
Hydrol. Earth Syst. Sci., 12, 1273–1283, 2008
www.hydrol-earth-syst-sci.net/12/1273/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Robust estimation of hydrological model parameters
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Abstract. The estimation of hydrological model parameters
is a challenging task. With increasing capacity of computa-
tional power several complex optimization algorithms have
emerged, but none of the algorithms gives a unique andvery
bestparameter vector. The parameters of fitted hydrological
models depend upon the input data. The quality of input data
cannot be assured as there may be measurement errors for
both input and state variables. In this study a methodology
has been developed to find a set of robust parameter vectors
for a hydrological model. To see the effect of observational
error on parameters, stochastically generated synthetic mea-
surement errors were applied to observed discharge and tem-
perature data. With this modified data, the model was cal-
ibrated and the effect of measurement errors on parameters
was analysed. It was found that the measurement errors have
a significant effect on the best performing parameter vector.
The erroneous data led to very different optimal parameter
vectors. To overcome this problem and to find a set of robust
parameter vectors, a geometrical approach based on Tukey’s
half space depth was used. The depth of the set ofN ran-
domly generated parameters was calculated with respect to
the set with the best model performance (Nash-Sutclife ef-
ficiency was used for this study) for each parameter vector.
Based on the depth of parameter vectors, one can find a set of
robust parameter vectors. The results show that the parame-
ters chosen according to the above criteria have low sensitiv-
ity and perform well when transfered to a different time pe-
riod. The method is demonstrated on the upper Neckar catch-
ment in Germany. The conceptual HBV model was used for
this study.
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1 Introduction

Hydrological models are used for different purposes such
as water management or flood forecasting. The estimation
of hydrological model parameters is a difficult task. Rea-
sons for this are the highly non-linear nature of hydrological
processes and the fact that different parameter vectors driv-
ing models describing the physical processes might have the
same effect on the discharge. This means that changes of
some parameters might be compensated by others. Unfor-
tunately traditional manual calibration of models with rea-
sonable parameter values often leads to weak results. Hence,
nowadays automatic procedures based on numerical methods
are used.

Many different optimization routines have been developed
to find optimum parameter vectors. A variety of objective
functions measuring model performance including multi-
objective approaches, have been tried to define optimality in
this context. Non-linearity of the hydrological models and
of the objective functions lead to very complex optimization
problems. Beven and Freer(2001) argue that there are no
optimum parameters, in fact there is a large set of parameter
vectors which all perform reasonably and one cannot eas-
ily distinguish between them. They call this anequifinality
problem which leads to high uncertainties in the model pre-
dictions. Frequently showndotty plots give the impression
that the set of good parameter vectors can be found anywhere
in the space. But no clear convergence to a best single value
can be observed. However, in a previous paper (Bárdossy,
2007), the geometrical properties of a parameter vector with
good performance (from now on theset of good parameters)
were investigated for a two-dimensional case. It was shown
that the set of good parameters is well structured. Unfor-
tunately in higher dimensional spaces one can notseethese
sets, thus it is not clear whether they are scattered or have
some clear structure. The high scatter observed in the good
individual parameters is very disturbing since, it does not
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enable a classical identification of a single vector within cor-
responding confidence bounds.

The GLUE procedure (Beven and Binley, 1992) has
widely been applied for uncertainty assessment and dis-
cussed in the scientific literature, although alternative pro-
cedures using parametric approaches to obtainbest solu-
tions have also been suggested. These approaches are op-
timal under certain assumptions, however, they are often se-
lected purely for mathematical convenience and not neces-
sarily based on experience with data.

In Kavetski et al.(2006a,b) it was noted that the perfor-
mance metric of hydrological models is abumpyfunction
of the model parameters. They suggest different numerical
procedures to smoothen parameter surfaces and to obtain op-
timal parameter vectors.

