Articles | Volume 11, issue 2
https://doi.org/10.5194/hess-11-951-2007
https://doi.org/10.5194/hess-11-951-2007
02 Mar 2007
 | 02 Mar 2007

Modelling acidification, recovery and target loads for headwater catchments in Nova Scotia, Canada

C. J. Whitfield, J. Aherne, P. J. Dillon, and S. A. Watmough

Abstract. The response of twenty acid-sensitive headwater catchments in Nova Scotia to acidic deposition was investigated for the period 1850–2100 using a dynamic hydrochemical model (MAGIC: Model of Acidification of Groundwater in Catchments). To ensure robust model simulation, MAGIC was calibrated to the long-term chemical trend in annual lake observations (13–20 years). Model simulations indicated that the surface waters of all twenty catchments acidified to the 1970s but showed subsequent recovery (increases in acid neutralising capacity (ANC) and pH) as sulphate deposition decreased. However, under proposed future emissions reductions (approximately 50% of current deposition) simulated ANC and pH will not return to estimated pre-industrial levels by 2100. An ANC of 20 μmolc L−1 and pH of 5.4 were defined as acceptable chemical thresholds (or critical chemical limits) for aquatic organisms in the current study. Under the proposed emissions reductions only one catchment is predicted to remain below the critical limit for ANC by 2100; three additional catchments are predicted to remain below the critical limit for pH. Dynamic models may be used to estimate target loads, i.e., the required deposition reductions to achieve recovery within a given time. Setting target loads at approximately 30% of current depositions would allow three of the four lakes to reach the chemical criteria by 2030. In contrast to the generally good prognosis for surface waters, soils lost an average of 32% of estimated initial base saturation and recovery is estimated to be very slow, averaging 23% lower than pre-acidification levels in 2100.