizing
Map (SOM) (Kohonen, 2001) is used to represent the spec-
trum of model realizations obtained from Monte-Carlo simu-
lations with a distributed conceptual watershed model based
on the recognition of different patterns of model residual time
series.

Self-Organizing maps have found successful practical ap-
plications in speech recognition, image analysis, catego-
rization of electric brain signals (Kohonen, 2001) as well
as process monitoring (Alhoniemi et al., 1999; Simula et
al., 1999) and local time series modelling (Vesanto, 1997;
Principe et al., 1998; Cho, 2004). Similarly diverse are the
currently emerging applications of SOM in the field of hy-
drology: Examples for the analysis of hydrochemical data
can be found in Peeters et al. (2007) and Lischeid (2006).
Scḧutze et al. (2005) apply a variant of the SOM to approx-
imate the Richards equation and its inverse solution. Hsu et
al. (2002) successfully performed system identification and
daily streamflow predictions with the Self-Organizing Lin-
ear Output Mapping Network (SOLO). They used a SOM
to control local regression functions according to the stage
of the rainfall-runoff process. Kalteh and Berndtsson (2007)
use SOM for the interpolation of monthly precipitation.

In Sect. 2.1 of this contribution we summarize the princi-
ples and advantages of SOM and describe how this method
is applied to yield a topologically ordered mapping of model
output time series according to the similarity in the tempo-
ral patterns of their residuals obtained through Monte-Carlo
simulations. The properties of this “semantic map” of model
realizations will be examined by relating the map elements
(i) to the standard performance measures of the associated
model runs and (ii) to the parameter values that have been
used to generate the model results. It is shown that a SOM
is capable of giving visual insights into the parameter sen-
sitivity and the operating of the model structure. Moreover,
in the second part of this article these properties are used
to introduce an application of the Self-Organizing Map for
parameter identification purposes. The SOM is used to iden-
tify those model realizations among a given set of Monte-
Carlo simulations results that most closely approximate the
pattern of the measured time series, i.e. the “zero-residual”

realization. The result will be analyzed and compared with
the manually calibrated model as well as with the result of
the single-objective Shuffled Complex Evolution algorithm
(SCE-UA, Duan et al., 1993).

2 Methods

2.1 The Self-Organizing Map

The Self-Organizing Map is a type of artificial neural net-
work (ANN) and unsupervised learning algorithm that is
used for clustering, visualization and abstraction of multi-
dimensional data. Unlike other types of ANN it has no out-
put function. Instead it maps vectorial input data items with
similar patterns onto contiguous locations of a discrete low-
dimensional grid of neurons in a topology-preserving man-
ner. Therefore its output can be compared to a semantic map:
nearby locations on the map are attributed similar data pat-
terns. Each of the map’s neurons becomes “sensitized” to
a different domain of the patterns contained in the vectorial
training data items, i.e. the map units act as decoder for dif-
ferent types of patterns contained in the input data (Kohonen,
2001).

Each input data itemx∈X is considered as a vector

x = [x1, x2, . . . , xn]T ∈ <
n (1)

with n being the dimension of the input data space. A fixed
number ofk neurons indexedi is arranged on a regular grid
G with each neuron being associated to a weight vector

mi = [µi1, µi2, . . . , µin]T ∈ <
n (2)

also called reference vector, which has the same dimen-
sionality as the input vectorsx∈X. These weights connect
each input vectorx in parallel to all neurons ofG. More-
over the neurons are connected to each other. In our case
this interconnection is defined on a hexagonal grid topology.
The training of the SOM now comprises the following steps
(Fig. 1):

1. The components of themi are initialized with a se-
quence of values from points on the plane spanned by the
two greatest eigenvectors of the data distribution. This pro-
cedure assures a faster and more reliable convergence of the
algorithm (Kohonen, 2001).

2. Randomly pick an input vector samplex∈X and com-
pute the Euclidean distance

‖x − mi‖ =

√√√√ n∑
j=1

(
xj − mij

)2 (3)

betweenx and each of the reference vectorsmi (as a measure
of similarity, generally any other metric can be applied as
well) and find the neuronc(x) with a reference vectormc

such that

‖x − mc‖ = min
i

{‖x − mi‖} (4)
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Fig. 1. The basic steps of the SOM algorithm.

c is then called the best-matching unit (BMU) and defines the
image of the samplex on the mapG.