The purpose of this paper is to investigate the reasons lead-
ing to very different near optimum parameter vectors and to
investigate the properties of the set of good parameters in
high dimensional spaces. Our goal is not to find the parame-
ter vectors which perform best for the calibration period but
to find parameter vectors which:

1. lead to good model performance over the selected time
period

2. lead to a hydrologically reasonable representation of the
corresponding processes

3. are not sensitive: small changes of the parameters
should not lead to very different results

4. are transferable: they perform well for other time pe-
riods and might also perform well on other catchments
(i.e. they can be regionalized)

Concepts of computer geometry and multivariate statistics
are used to identify the set of good parameters. Specifically,
convex sets and the depth function defined inTukey (1975)
are used.

The concept of data depth has recently received much at-
tention byDonoho and Gasko(1992), Rousseeuw and Struyf
(1998), Rousseeuw and Ruts(1998), Liu et al. (1999), Zuo
and Serfling(2000), Miller et al. (2003) andLin and Chen
(2006). It has been used for the investigation of large data
sets. The application of depth function has been seen in
several fields.Serfling (2002) used the depth function for
nonparametric multivariate analysis.Cheng et al.(2000) had
used data depth function for monitoring multivariate aviation
safety data for control chart. They were also applied in qual-
ity control by Liu (1995), Hamurkaróglu et al.(2004). The
only hydrological application found so far is inChebana and
Ouarda(2008), where data depth was used to define weights
for the regional estimation of hydrological extremes.

This paper is organized as follows: After the introduction,
the case study area is introduced. In Sect. 3, the effect of ob-
servation errors on the identification of hydrological model
parameters is discussed. In Sect. 4, the notion of statistical

depths is introduced. Geometrical properties of the set of
good parameters is investigated with the help of the depth
function and robust parameter vectors are identified. In the
final section, results are discussed and conclusions are drawn.

2 Case study area and the hydrological model

The concept of this paper will be illustrated with examples
from the Neckar catchment. The hydrological model chosen
is a modified version of the HBV model. A short description
of the catchment and the model is provided in this section.

2.1 Study area

This study was carried out on the upper Neckar basin in
South-West Germany in the state of Baden-Württemberg us-
ing data from the period 1961–1990. The region is flat, un-
dulating in the east and north. The Black Forest and Swabian
Alps are in the west and south. The 4000 km2 large Upper
Neckar basin was subdivided into 13 subcatchments (Fig.1).
Three of which were used for this study.

The study area elevations range from 238 m a.s.l. to
1010 m a.s.l. The dataset used in this study includes measure-
ments of daily precipitation from 151 gauges and daily air
temperature at 74 climatic stations. The meteorological input
required for the hydrological model was interpolated from
the observations with External Drift Kriging (Ahmed and
de Marsily, 1987) using topographical elevation as external
drift. The mean annual precipitation is 908 mm/year. Land
use is mainly agricultural in the lowlands and forested in the
medium elevation ranges. Hydrological characteristics of the
three selected subcatchments are given in Table1. For fur-
ther details please refer toSamaniego(2003) andBárdossy
et al.(2005).

2.2 Hydrological model

The HBV model concept was developed by the Swedish Me-
teorological and Hydrological Institute (SMHI) in the early
1970’s. It has been modified at the Institute of Hydraulic
Engineering, University Stuttgart and used for this study. It
includes conceptual routines for calculating snow accumula-
tion and melts, soil moisture and runoff generation, runoff
concentration within the subcatchment, and flood routing of
the discharge in the river network. The snow routine uses the
degree-day approach as set out in Eqs. (1) and (2). Soil mois-
ture is calculated by balancing precipitation and evapotran-
spiration using field capacity and permanent wilting point as
parameters, Eqs. (3) to (5).

