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Abstract. We present here numerical modeling of infiltra-
tion instability near a topographic edge of a water-saturated
porous slice by analogy with a limestone formation devoid
of initial heterogeneities such as fractures faults or joints and
limited by a vertical cliff. In our runs a first dissolution finger
develops near the cliff edge, and ends to intersect it above its
mid height. Additional fingers develop upstream with a de-
creasing growth rate and an increasing width. This results
from the decrease of the infiltration velocity with distance
to the cliff in our models. A sensitivity study shows that a
larger permeability contrast between the fingers and the ini-
tial undissolved porous medium produces a larger number of
fingers, while increasing the dispersivity (lower Peclet num-
ber) produces wider fingers. A slower reaction rate (lower
Damkḧoler number) produces fingers that follow the initial
flow lines, since dissolution occurs simultaneously along the
entire finger. These results suggest that alteration by disso-
lution of limestones or other soluble formations may pro-
duce different underground channel structures in the same
drainage basin due to local changes of the non-dimensional
Pe andDa numbers.
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1 Introduction

When a reactive fluid percolates into a soluble porous rock,
dissolution zones concentrate fluid flow, due to their in-
creased permeability, and are therefore subjected to further
preferential dissolution. Infiltration instability arises due to
this positive feedback between flow and reaction. As a result,
the reaction front is unstable and develops so-called dissolu-
tion fingers where flow is channeled. The wavelength of the
instability can be defined as the distance between successive
fingers; it corresponds to the wavelength developing initially
in the reaction front. The development of the instability is
limited by diffusion, which tends to smooth concentration
gradients. Moreover, slow reactions, corresponding to wide
reaction fronts can only develop wide fingers, while fast reac-
tion can develop instabilities at any wavelength, which result
in finger of any width. The infiltration instability has been
studied theoretically by Ortoleva et al. (1987) and Steefel and
Lasaga (1990, 1992), who proved that in the case of lime-
stone, wavelengths larger than 10µm were unstable and able
to form dissolution channels. Therefore, the infiltration insta-
bility is in action during karst formation and might be a clue
to understand the organization of karstic networks. It has
been studied experimentally at the centimetric scale by Dac-
cord and Lenormand (1987) who injected water radially from
the axis of a plaster plug, and by Fredd and Fogler (1998),
who injected several aggressive fluids in limestone. These
authors compare their results with simplified models, involv-
ing Diffusion Limited Aggregation for Daccord and Lenor-
mand, and 2-D or 3-D network models for Fredd and Fogler.
Steefel and Lasaga (1990), Bekri et al. (1995), Ormond and
Ortoleva (2000) and Golfier et al. (2002) used coupled mass
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transfer numerical models to define the morphology of dis-
solution channels that develop inside a porous medium, as
a function of the non-dimensional parameters of the system,
which are the Peclet and Damköhler numbers (hereafterPe

andDa). LargePe andDa correspond to the strong insta-
bility regime, where fingering may set up on any heterogene-
ity of the porous medium. ForPe<5, dispersion prevents
the development of the instability. Moreover, Ormond and
Ortoleva (2000) have modeled the fingering process with a
Brinckman equation, which allows coupling of Darcy flow
in the porous medium with Navier Stokes flow in voids, and
compared it with a Darcy model, where dissolution zones
were described by a several order of magnitude permeabil-
ity increase. They conclude that although the propagation of
fingers was faster when the entire medium was subject to dis-
solution, the general wormholing pattern was rather insensi-
tive to the equation used in dissolved area. This suggests that
flow focusing and finger competition are not sensitive to the
kind of equation used in the finger, once flow is much easier
in dissolution zones.