3. The nodes that are within a certain distance of the “win-
ning neuron”c are updated according to the equation

mi (t + 1) = mi (t) + α (t) hci (t) [x (t) − mi (t)] (5)

wheret is the number of the iteration step andmi(t) is the
current weight vector which is updated proportionally to the
difference[x(t)−mi(t)]. hci(t) determines the degree of
neighbourhood between the winning neuronc and neuroni
for an inputx∈X, i.e. the rate of adaptation in the neighbour-
hood aroundc. This function is required to be symmetric
aboutc and decreasing to zero with growing lateral distance
from c (Haykin, 1999). Commonly the Gaussian function

hci (t) = exp

(
−

‖rc − r i‖
2

2σ 2 (t)

)
(6)

is used, whereas‖rc − r i‖
2 denotes the lateral distance be-

tween the winning neuron and the neuroni.
σ (t) defines the width of the topological neighbourhood,

which is also monotonically decreasing witht . It is required
thathci(t)→ 0 for t→∞. In Eq. (5) α(t) is called the learn-
ing rate factor (0<α(t)<1) which proportionally to the iter-
ation stept monotonically decreases the rate of change of
the weight vectors. According to Kohonen (2001) an ex-
act choice of the function is not relevant. With Eq. (5) the
training acquires adaptive and cooperative properties through
which the weightsmi are updated to move closer towards the
winning neuron, similar to an elastic net (Kohonen, 2001).

4. Repeat steps 2 and 3 with the next data vectorx until a
fixed number of iterations is reached.

Upon repeated cycling through the training data the map-
ping from the continuous input spaceX onto the spatially

discrete output spaceG acquires the following properties
(Haykin, 1999):

– The reference vectorsmi “follow” the distribution of
the input data vectors such that the mapG provides a
discrete approximation to the input spaceX. This is as
well the reason why dimensionality reduction and data
compression properties can be attributed to the SOM.
The fix number of weight vectorsmi can be interpreted
as pointers for their corresponding neuron into the input
spaceX, hence the elements ofmi can be interpreted
as coordinates of the image of this neuron in the input
space.

– From Eq. (5) immediately follows the topological or-
dering property of the mapping computed by the SOM
such that the location of a neuron on the gridG repre-
sents a particular domain of pattern in the input data.
Moreover, this ordering property at the same time pro-
vides fault and noise tolerant abilities of the mapping
(see also Allinson and Yin, 1999). The local interac-
tions between the neurons provide for the smoothness
of the map.

– Patterns in the input spaceX that occur more frequently
are mapped onto a larger area in the output spaceG.

– A SOM has the ability to select a best set of features
for approximating an underlying nonlinear distribution
corrupted by additive noise. Hence SOM provides a dis-
crete approximation of principle curves, i.e. a general-
ization of principal component analysis.

In the second part of this contribution we make use of the
fact that the SOM can also be applied to project an input data
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Table 1. Statistical goodness-of-fit measures calculated for the model output (Qobs: observed discharge, Qsim: simulated discharge).

Name Description Formula

BIAS Mean error 1
N

N∑
k=1

(
Qobs− Qsimk

)
RMSE Root of mean squared error

√
1
N

N∑
k=1

(
Qobs− Qsimk

)2
CEFFlog Logarithmized Nash-Sutcliffe coefficient of efficiency

N∑
k=1

(ln(Qobs)−ln(Qsimk))
2

N∑
k=1

(
ln(Qobs)−ln(Q̄obs)

)2

IAg Willmott’s index of agreement 1−

N∑
k=1

(Qobs−Qsimk)
2

N∑
k=1

(∣∣Qsimk−Q̄obs
∣∣+∣∣Qobs−Q̄obs

∣∣)2
(Willmott, 1981, 1982) 0≤IAg≤1

MAPE Mean average percentual error 100
N

N∑
k=1

1
Qobs

∣∣Qsimk − Qobs
∣∣

VarMSE Variance part of the mean squared error

√
1
N

N∑
k=1

(
Qobs−Q̄obs

)2
−

√
1
N

N∑
k=1

(
Qsim−Q̄sim

)2
1
N

N∑
k=1

(Qobs−Qsim)2

Rlin Coefficient of determination

N∑
k=1

[(
Qsim−Q̄sim

)(
Qobs−Q̄obs

)]
√

N∑
k=1

(
Qsim−Q̄sim

)2 N∑
k=1

(
Qobs−Q̄obs

)2

vectory onto the discrete output space that has not been part
of the training data manifold. This means that according to
Eq. (4) a neuronc(y) with reference vectormc(y) is activated
for which∥∥y − mc(y)