MELT = DD · (T − Tcrit) (1)

DD = DD0 + k · P (2)

Peff = (SM/FC)β · P + MELT (3)
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A. Bárdossy and S. K. Singh: Robust parameter estimation 1275

#Y

#Y

#Y

#Y

#Y

#Y

#Y
#Y

#Y

#Y

#Y

#Y

#Y
Kirchentellinsfurt

Horb, Neckar

Rottweil, Neckar

Suessen, FilsPlochingen, Neckar

Plochingen, Fils

Bad Imnau, Eyach

Oberndorf, Neckar

Riederich, Erms

Oberensingen, Aich

Tuebingen Steinlach

Wannweil-Bahn, Echaz

Rangendingen, Starzel

10 0 10 Kilometers

N

Topographic Elevation [m.a.s.l]
241 - 300
300 - 400
400 - 500
500 - 600
600 - 700
700 - 800
800 - 900
900 - 1010

Neckar river
River network

Subcatchments
Rottweil, Neckar
Suessen, Fils
Tuebingen Steinlach

#Y Discharge gauges

Fig. 1. Study area: upper Neckar catchment in south-west Germany.

Table 1. Summary of the size of the different subcatchment in the study area.

Subcatchment Subcatchment Elevation Slope Mean Discharge Annual
size (km2) (m) (degree) (m3/s) Precipitation (mm)

1 Rottweil 454.65 555–1010 0–34.2 5.1 968.16
(Neckar)

2 Tübingen 140.21 340–880 0–38.8 1.7 849.84
(Steinlach)

3 Süssen 345.74 360–860 0–49.3 5.9 1003.45
(Fils)

Where: Peff is the effective precipitation,SM is the actual
soil-moisture,FC is the maximum soil storage capacity,β

is a model parameter (shape coefficient),P is the depth of
daily precipitation, MELT is the amount of snow melt,DD is
degree day factor,T is the mean daily air temperature,Tcrit is
threshold temperature,DD0 is degree day factor when there
is no rainfall andk is a positive number.

PEa = (1 + C · (T − Tm)) · PEm (4)

Where:PEa is the adjusted potential evapotranspiration,C

is a model parameter,T is the mean daily air temperature,
Tm is the long term mean monthly air temperature andPEm

is the long term mean monthly potential evapotranspiration.

Ea = (SM/PWP) · PEa (5)

Where:Ea is the actual evapotranspiration,SM is the actual
soil-moisture andPWP is limiting soil-moisture at which
potential evapotranspiration take place. Runoff generation
is simulated by a nonlinear function of the actual soil mois-
ture and precipitation. The runoff concentration is modeled
by two parallel nonlinear reservoirs representing the direct
discharge and the groundwater response. Flood routing be-
tween the river network nodes uses the Muskingum method.
Additional information about the HBV model in general can
be found inHundecha and B́ardossy(2004), andBergstr̈om
(1995). Direct runoff and percolation from each subcatch-
ment are calculated using Eqs. (6) to (10).

Q0 = k0 · (S1 − L) (6)

Q1 = k1 · S1 (7)
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Fig. 2. Scatter plot of model parameters obtained by optimization
using random discharge errors.

Qperc = kperc · S1 (8)

Q2 = k2 · S2 (9)

Where:Q0 is near surface flow,Q1 is interflow,Qperc is per-
colation,Q2 is baseflow,k0 is the near surface flow storage
constant,k1 is the interflow storage constant,kperc is the per-
colation storage constant,k2 is the baseflow storage constant,
S1 is upper reservoir water level,S2 is lower reservoir water
level, L is threshold water level for near surface flow. The
total runoff is computed as the sum of the outflows from the
upper and lower reservoirs. The total flow is then smoothed
using a transformation function, consisting of a triangular
weighing function with one free parameter, MAXBAS.

Q = g(t, MAXBAS) · (Q0 + Q1 + Q2) (10)

Where:Q is current overall discharge and MAXBAS is the
duration of the triangular weighting function (Unit Hydro-
graph). There are 15 parameters to describe the model,out of
which 9 parameters are used for this study (Table2).

3 The effect of observation errors

In rainfall runoff modeling, input errors play a crucial role
but the problem of input errors is generally neglected by hy-
drologists (Paturel et al., 1995). Hydrological models use
observation data for the identification of model parameters.
Unfortunately many of the hydrological observations contain
partly systematic and partly random errors. Precipitation is
measured at a few selected locations and typically interpo-
lated for the catchment area. Thus, precipitation values used

in the model can be wrong due to measurement (for exam-
ple caused by evaporation or wind) and to interpolation er-
rors. The impact due to error in precipitation has been in-
vestigated byIbbitt (1972), Troutman(1985), Paturel et al.
(1995), Andréassian et al.(2001) and Oudin et al.(2006),
who found that error in precipitation has significant influence
on model performance.