Siemers and Dreybrodt (1998) and Kaufmann and
Braun (1999) compute the dissolution pattern occurring in
a fracture set with realistic boundary conditions including
topography. Further publications improve the description
of the porous medium, introducing a dual fissures set or
a porous matrix exchanging fluid with fractures (Kaufman
and Braun, 2000; Gabrovsek et al., 2004). Gabrovsek and
Dreybrodt (2001) allow fluctuation of the water table and
Kaufmann (2003) considers flow inside the unsaturated zone.
These publications consider topography as a driving force for
flow. However, their initial fissure network constitutes a set
of large-scale heterogeneities that channel dissolution. We
propose here that dissolution should be also modeled in an
homogeneous porous medium to understand how the insta-
bility works by itself in the presence of topography. Our
models consider mainly fast reactions, by reference to cal-
cite dissolution, but owing the evidence of pseudo-karstic
structures in silicated rocks altered under tropical climate
(Trescases, 1975; Wray, 1997; Willems et al., 2002), the in-
fluence of a slower dissolution rate is briefly explored. Our
results should be viewed as a first step to bridge the gap be-
tween infiltration instability models using an initial 1D circu-
lation scheme such as those of Ormond and Ortoleva (2000)
and Golfier et al. (2002) and dissolution events occurring at
the scale of a geological formation.

The simplifications introduced in the coupled equations of
infiltration instability are discussed first. These simplifica-
tions allow to develop a compact, robust and efficient nu-
merical model for unstable dissolution of porous media with
fast dissolution rate. Then the growth of dissolution struc-
tures and a sensitivity analysis are presented. Finally possi-
ble consequences for the porosity distribution in carbonated
and other soluble rocks are discussed.

2 The model

2.1 Equations

We use equations able to capture the nature of the infiltrative
instability and to produce a simple and fast code. We model a
water-saturated medium, where the Darcy flow Eq. (1) links
the filtration velocityv to the pressure gradient∇P . Hereµ

stands for the fluid dynamic viscosity,ρ for its density,k for
the porous medium permeability, andg is the gravity.

µ

k
v = −∇P + ρg (1)

This equation accounts well for flow in a carbonate-cemented
sandstone, where a silicated matrix remains after dissolution
of the cement, but is only an approximation inside a carbon-
ate where the whole matrix is soluble. Here, dissolved zones
are characterized by a several orders of magnitude perme-
ability increase.

Our reaction-transport equation considers a single chem-
ical species, say H+ dissolving the porous matrix with a
first order kinetics. The concentration of the active species
at equilibrium with limestone is assumed to be negligible.
Then, Quintard and Whitaker (1999) and Golfier et al. (2002)
have shown that the reactive transport of this species can be
described by Eq. (2) whereC is the averaged solute concen-
tration of the species.

ϕ
∂C

∂t
+ v · ∇C = D∇

2C − αC (2)

Here,ϕ is the porosity, the first term depicts the accumulation
of the species, the advection velocity in the second term is the
filtration velocity, the third term describes mixing of chem-
ical species by a diffusion process of diffusivityD, and the
first order kinetics reaction is characterized by the constant
α. The use of only one chemical species, of a single diffusiv-
ity D for the mixing of species, and of first order kinetics are
clearly approximations. However, more sophisticated disper-
sivity models and reaction kinetics could be easily included.
As the time constant needed for Eq. (2) to reach a steady so-
lution is much lower than the one required for a significant
change of porosity, the accumulation term may be canceled
in the Eq. (2). This point will be further quantified in the
section devoted to the numerical model. Moreover, in our
models, the amount of fluid advected during a time step is
several orders of magnitude larger than the increase of fluid
volume due to the increase of porosity by dissolution. This
allows also to adopt the steady state approximation of the
mass conservation Eq. (3)

∇ · v = 0 (3)

As a result of the quasi-steady approximation, our equations
do not include explicitly time dependence. Time stepping
arises only through permeability update during dissolution.
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Equations are used in their non-dimensional form (1’)–
(3’), with the distance scaled by the topographic jump, h,
the permeability byk0, the permeability before dissolution,
the concentration byC0, the concentration of the infiltrat-
ing fluid, the filtration velocities byv0=ρgk0/µ which is
the velocity induced by the gravity in a vertical slice of
the initial porous medium. The non-dimensional pressure is
P ′