∥∥ = min
i

{‖y − mi‖} (7)

The “image”c(y) of the projected data itemy then represents
the domain of input data patterns fromX that is most similar
to y. Moreover, as the number of neuronsk is much smaller
than the number of vectors used for the training, this neuron
will be ‘sensitized’ and associated to a number of input data
patterns fromX which will represent the domain of input
data patterns that is closest toy.

2.2 Experimental setup

In our example 4000 residual time series (i.e. the element-
wise difference between the simulated and the observed time
series vectors) constituted the input data vectors of the train-
ing data set. The model time series were obtained from 4000
Monte Carlo simulations (see Sect. 2.3) with the distributed
conceptual watershed model NASIM running at hourly time
steps over a period of two years, i.e. each input data vec-
tor consisted of 17 472 elements. Before the training, nor-
malization of the data after Eq. (8) was carried out to avoid
that high data values (vector elements) dominate the train-
ing because of their higher impact on the Euclidean distance

measure Eq. (3) (Vesanto et al., 2000). Each element of the
input data vectors is normalized to a variance of one and zero
mean value using the linear transformation

x′
= (x − x̄) /σx . (8)

The dimensions of the SOM were determined using a heuris-
tic algorithm (see Vesanto et al., 2000). A coarse training
period of 500 iterations with a large radius for the neigh-
bourhood function was performed followed by a fine tuning
period comprising 100 000 training cycles with short neigh-
bourhood radius. In order to compare the results of the afore-
mentioned Monte-Carlo simulation and the properties of the
SOM, seven measures of performance, listed in Table 1, were
calculated for each model run. Consecutively, a reference
data set, which has not been part of the training data, consist-
ing of the time series of observed data was projected onto the
SOM according to Sect. 2.1. The resulting time series from
this experiment were finally evaluated visually as well as by
means of different diagnostic plots. For the model realiza-
tions that had been associated with each map element (as a
consequence of the training) the means of the correspond-
ing performance measure values were calculated for each
measure individually. The map element for which such a
mean value is maximum (or minimum according to the mea-
sure) is marked as the performance optimum of the corre-
sponding objective function. To determine a common opti-
mum (i.e. balance point) for the seven different performance
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Fig. 2. Distribution of the mean values of each performance measure from Table 2 over the SOM lattice.

optima on the map, each optimum is considered as a mass
point with unit weight on the SOM grid. The common opti-
mum is calculated as geometric center of mass resulting from
the locations of the seven objective function optima. The x-
coordinatexopt of the common optimum forn optima is cal-
culated using Eq. (9)

xopt =

∑
wixi∑
wi

, i = 1. . .n (9)

wherexi are the x-coordinates of the individual optima on the
SOM grid. Heren=7 andwi = 1 for all i. The y-coordinate
yopt is determined accordingly. To ascertain whether the type
of data used for the training exerts any influence on the SOM
result the experiments were repeated with a SOM trained on
discharge time series instead of residual time series. The
SCE-UA algorithm (Duan et al., 1993) for the model opti-
mization was run with a maximum of 10 000 iterations and
5 complexes (with 5 points each). For successful termination
a change of less than 0.05% of the performance criterion in
three consecutive loops was imposed.

2.3 NASIM model and data

NASIM is a distributed conceptual rainfall-runoff model
(Hydrotec, 2005). It uses non-linear storage elements to
simulate the soil water balance on spatially homogeneous
units with respect to soil and land use, which themselves
are subdivided into soil layers. NASIM is being commer-
cially distributed since the mid-eighties and since then has
found widespread application, e.g. in communal water re-
sources management throughout Germany. The details of the
model are beyond the scope of this contribution. Instead, we
adopt the decision-maker’s point of view and treat the model

Table 2. Free NASIM model parameters of the Monte-Carlo simu-
lation with their respective parameter ranges.