Observed discharge is used as the main calibration quan-
tity, thus their errors may have significant influence on model
performance. In most cases water levels are observed and
rating curves are used to transform them to discharges. This
is an important source of partly systematic error and, when
combined with other errors, compromise the identification of
the model parameters.

The parameter vectors obtained by model parameter op-
timization algorithms are optimal with respect to an erratic
objective function. Measurement errors and errors due to
model structure are mixed (Todini, 2007) and cannot be sep-
arated directly. The following examples illustrate the effect
of observation uncertainty on parameter estimation.

Firstly, consider the observed meteorological variables and
discharge. We assume that due to measurement errors the
accuracy of the measured dischargeQM(t) is q%. Thus, the
real but unknown dischargeQE(t) can be written as:

QE(t) = QM(t)(1 + εQ(t)) (11)

with εQ(t) being a random error. This random error is due
to uncertainties of the rating curve, non-uniqueness of the
stage discharge relationship, changes of the cross section etc.
Here we assume that the error follows a normal distribution
N(0,

q
100). This means we assume a constant relative ran-

dom error and further, that the errors are independent (error
dependence would increase the effect of observation uncer-
tainty).

To quantify the effect of the flow error on model perfor-
mance a set ofM=100 realizations ofQE(t) was gener-
ated with q=5. Note that the rating curve related errors
are usually higher than this, especially in the case of ex-
treme flows. Consequently the parameters of the hydrologi-
cal model were estimated using simulated annealing by max-
imizing the Nash-Sutcliffe coefficient as if each parameter
vectorQE was the observed series. The model parameters
obtained show a considerable scatter. For example in two di-
mensions, Fig.2 shows the scatter plot for the selected model
parametersL andk1, whereM=20.

The uncertainty of the estimated model parameters with
respect to input error structure can also be investigated. With
respect to temperature observations one can assume that the
real but unknown temperatureTE(t) can be written as:

TE(t) = TI (t) + εT (t) (12)

In this case an additive error of the catchment mean tem-
perature was assumed. As in the previous case,M realiza-
tions were generated and model parameters were optimized
for each of the series separately.
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Table 2. Model parameters range for Rottweil (Neckar) Catchment.

Parameter Description Iteration 1 Iteration 4
Min Max Min Max

Tcrit Threshold temperature for snow melt initiation –1.50 2.50 –0.16 0.42
DD Degree-day factor 0.12 2.12 1.30 2.11
Dew Precipitation/Degree-day relation 0.01 1.09 0.287 1.06
β Model parameter (shape coefficient) 0.01 2.01 0.81 1.08
L Threshold water level for near surface flow 8.30 10.29 8.419 10.28
K0 Near surface flow storage constant 0.77 2.77 1.75 2.68
K1 Interflow storage constant 26.80 28.81 26.82 28.62
Kper Percolation storage constant 19.98 21.98 20.05 21.94
K2 Baseflow storage constant 36.80 38.79 36.83 38.72

Table 3. Model performance for the observed series using optimal parameters obtained using 100 randomly perturbed discharge data
sequences.

Catchments Mean NS Median NS Max NS Min NS Standard
deviation

Rottweil 0.699 0.698 0.733 0.675 0.0123
Tübingen 0.716 0.716 0.733 0.703 0.0054
Süssen 0.751 0.751 0.775 0.733 0.0083

Tables3 and4 show the effect of observation error on the
Nash-Sutcliffe coefficient for both discharge and temperature
measurement errors, respectively. The uncertainty of model
parameters with respect to precipitation uncertainty can be
considerable, depending on the density of the observation
network. This problem was investigated byDas(2006).