=(P−ρgz)/ρgh. These non dimensional parameters are
valid if the fluid density and viscosity are constant during dis-
solution, which is the case for low solubility minerals such as
limestone and silicates. Fluid density changes, such as those
involved during karst development in evaporites, could be
considered by introducing explicitly in the Eq. (1) the con-
centration dependence of density.

k0

k
v′

= −∇
′P ′ (4)

Pe v′
· ∇

′C′
= ∇

′2C′
− Pe Da C′ (5)

∇
′
· v′

= 0 (6)

Equation (5) includes the non-dimensional numbers
Pe=ν0h/D andDa=αh/ν0 that are those of the infiltration
instability, to which should be added the permeability ratio
between the fully dissolved and the non dissolved media
(Rk) and the aspect ratio of the modeled area, which is 2
in our models. It can be seen in their definitions thatPe

measures the ratio between advection and diffusion, while
Da measures the ratio of reaction rate by advection.

Equations (4) and (6) are combined to obtain:

∇
′
·

[
k

k0
∇

′P ′

]
= 0 (7)

2.2 Geometry and parameters

The initial condition and boundary conditions are pictured
on Fig. 1. Our equation set is solved on a 2-dimensional
area consisting of a slice of porous medium with a height
h of 100 m, an aspect ratio of 2, an initial permeabilityk0
of 3×10−14 m2, and a porosityϕ0 equal to 0.3, which is as-
sumed to overlie a horizontal impervious medium. The right
boundary of this porous slice is a vertical surface from which
water is free to escape and that corresponds to a vertical cliff.
The constant atmospheric pressure (P=0) is applied there.
This corresponds toP ′

=−z/h. A symmetry condition is ap-
plied at the left boundary. The flow lines are curved and con-
vergent toward the right free boundary. Moreover, the infil-
tration velocity (i.e. the vertical Darcy velocity) is maximum
near the free boundary and decreases toward the upstream
region, for example from 0.82 atx=0.2 to 0.12 atx=0.99.

A constant concentration of active species
C0=10−5 mol/kg is maintained at the upper surface
of the model. The characteristic filtration velocity is
ν0=3×10−7 m/s, withµ=10−3 Pas andg=10 ms−2, and the
characteristic time scale ish/ν0=3×108 s≈10 yr. In our
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Fig. 1. Geometry and boundary conditions of our models. Initial
(before dissolution) flow lines are drawn. The white stripes at the
top of the model represent the vertical random high permeability
slots introduced to insure vertical infiltration of water.

models the diffusion term describes hydrodynamic disper-
sion occurring due to the tortuous paths followed by fluid
particles inside the porous medium. It operates mainly near
the borders of wormholes, where the concentration gradient
is perpendicular to the fluid velocity. Hence, the transverse
dispersivity is used, which is estimated to 0.3 m in the scale
range 10–100 m, according to Gelhar et al., 1992. With the
velocity ν0, this correspond to a diffusivityD=10−7 m2 s−1

which yieldsPe=300. The constantα has been estimated
for limestone by considering thatα=KdissS0/C0 whereKdiss
is the kinetic constant for dissolution of calcite, andS0 is
the specific interfacial area between the solid and the fluid,
for which a value of 102 m2/kg has been adopted. The
dissolution of calcite is a fast reaction up to a 60% or to a
90% saturation index, according to Palmer (1991) and to
Dreybrodt (1996), respectively. Here, we use the constantα

deduced from the results of Dreybrodt (1996) up to complete
saturation in order to ensure a first order kinetics. This leads
to Kdiss=2×10−7 molm−2 s−1 which yields Da=7×108.
Considering that our fluid velocity isν0/ϕ and that 1/α is
the time constant of the dissolution reaction, fluid covers
a distance of 5×10−7 m during reaction, and the reaction
front is much thinner than the grid mesh. This allows us to
assume an infinitely thin reaction front and thus infinite Da.
With the Da of 10 used for the test of a finite dissolution
rate, however the front is 10 m thick, and several grid
points are out of equilibrium.Pe values in the range of
30–3000 are explored by changing the initial permeability
of our layer.Rk values between 10 and 105 are considered.
The characteristic time scale is given byh/v0 and is equal
to 1, 10, and 100 yr forPe equal to 3000, 300, and 30,
respectively.