Name Description Range

RetBasis Storage coefficient for 0.5–3.5
baseflow component [h]

RetInf Storage coefficient for 2.0–6.0
interflow component [h]

RetOf Storage coefficient for surface runoff 2.0–6.0
from unsealed surfaces [h]

StFFRet Storage coefficient for 2.0–6.0
surface runoff from urban areas [h]

hL Horizontal hydraulic conductivity factor 2.0–8.0
maxInf Maximum infiltration factor 0.025–1.025
vL Vertical hydraulic conductivity factor 0.005–0.105

as a black-box. Seven parameters were selected for Monte-
Carlo random sampling (Table 2). A priori knowledge was
used to confine the parameter space: the fixed parameters as
well as the ranges of the free parameters were chosen to be
identical to those that participated in the course of a man-
ual expert calibration for the test watershed. The bounds
reproduce the plausible parameter space for this catchment.
No pre-imposed correlation between model parameters has
been assumed. The input data for the model was taken from
the 129 km2 low-mountain range test watershed “Schwarze
Pockau” Saxony (Germany), situated near the border to
Czechoslovakia and tributary of the Freiberger Mulde, a sub-
basin of the Elbe River. The period from 1 November 1994
to 28 October 1996 with hourly discharge and precipitation
measurements was chosen to drive the Monte-Carlo simula-
tion.
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Fig. 3. Distribution of the mean values of each model parameter from Table 1 over the SOM lattice.

3 Results

In the first part of this section the properties of the SOM
trained on residual time series and the relation of its elements
to the traditional performance measures are examined. The
second part is dedicated to testing the projection of measured
data onto the SOM.

3.1 Testing the properties of the SOM

After the training each neuron of the 22×15 SOM is expected
to be activated by a narrow domain of residual patterns from
the input data manifold. The neurons and their respective lo-
cation on the map are identifiable by index numbers. As the
number of neurons is still much smaller than the number of
model realizations used for the training, each neuron repre-
sents a set of Monte-Carlo model realizations that are char-
acterized through similar temporal patterns with respect to
their residuals or discharge values respectively. Because of
the topographic ordering principle neighbouring map units,
in turn, are expected to be “tuned” to similar residual pat-
terns as well. Because the model realizations used for the
training can be referenced by their corresponding index num-
ber on the map, the ordering principles of the “semantic
map” represented by the SOM can be examined. To this end,
the means of different performance measures as well as the
mean values of the model parameters on each map element
are calculated according to Sect. 2.2. This allows to assess
the properties of the map’s ordering principle with respect to
well known attributes such as (a) the distribution of perfor-
mance measures and (b) the distribution of different model
parameter values over the map lattice. Referring to (a) seven
performance measures have been calculated for each model

realization (Table 1). For each of them individual SOM lat-
tices were colour-coded according to the mean of the perfor-
mance measure of the model runs associated with each map
unit. Figure 2 shows the distribution of the performance mea-
sures from Table 1 on the SOM lattice. The same procedure
was repeated for the values of the free parameters such that
the distribution of mean parameter values can be shown for
each parameter individually (Fig. 3). In each lattice of Figs. 2
and 3 the positions of the neurons remain identical such that
each map element refers to identical model realizations in
both figures.

As a striking feature of Fig. 2 it can be seen that, without
providing explicit information about the performance mea-
sures with the training data, the different performance values
are not distributed randomly across the map but significantly
relate to different regions of the lattices. To interpret Fig. 2 it
is important to notice that warm colours always correspond
to high mean values and vice-versa, irrespective of whether
this quality is associated with high or low goodness of fit. As
to Fig. 3, a visibly ordered relation of the map regions to dif-
ferent parameter values can only be stated for two parameters
(RetInf and maxInf), whereas the values of RetOf, StFFRet
and vL do not appear to relate to any ordering principle. A
similar random pattern can be observed for the two remain-
ing parameters (RetBasis and hL) throughout wide areas of
the map. As can be seen from the locally ordered colour dis-
tribution, some intercalated areas in these lattices markedly
display again a relationship between the parameter values
and map locations (which stand for a certain domain of sim-
ulated time series pattern). To facilitate the interpretation of
these findings we compared Fig. 3 with scatterplots of perfor-
mance measures. Figure 4 indicates that only the parameters
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Fig. 4. Scatterplots of RMSE values for each of the examined NASIM parameters.