These examples show that model parameters and model
performance are highly influenced by measurement errors.
Two parameter vectors, with model performances differing
in the range of the measurement error caused fluctuations of
the Nash-Sutcliffe value, cannot be distinguished from each
other. Either of them might lead to a better description of the
hydrological system. The parameters obtained by sophisti-
cated optimization procedures might thus be suboptimal in
reality. Thus, it is reasonable to investigate the set of pa-
rameters which gives similar performance as the numerical
optimum. These parameters will be calledgood parameters
in the subsequent sections.

4 Geometrical structure of the parameter set

One of the major problems is that there is a large number of
parameter vectors which perform nearly equally well. It is
difficult, then to decide which of these should be taken for
prediction. Scatter plots showing model performances as a
function of individual parameters indicate that a wide range
of parameter values can lead to good model performance. At
present it seems impossible to know a priori if a fitted given
parameter vector leads to good or bad performance when ap-

plied to a model. InBárdossy(2007), the geometrical struc-
ture of the best performing parameters of the unit hydrograph
(impulse response function) of the Nash cascade were inves-
tigated. It was shown that the set has a very clear geometrical
structure. In this paper models with many more than two pa-
rameters are considered. It is difficult to visualise the subset
of best parameters in higher dimensions; instead methods of
computational geometry are used herein.

In order to investigate the properties of the set of good
parameter vectors, the concept of data depth was used. Depth
functions were first introduced byTukey (1975) to identify
the center (a kind of generalized median) of a multivariate
dataset. Several generalizations of this concept have been
defined inRousseeuw and Struyf(1998), Liu et al. (1999)
andZuo and Serfling(2000).

Definition: The halfspace depth of a pointp with respect
to the finite setX in thed dimensional space<d is defined
as the minimum number of points of the setX lying on one
side of a hyperplane through the pointp. The minimum is
calculated over all possible hyperplanes.

Formally the halfspace depth of the pointp with respect
to setX is:

DX(p) = min
nh

(min(|{x ∈ X 〈nh, x − p〉 > 0}|) ,

(|{x ∈ X 〈nh, x − p〉 < 0}|)) (13)

Here〈x, y〉 is the scalar product of thed dimensional vec-
tors, andnh is an arbitrary unit vector in thed dimensional
space representing the normal vector of a selected hyper-
plane.
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Table 4. Model performance for the observed series using optimal parameters obtained using 100 randomly perturbed temperature data
sequences.

Catchments Mean NS Median NS Max NS Min NS Standard
deviation

Rottweil 0.690 0.691 0.723 0.650 0.014
Tübingen 0.722 0.723 0.740 0.706 0.0062
Süssen 0.750 0.750 0.777 0.719 0.0121

Fig. 3. Points with low depth≤4 (circles) of a two dimensional set
of model parameters (crosses).

If the pointp is outside the convex hull ofX then its depth
is 0. Points on and near the boundary have low depth while
pointsdeeplyinside have high depth.

One advantage of this depth function is that it is invariant
to affine transformations of the space. This means that the
different ranges of the parameters have no influence on their
depth.

The calculation of the halfspace depth is computationally
very expensive if the number of points inX is large or the di-
mension is high. Efficient algorithms are available ford=2
fromMiller et al. (2003). In this study the approximate calcu-
lation suggested inRousseeuw and Struyf(1998) was used.

To illustrate the concept of data depth let us consider a
two dimensional data set. The parameter vectors with good
performance are shown on Fig.3. We have chosenL and
k1 in this example. The first parameter corresponds to the
x axis and the second to they axis. Points with low depth
≤4 are marked with circles. The convex polygon separates
the points with low depth (≤4) from those with high depth
(>5). Note that points near the boundary of the set have a
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Fig. 4. The performance of the model using different depth.

low depth while the interior points in the middle of the set
have the greatest depth.