2.3 Approximations and numerical methods

Two different problems arise in numerical modeling of car-
bonates dissolution, both of which originate in the sharp
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Pe = 30
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Fig. 2. Examples of flow and concentration in a imposed finger-like porosity distribution, for differentPe andDa. The width of the
concentration front is controlled byPe in (a) and(b) and byDa in (c). The finger boundary is defined by the heavy grey line.(d) is an
enlargement of the finger tip illustrating the dissolution process in the infiniteDa case. Due to theγ factor a huge amount of fluid flows
through the interface, before it is significantly advected by dissolution (from the straight dotted line to the broken heavy line) at theγV C′

velocity.

interface between non dissolved limestone and voids created
by dissolution. The first one consists in tracking a sharp in-
terface without allowing it to spread on several grid points.
The second one consists in accounting the permeability jump
arising at this interface.

Assuming instantaneous dissolution allows key simplifica-
tions: firstly the time constant required by the mass transfer
equation (Eq. 2) to reach steady state depends on advection
and diffusion, only. In our models diffusion operates in the
fingers and at their border, tending to smooth the concen-
tration of active species inside them (Fig. 2a, and b). Thus,
the characteristic time to reach steady state in Eq. (2) is the
one required to establish the concentration profile inside the
longest and widest finger, which is nearly equal to the time

required for the fluid to travel along the whole length of the
finger, i.e. of the order of magnitude of 1. It results that
steady state in Eq. (2) is reached in a non-dimensional time
of 1.

Secondly, the modeled slice can be divided in a non dis-
solved volume, where no active species may be present, and
a fully dissolved volume, where no limestone is present and
therefore no reaction may occur. Thus, Eq. (2) can be sim-
plified to yield:

Pe v′
∇

′C′
= ∇

′2C′(fully dissolved volume) (8)

C′
= 0 (non dissolved volume) (9)

Equation (8) expresses that when the limestone is fully dis-
solved, the transport-reaction equation does not include any
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reaction term, while Eq. (9) indicates that infinitely fast dis-
solution reaction brings the concentration of active species
to zero as soon as there is still some limestone to dissolve.
Since the dissolution front is infinitely thin, the combination
of Eqs. (8) and (9) matches the whole volume of the modeled
slice.

Then, dissolution reduces to the advection of the infinitely
thin porosity front at a velocityγ vNC′ with γ=

1
(1−ϕ)

C0
CS

,
vN being the normal velocity at the interface, and(1−ϕ)Cs

the carbonate volume concentration inside the solid phase
(Fig. 2d). Considering a molar mass and density of 100 g
and 2.800 kgm−3 for calcite and our concentration of ac-
tive species in the infiltrating fluid of 10−5 mol/kg, it comes
γ =5×10−7. Finally, asγ�1, the interface moves at a much
lower velocity than the filtration velocity and the time needed
to record a significant porosity change is much larger than 1.
This implies that the steady state mass transfer Eq. (5) may
be used.

Multigrid methods, known for fast convergence in the
presence of steep gradients (Hackbusch, 1985) are employed
to solve alternatively Eq. (7) and the combination of Eqs. (8)
and (9) on a 257×129 grid with some checks of consistency
on a 513×257 grid. Equation (9) is applied as a constraint in-
side the non dissolved volume. The advection term of Eq. (8)
is discretized with the finite-analytic method of Lowry and
Li (2002), which prevents spreading by artificial diffusion of
concentration gradients. The non diffusive VOF method, de-
veloped by Hirt and Nichols (1981) is adopted to track sharp
porosity fronts. The time step is adjusted so that less than
1/10 of the volume of a mesh element is dissolved at each
iteration. Coupling the set of Eqs. (8) and (9) with Eq. (7) is
achieved via permeability changes. The multigrid solver and
the VOF method have been checked against analytical solu-
tions. The whole code has been carefully checked against
the examples given by Ormond and Ortoleva (2000) in their
Figs. 1 and 2.