Table 3. Summary of the parameter values of the 11 model real-
izations associated to the Best-Matching map Unit when the time
series vector of observed discharges is projected onto the SOM.

RetBasis RetInf RetOf StFFRet hL maxInf vL

min 0.699 4.336 2.379 2.202 2.191 0.107 0.008
max 3.143 4.787 5.731 5.581 6.540 0.134 0.105
mean 1.756 4.555 4.278 3.548 4.674 0.122 0.065

RetInf and maxInf are sensitive with reference to the RMSE.
Scatterplots for the remaining objective functions in Table 1
yielded comparable results. From the aforementioned find-
ings we infer that the locally ordered parameter mean values
in Fig. 3 (RetBasis and hL) indicate that the corresponding
parameters are subject to interaction with other parameters.
Results identical to Figs. 2 and 3 were obtained by training a
SOM on discharge time series instead of residual values.

3.2 Projecting the observed time series onto the SOM

To locate the best-matching unit (BMU) of the measured
discharge (i.e. zero-residual) time series on the map, ac-
cording to Sect. 2.1, an input vector consisting of elements
with value 0 is constructed. Subsequently, in order to be

Table 4. Comparison of model performances for results obtained
from manual calibration, optimization with SCE-UA and the SOM
application. In case of the SOM mean values of 11 results are given.

BIAS RMSE CEFFlog IAg MAPE VARmse Rlin

manual 0.32 1.58 0.50 0.86 42.36 0.01 0.75
calibration
SCE-UA 0.10 1.25 0.49 0.91 36.37 0.06 0.83
optimization
SOM 0.13 1.34 0.30 0.88 40.71 0.19 0.81
(means)

projected properly along with the training data, the transfor-
mation Eq. (8) is carried out using the normalization parame-
ters obtained from the input data set. In Fig. 5 the location of
the resulting vector is displayed on top of the performance
measure distributions shown in Fig. 2 (black dot). Addi-
tionally, the location of the common optimum for the seven
performance measures, determined according to Sect. 2.2, is
marked (white cross). Figure 6 shows the positions of the
different optima on the SOM. It can be seen that the posi-
tion of the BMU neither coincides with any of the expected
objective function optima nor with the common optimum
location of the seven performance measures. Additionally,
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Fig. 5. The location of the best-matching unit (indicated by the black dot) for an input vector that represents the measured discharge time
series.The white cross marks the common optimum (balance point) of the seven performance measures on the SOM grid.

BIAS

CEFFlog
IAg

MAPE

VARmse RMSE +
Rlin

’Center of mass’
combined optimum
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Table 3 summarizes the parameter values of the 11 model re-
alizations that are associated to the BMU for representing the
model time series that are most “similar” to a “perfect match”
(i.e. the zero-residual case). By comparing these parameters

of the corresponding model runs to the ranges in Table 2 it
becomes obvious that, with the exception of RetInf and max-
Inf, all parameter values span the full range of the Monte-
Carlo sampling bounds. All model realizations attached to
this BMU have in common that only the mentioned param-
eter values appear to be narrowly constrained to values be-
tween 4.336 and 4.787 for RetInf and 0.107 and 0.134 for
maxInf, respectively. The resulting model outputs for these
11 realizations are shown in Fig. 7c along with the total enve-
lope range of all 4000 simulation outputs in the background
and the observed discharge. In order to better point out the
differences between the hydrographs only the characteristic
time period from 14 January 1995 to 21 October 1995 is re-
produced. It can be seen that, compared to the whole set of
Monte-Carlo outputs, these realizations obviously comprise
a compact subset of “similar” time series. Additionally, the
model results obtained from an expert manual calibration and
the single-objective automatic calibration using the SCE-UA
algorithm (Duan et al., 1993) with the RMSE as objective
function (Table 1) are shown in Fig. 7. Although the SOM
procedure, unlike the manual calibration, emphasizes all fea-
tures of the hydrograph equally, the time series associated
to the BMU of the measured discharge appear to outperform
the result of the expert calibration (Fig. 7a). As expected, the
RMSE of the SCE result is smaller than the corresponding
values for the BMU results and the manual calibration time
series, respectively (Table 4). The same holds true for most
of the remaining performance measures such that, in terms of
objective function values, the result of the SCE optimization
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Fig. 7. The model realizations as resulting from(a) manual calibration,(b) optimization with the SCE-UA algorithm and(c) the BMU of the
SOM for the measured discharge time series. The time-series are compared to the measured discharge and the envelope of the Monte-Carlo
simulation, i.e. the area which is spanned by all model time series for the bounds given in Table 2.