4.1 Data depth of the good parameter set

In order to explore the set of reasonably performing param-
eter vectors using the above introduced concept, nine pa-
rameters of the HBV model were considered. The param-
eter ranges used for the initial Monte Carlo simulation for
the subcathment Rottweil (Neckar) is given in Table2. N

random parameter vectors where generated in a rectangle
bounded by reasonable limits in thed=9 dimensional space.
For each of these parameter vectors the hydrological model
was applied and the performance was calculated. This set of
parameter vectors is denoted asXN . A subsetX∗

N⊂XN of
the best performing parameter vectors (in our case we chose
the upper 10%) were identified. The depth of each point in
XN with respect toX∗

N was calculated. Figure4 shows the
histogram of the performance of the hydrological model for
the pointsθ∈XN with depthD(θ)>L. One can see that all
points with high depth (being in the geometrical interior of
the setXN ) lead to good model performance. The reason for
this is that one assumes that the low depth points can be re-
garded as an iso-hypersurface corresponding to the selected
level. If one assumes continuity of the objective function
then higher values of the function are expected in the interior
of the set.
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Table 5. Model performance for theN=10000 random parameter
sets with respect to the data depth calculated on the basis of the
points selected corresponding to the upper 10% performance.

Depth Number of Mean NS Standard
points deviation

– 10000 0.3132 0.6766
≥1 1743 0.6720 0.0198
≥10 893 0.6839 0.0135
≥50 182 0.6931 0.0090
>100 33 0.6971 0.0069

In order to check this statement an independent second set
YN of N random parameter vectors were generated. The
depth of the points ofYN with respect toX∗

N was calcu-
lated. For all parametersθ∈YN , the hydrological model was
run and the performances calculated. The results are eval-
uated for parameters such thatD(θ)≥L, exemplified in Ta-
ble 5 with the statistics of the performances. One can see
that the randomly generated parameter vectors which posses
high depth have good model performance. The standard de-
viation of the performance decreases with increasing depth,
showing that in thedeepinterior of the set all parameter vec-
tors perform similarly. These results show that for this case
one can geometrically identify parameter vectors which are
good. Note that even if the best performance is related to the
deepest subset, this is not necessarily always the case, since
the global optimum might itself correspond to a low depth.

4.2 Transferability

In order to investigate the transferability of the parameters
with respect to their depth, two experiments were carried out.

As a first test the total observation period of 30 years was
divided into three 10 year periods. The hydrologic charac-
teristics of the three time periods are listed in Table6. The
model performance was calculated for each time period. The
set of good parameter vectors was identified for each time pe-
riod separately and the depth of each parameter with respect
to this set was calculated. In this way, three depth values
were assigned to each parameter vector.

The sets with 50 and 150 deepest parameter vectors were
identified for each time period. The intersection of the con-
vex sets corresponding to the 50 deepest points consisted of
36 for the 150 point set 84 points indicating that depth is sta-
ble over all time periods. Note that a parameter vector was
considered to be in the intersection if it had positive depth
with respect the sets considered. As a set of 10 000 points
were considered; an independence selection of two sets with
150 points would have led with high probability no points in
the intersection. This means that parameters with large depth
are robust with respect to the selected time period.

Fig. 5. Construction of the pointsC1, C2 andC3 in one dimension
for sensitivity analysis of parameters.

As a second test the parameters with greater depth for one
time period were used for another time period and their per-
formance was calculated. In Table7 the results of the trans-
ferred model quality with respect to depth corresponding to
the time period 1961–1970 are shown. Note that the subset
of the boundary points was selected by choosing only points
for which the performance exceeds a given threshold. This
way we obtained two sets with the same mean performance.
Note that for the interior points, the performance in the other
time periods is significantly better than those of the bound-
ary points. The standard deviations of the performance for
the validation time periods are smaller for the interior points
which indicates that the transfer of these parameters is more
reasonable for the parameter vectors from the interior.

4.3 Sensitivity

The sensitivity is not investigated in the usual way to see how
the model reacts to changes of individual parameters. Instead
the parameter vectors are considered as sensitive if a small
change of the whole vector might lead to a big change (usu-
ally drop) in the performance of the model. The sensitivity
of boundary points and inside points was compared. For this
purpose parameter vectors were altered from the boundary
(D(θ1=1) and from the inside (D(θ2)>1 of the set. A spe-
cific vectorη was added and subtracted from the selected pa-
rameter vectors. This way the vectorsθ1 andθ2 were altered
to the same extent. Four new parameter vectors

C1 = θ1 − η

C2 = θ1 + η

C3 = θ2 − η

C4 = θ2 − η

are created. We selectη=
θ1−θ2

2 thus C2=C4. Due to the
definition of the depthD(C1)≥1 while D(C2)≤1. For C3
one cannot make any statements on the depth.