3 Results

In our first models, the upper right corner was first dissolved
and attracted further dissolution, that was then concentrated
at the surface to produce an analog of a river. To constrain
vertical infiltration from the surface, a series of vertical high
permeability slots, analog to an epikarst, were imposed ran-
domly down to an 8-m depth. No dissolution was allowed
inside these slots as well as on a 15 m length at the upper
right corner. This does not imply that no dissolution occurs
inside the epikarst, but that here dissolution results in verti-
cally organized structures that allow infiltration of rainwater.
For easier comparison, the distribution of the vertical slots is
identical in all the simulations. However several initial distri-
butions of vertical slots have been checked and the influence
of this parameter is discussed in the forthcoming sections.

3.1 The reference case

Our reference case is characterized byRk=100,Pe=300 and
infinite Da. A first finger develops atx=0.25 in a direction
nearly parallel to the initial flow lines. The finger curves in
the immediate surrounding of the free boundary and ends
crossing the cliff at az=0.65 after a time lapse of 2×105

(Fig. 3a). The position of this first finger depends slightly on
the initial permeability distribution. After the breakthrough,
neither the porous flow nor the water saturated medium as-
sumptions are valid and dissolution is no longer computed in
the finger. The pressure in this finger is almost equal to the at-
mospheric pressure due to the large permeability ratio. This
induces on subsequent fingers an attraction effect similar to
that of the right topographic edge.

The second finger grows atx=0.7 and reaches the cliff
at z=0.3 after a non-dimensional time lapse of 2.3×106

(Fig. 3b). The development of this second finger is signif-
icantly slower than the first one even considering its larger
length before breakthrough. It is slightly wider than the first
one. This can be viewed as a consequence of the decreas-
ing initial fluid velocity in the upstream direction resulting
in a decrease of the local Peclet number and an increasing
smoothing of aggressive species inside the finger due to dif-
fusion. Thus, only wider fingers can develop, an effect that
has already been noted by Steefel and Lasaga (1990).

Two fingers that set on atx=1.1 andx=1.2 are prevented
from developing by hydrodynamic capture of the aggressive
fluid by the second finger through a superficial horizontal dis-
solution drain (Fig. 3c). The third finger is wider than the
previous ones and develops after a longer while. It follows
firstly the initial flow lines and then is captured and converges
toward the second finger after a non-dimensional time lapse
of 9.8×107 (Fig. 3d).

Simulations with various initial vertical high permeability
slots distributions gave slightly different finger distributions
all with the same common characteristics: (i) a first finger
arrives above mid cliff height after a short time lapse, (ii) 2
or 3 additional fingers reach the cliff nearz=0.3, their width
and the duration of their growth increasing in the upstream
direction, (iii) fingers growing near another fully developed
finger are stopped by hydrodynamic capture.

3.2 Sensitivity analysis onRk andPe

As a common feature, the first finger (the rightmost one) in-
tersects the cliff above mid-height. Then a second finger or
a series of fingers arrives slightly above the base of the lime-
stone formation for the highest Peclet values. This implies
that the base of the formation is not drained by high perme-
ability channels, a drawback of our modelling technique in
which the development of a finger is stopped as soon as it
arrives at the cliff. Therefore, further dissolution cannot de-
velop from the base of this finger toward the base of the cliff.
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Fig. 3. Dissolution evolution for our reference case with infiniteDa, Pe=300 and the permeability ratio between the fully dissolved and
the non dissolved media (Rk) equal to 1000. Time is in non-dimensional units.(a) and(b) correspond to the arrival of the first and second
finger at the vertical boundary, c) corresponds to the capture by the second finger of a series of fingers developing up tox=1.4 and(d) to the
connection of the second and third finger, the latter being afterwards drained to the vertical boundary.