(Fig. 7b) outperforms the BMU realizations as well as the
manual calibration. The RMSE of the SCE-optimized model
equals the lowest RMSE value obtainable from the given set
of Monte-Carlo realizations. The corresponding hydrograph
provides a reasonable representation of the measured time se-
ries, except for some deficits in the reproduction of the peak
discharges. The SCE-optimized model and the realizations
from the BMU display noticeable differences in the repro-
duction of the peak discharges and recession limbs. Though,
the SCE result, based on a visual examination, slightly out-
performs the SOM method. The training on discharge data
time series yields identical results with respect to the position
of the BMU on the SOM as well as the model realizations
that were associated to it.

4 Discussion and conclusions

The performance measures that are linked to the map in
Fig. 2 already indicate that very individual properties of the
training data time series can be attributed to each element of
the Self-Organizing Map. Furthermore, from the patterns of
the performance measures on Fig. 2 it can be seen that certain
correlation structures inherent to these statistical measures

appear to be reflected by the map. Henceforth, we deduce
that the information that can be extracted by these aggregat-
ing statistical measures is assimilated and preserved by the
SOM. The findings with respect to Fig. 3, corroborated by
Fig. 4 and Table 3, demonstrate that the SOM application
is capable of revealing information about parameter sensi-
tivities and, to a certain degree, parameter interactions. We
consider these results an indication of the high discrimina-
tive power of the SOM application with respect to the char-
acteristics of different simulated discharge time series. This
is because we were not able to obtain similar findings with
traditional methods that are based on the evaluation of per-
formance measures, e.g. parameter response surfaces for dif-
ferent objective functions.

These useful aspects of the method are complemented by
the findings of the second experiment: it demonstrates that
the information which is processed by the SOM allows dif-
ferentiating the spectrum of model realizations, given with
the Monte-Carlo data, such that a rather narrowly confined
set of model time series which are similar to the observed
time series can be identified. Based on a visual examination
of the resulting hydrographs, the SCE optimization seems
to slightly outperform the results of the SOM. Standard
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objective function values for these time series also suggest
a higher accuracy of the results obtained by application of
the SCE algorithm. In contrast to the SCE algorithm the
resolution of the SOM method is dependent upon the num-
ber of model time series that participated in its training. It
should be borne in mind that, compared to the number of
model parameters, the results given in Fig. 7c are still based
on a rather small number of model data items for the SOM
training. The results could therefore improve when a more
densely sampled dataset is used for the training. Neverthe-
less the model realizations that have been attributed to the
BMU already exhibit qualities similar to the result which was
based on optimization with the SCE algorithm. The differ-
ences between these realizations might further be attributed
to the fact that the SOM training does not tend to put em-
phasis on particular hydrograph features, which however can
be expected when using RMSE as optimization criterion. A
strong point of the SOM procedure is its ability to provide
a number of alternative model realizations that approximate
the measured time series equally well. This allows for con-
fining the parameter space to a region that closely represents
a measured data set and renders the SOM potentially useful
for future model identification applications. Most notably it
has to be pointed out that the SOM method does not depend
on aggregating statistical measures. Consequently the “simi-
larity” represented in the SOM is not directly quantifiable in
traditional terms. Instead, it rather accounts for the complex-
ity that is inherent to time series data and which cannot be
reduced to a rank number. Although the method is determin-
istic and the results are entirely reproducible, the resulting
time series (Fig. 7c) can be further judged only subjectively.
The fact that the experiments yielded identical results when
the training was carried out using discharge data underpins
the stability of the SOM method.

The discriminatory power of the SOM that has been
demonstrated in this article also highlights that uncertainty
induced by the properties of the performance measure should
be included in the discussion of model uncertainties and
equifinality, because any statement on model behaviour de-
pends on our possibilities to differentiate between model
time series.
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