Figure 5 explains the construction of the three points in
one dimension.

The above construction of parameter vectorsC1, C2 and
C3 was carried out for a large number of randomly selected
pairsθ1 andθ2. Theθ1 andθ2 were selected in such a manner
that their mean performance was the same. Table8 shows the
statistics of the Nash-Sutcliffe coefficients for the sets cor-
responding toC1, C2 andC3. One can see that the inside
points all have good performance and the standard deviation
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Table 6. Runoff characteristics for different time periods.

Subcatchment Rottweil (Neckar) Tübingen (Steinlach) S̈ussen (Fils)

Time period Annual Annual Annual Annual Annual Annual
Precipitation Discharge Precipitation Discharge Precipitation Discharge
(mm) (mm) (mm) (mm) (mm) (mm)

1961–1970 997.53 375.26 851.84 400.36 1007.94 575.55
1971–1980 908.48 309.36 808.14 366.62 960.02 512.62
1981–1990 997.21 385.66 888.84 404.86 1041.72 541.81

Table 7. Model performance for parameter vectors according to their depth corresponding to the time period 1961–1970.

Time period Boundary points Points with depth>5
Mean Std Min Max Mean Std Min Max

1961–1970 0.682 0.010 0.667 0.711 0.682 0.015 0.647 0.705
1971–1980 0.630 0.043 0.488 0.714 0.673 0.019 0.634 0.726
1981–1990 0.751 0.029 0.641 0.798 0.776 0.017 0.715 0.804

Table 8. Model performance for the inner and the shifted boundary
and deep points.

Variable Mean NS Standard Skewness Max NS Min NS
deviation

C1 0.692 0.005 0.30 0.710 0.677
C2 0.576 0.101 –6.95 0.658 –0.491
C3 0.686 0.024 –5.58 0.713 0.363

is small. Points atC2 (outside points) have the worst perfor-
mance whileC3 is better thanC2 but worse thanC1. The
skewness of the performance is nearly zero for the inside set
C3, while in other cases the strong negative skew indicates
that in some cases the performance loss due to the shift out-
side the set is extremely high. The same alteration of the pa-
rameters leads to less performance loss for deep points than
for shallow points. Further, there is no loss if the parameter
vector remains in the convex set of deep parameters. This
again highlights the advantage of deep parameter vectors.

5 Robust parameter estimation (ROPE)

In Sect. 4 it was shown that parameters in the interior (ex-
pressed through data depth) of the set of good points are
themselves good and transferable and not very sensitive. A
possible explanation for this is that these parameters can be
regarded as a kind of compromise solution – where none of
the processes represented by the parameters is overempha-
sized.

For modelling purposes one might be interested in finding
the set of good parameters and also the identification of the
deep parameter vectors for robust modelling. For this pur-
pose the following procedure is suggested:

1. the limits for thed selected parameters are identified

2. N random parameter vectors forming the setXN are
generated in thed dimensional rectangle bounded by
the limits defined in 1.

3. the hydrological model is run for each parameter vector
in XN and the corresponding model performances are
calculated

4. the subsetX∗

N of the best performing parameters is iden-
tified. This might be for example the best 10% ofXN .

5. M random parameter sets forming the setYM are gener-
ated, such that for each parameter vectorθ∈M , D(θ)≥L

(with L≥1) where the depth is calculated with respect
to the setX∗

N .

6. the setYM is relabeled asXN and steps 3–6 are re-
peated until the performance corresponding toXN and
YM does not differ more than what one would expect
from the observation errors.

Note that the ROPE algorithm can be easily modified to a
general multivariate optimization procedures.