Smaller Peclet numbers (Fig. 4a and c) allow only the de-
velopment of wide fingers. This results from diffusion, that
smoothes the concentration of active species inside thin fin-
gers to almost zero. The second finger of Fig. 4a andC de-
velops slowly and is at least 200 m wide. Atx=0.7 the in-
filtration velocity is only 0.5 and the resulting local Peclet
number is reduced to 15, near the value of 5 under which no
fingers are allowed to develop for the high permeability ra-
tios of this study (Ortoleva, et al., 1987; Steefel and Lasaga,
1990). The local Peclet decreases in the upstream direction
and reaches 5 atx=1.1. Figure 4a andC show then that dis-
solution produces large pockets around the widest initial ver-
tical high permeability slots. Probably, these pockets could
not develop without an initial high permeability zone able to
focus the aggressive fluid flow. They could be compared to
dolines that are common dissolution features of karstic land-
scape (Ford and Williams, 1994).

The runs of Fig. 4a and b are characterized by the largest
permeability contrast (Rk=105) and thus by enhanced hydro-
dynamic capture of reactive fluid that prevents the simulta-
neous development of neighbour fingers, an effect that has
been previously noted by Ormond and Ortoleva (2000). This
is best evidenced in Fig. 4b where the finger atx=0.95 devel-

ops on almost half the cliff height before it is stopped by the
progression of an horizontal channel that originates from the
first finger.

Figure 4a shows that after the development of the first fin-
ger, only large dissolution pockets grow around large initial
permeability zones. They do not evolve as fingers even until
30% of the initial limestone is dissolved. We suspect how-
ever that in real geological examples, due to superficial ero-
sion and run-off, rainwater could be focused at the center of
these pockets and that instable dissolution could set on as a
result of the increased infiltration velocity and Peclet num-
ber. Finally the case of Fig. 3d is characterized by the de-
velopment of several dissolution fingers, as a consequence of
the high Peclet number, that enhances instability, and of the
low permeability contrast that limits the competition between
fingers by hydrodynamic capture.

3.3 Effect of a finite dissolution rate

In order to discuss the case of finite dissolution rate of sil-
icates and carbonates near their equilibrium, a model with
Da=10, corresponding to a reaction time constant 1/α=1 yr,
has been included in our sensitivity analysis, the other pa-
rameters being left unchanged from our reference case. The
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Fig. 4. Sensitivity study for thePe andRk parameters.Rk andPe values are bracketing those of the reference case. The final state, only,
where no additional finger is allowed to develop, is drawn. The permeability ratio between dissolved and non dissolved zones increases
from bottom to top, and thePe increases from left to right. The white rectangle labeled as “reference case” represents the final state of the
reference case (Fig. 3d). As in Fig. 2, time is in non-dimensional units.

permeability is modeled with a Kozeni-Karman type (i.e.k

proportional toφ3/(1–φ)2) law, up to a porosity of 0.6, and
beyond that value tends asymptotically to 100. The accu-
mulation term of Eq. (2) can still be neglected according
to the results of Ogata (1964, 1970) and Lichtner (1988).
The dissolution rate is given at each grid point by the term
Pe×Da C′.

Figure 5a shows a diffuse dissolution zone of width close
to 0.5 developing nearly along the initial flow lines and
reaching the cliff near its mid-height. This can be viewed
as a consequence of the reaction front width, that is between
0.1 and 0.5 due to the initial infiltration instability velocity
of 1 to 5 in the area where the dissolution develops. Thus
the reaction front will include a large part of the porous slice
thickness. Our results are consistent with those of Golfier et
al. (2002) for the style of instability and those of Ormond and
Ortoleva (2000) who note that only fingers wider than the dis-
solution front are allowed to grow. Moreover, due to the slow
dissolution kinetics, a finger develops simultaneously on its
whole length and therefore is driven in orientation by the ini-
tial flow lines. We have noted that this effect was dependent
on the porosity-permeability law and was more pronounced
if a steep permeability change was introduced at the begin-
ning of dissolution.

One notes also in Fig. 5a the onset of a second dissolution
finger atx=1.05, sharper than the first one, due to the sharper
dissolution front resulting from the decrease of the infiltra-
tion velocity in the upstream direction. This finger develops
also along the initial flow lines and reaches the base of the
cliff at t=7×105 (Fig. 5b).

Thus, a slow kinetics reaction tends to induce dissolution
parallel to the initial flow lines and, as in the previous section,
the instability style may change as a consequence of the de-
creasing infiltration velocity and Damköhler away from the
cliff edge.

4 Discussion and conclusion

Assuming instantaneous dissolution of limestone allows key
simplifications in infiltrative instability modeling. They are
implemented to explore the effect of a lateral topographic
jump on the fingering process. Two main results arise: (i)
the first finger develops very near the vertical free bound-
ary and crosses it above its mid-height, while a series of fin-
gers develops progressively in the upstream direction. The
drainage of the entire slice length may take up to 100 times
the time for breakthrough of the first finger (ii) the dissolu-
tion style varies with the infiltration velocity, wider fingers
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a)  T=3.8 E5 b)  T=7.0 E5
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Figure 5
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Fig. 5. Dissolution with a finite dissolution rate, characterized byDa=10,Pe=300, andRk=1000 (non-dimensional time units). Due to the
finite dissolution rate, there is smooth transition between the fully dissolved (in white) and the non-dissolved media.(a) and(b) correspond
to the arrival of the first and second finger at the right free boundary.

are generally produced away from the jump, or fingers are
replaced by large dissolution pockets. These effects are the
consequence of the decrease of the infiltration velocity and of
the resulting decrease of the Peclet number. They were hid-
den in previous quantitative models of karst generation since
dissolution was channeled in permeability heterogeneities in-
troduced by the initial fracture set of these models.

Considering the approximations introduced in the equa-
tions, our results have to be compared with great caution
to real geological examples. A major assumption is to con-
sider that the porous medium is saturated with water. Thus,
the model assumes the infiltration of 10 myr−1 of rainwater
for a non-dimensional vertical velocity of 1, a value that can
hardly be achieved, even in most rainy climates. Moreover,
our models differ primarily from real karst by the amount of
connected porosity, since one of our runs produces a con-
nected network with a near 30% porosity, while a fully ma-
ture karst could work with a 1% porosity (Mangin, 1995),
including large caves and shafts poorly connected with the
main drainage network. Further insight into the geometry of
the fingering process might be gained by using 3-dimensional
modelling, which is achievable with numerical method simi-
lar to those of this study and up-to-date computers.

In the case of silicate rocks altered by dissolution and thus
possibly subjected to the infiltration instability, two addi-
tional effects should be considered. First, incomplete disso-
lution will result in less permeable channels than in the karst
case, which has been shown here to produce the simultaneous
growth of numerous fingers. A second effect will arise from
the slow dissolution kinetics that will produce a thick disso-
lution front possibly including the entire formation thickness
and prohibiting the development of the instability. However,
a thinner dissolution front may result from the decrease of the
fluid velocity in some areas of the infiltration basin, so that
the infiltration instability could set on there, under the con-

dition that the Peclet number has not decreased below 5. In
these formations, the infiltration instability is likely not to be
detected, since it might govern the permeability distribution
in some places only.

In summary, modeling infiltration instability could yield
qualitative tools for better understanding the permeability
distribution and its time-evolution inside a formation altered
by dissolution. In the light of the present results we propose
further modeling efforts accounting for dissolution inside the
unsaturated zone, 3d aspects and variable density effects in
evaporites.
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