The algorithm was used for three selected subcatchments
(Rottweil, Tübingen, S̈ussen). Four iterations were enough
to find agoodset of parameters for all the catchments. The
performance of the model using different calibration and val-
idation periods is summarized in Fig.6 for catchment S̈ussen.
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Fig. 6. Histograms of the model performances for the different iter-
ations of the algorithm for catchment Süssen.

As one can see the subsequent iterations of the algorithm de-
liver better sets. The mean NS for the iterations increased
form 0.767 (iteration 2) through 0.773 (iteration 3) to 0.775
(iteration 4). The improvement in the last iteration is very
small and less than what one would expect to be caused by
measurement errors. Therefore the algorithm stopped after
this iteration.

Figure7 shows the dotty plots of the selected model pa-
rameters for catchment Süssen. The performance corre-
sponding to the parameters of iteration 4 are better than those
corresponding to iteration 2 but the parameter range remains
the same. Figure8 shows the two dimensional scatter plot
for the two model parameters for iterations 2 and 4 obtained
for catchment T̈ubingen. One has the impression that these
parameters can take a wide range of values, and that there is
no difference between the the two sets. The ranges of the pa-
rameters for the catchment Rottweil for iteration 1 and 4 are
listed in Table2. Even if the ranges are very similar for many
parameters one has to bear in mind that these are two dimen-
sional projections of 9 dimensional sets. The sets themselves
are very different, the ratio of their 9 dimensional volume is
approximately 0.01 (calculated as Monte Carlo integral).

Figure9 shows the sensitivity of the calculated discharge
with respect to two sets of parameter vectors with different
depth. 1000 Parameter vectors from the boundary (depth=1)
and from the interior (depth>1) were taken and the corre-
sponding hydrographs were calculated. The 95% and the 5%
lines show that the interior parameter vectors lead to smaller
differences in calculated discharge. The differences between
the 95% and the 5% values are plotted separately on Fig.10
showing that taking interior parameter vectors leads to an ap-
proximately 20% reduction.

In the case study presented here all parameters in the final
setYM performed well. In the case of other models or other
performance measures this may not necessarily be the case.

Fig. 7. Parameter value vs. model performance for the sets ob-
tained in iteration 2 (crosses) and iteration 4 (circles) for catchment
Süssen.
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Fig. 8. Parameter value for the sets obtained in iteration 2 (crosses)
and iteration 4 (circles) for catchment Tübingen.

However the setYM always contains a large portion of good
parameters and possible transformations (for example taking
the logarithm of some parameters) might fix this problem.

6 Conclusions

Discussion and conclusions

– In this paper the effect of observation uncertainty on
the parameter estimation was investigated. It could be
shown that observation errors can lead to very differ-
ent optimal model parameters if the uniqueness of the
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Fig. 9. Hydrograph with confidence interval for boundary points
and inner points.

parameters is assumed and the parameters correspond-
ing to the optimum of the performance function are
identified.

– Observational uncertainty of the input and the discharge
leads to variability of the model performance. This vari-
ability has to be considered in model parameter estima-
tion. All model parameters which do not differ more in
their performance than what can be caused by measure-
ment errors could themselves be the best parameters.

– Data depth is a useful tool to identify robust parame-
ter vectors. Parameters with low data depth are near
the boundary and are sensitive to small changes and do
transfer to other time periods less well as high depth
ones.

– From the examples discussed in this paper, one could
see that equally performing parameters are not necessar-
ily equally transferable or equally sensitive. Data depth
can help to find domains with robust and transferable
parameters.

– A iterative algorithm to find a convex set containing
good model parameters was developed.

– In this paper, model performance was measured by the
traditional Nash-Sutcliffe coefficient. Other measures
can be treated similarly - but might lead to different pa-
rameter sets.

Fig. 10. Confidence band width of high depth vs confidence band
width of low depth.

Further research is needed to use the concepts developed in
this paper for other purposes and models. Robust estimation
of the model parameters might be very useful for regional-
ization and could contribute to a better prediction in ungaged
basins. The suggested methodology can be extended for un-
certainty analysis by relating the likelihood of the parameters
to their depth, however further research is required to com-
plete this task.
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