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Abstract. The episodic nature of hydrological flows such
as surface runoff and preferential flow is a result of the non-
linearity of their triggering and the intermittency of rainfall.
In this paper we examine the temporal dynamics of thresh-
old processes that are triggered by either an infiltration ex-
cess (IE) mechanism when rainfall intensity exceeds a spec-
ified threshold value, or a saturation excess (SE) mechanism
governed by a storage threshold. We use existing and newly
derived analytical results to describe probabilistic measures
of the time between successive events in each case, and in
the case of the SE triggering, we relate the statistics of the
time between events (the inter-event time, denoted IET) to
the statistics of storage and the underlying water balance.
In the case of the IE mechanism, the temporal dynamics of
flow events is found to be simply scaled statistics of rainfall
timing. In the case of the SE mechanism the time between
events becomes structured. With increasing climate aridity
the mean and the variance of the time between SE events
increases but temporal clustering, as measured by the coef-
ficient of variation (CV) of the IET, reaches a maximum in
deep stores when the climatic aridity index equals 1. In very
humid and also very arid climates, the temporal clustering
disappears, and the pattern of triggering is similar to that seen
for the IE mechanism. In addition we show that the mean and
variance of the magnitude of SE events decreases but the CV
increases with increasing aridity. The CV of IETs is found
to be approximately equal to the CV of the magnitude of SE
events per storm only in very humid climates with the CV
of event magnitude tending to be much larger than the CV of
IETs in arid climates. In comparison to storage the maximum
temporal clustering was found to be associated with a max-
imum in the variance of soil moisture. The CV of the time
till the first saturation excess event was found to be greatest
when the initial storage was at the threshold.

Correspondence to:Christoph Hinz
chinz@cyllene.uwa.edu.au

1 Introduction

Many rapid hydrological processes such as runoff (Horton,
1933; Dunne, 1978), preferential flow (Beven and Germann,
1982), and erosion (Fitzjohn et al., 1998), are not continu-
ous, but are triggered by thresholds. For example surface
runoff occurs when the rainfall intensity is greater than the
soils ability to adsorb it via infiltration. As a result some of
these processes may even cease or are not even triggered if
the rainfall event is too small. Because we consider rapid
flow processes the duration of flow events is often small in
comparison to the time between rainfall events. Therefore,
what results from the threshold triggering, when we look at
a time series, is a sequence of discrete, episodic events.

As the occurrence of these episodic processes is linked
to the timing and magnitude of rainfall events it is natural
therefore, to consider improving our understanding of how
the temporal occurrence of these flow events relates to the
structure of rainfall. This is the focus of this paper.

The temporal dynamics of preferential flow triggering due
to between-storm and within-storm rainfall variability has
been previously explored via the numerical simulation ap-
proach, using synthetic rainfall time series (Struthers et al.,
2007a,b). Struthers et al.(2007b) were able to relate aspects
of the probability distribution function (pdf) and specific sta-
tistical characteristics of the storm inputs to statistical prop-
erties and aspects of the pdfs of preferential flow and runoff
magnitude and timing. The analysis was not able to separate
the contributions of the various runoff mechanisms to the sta-
tistical properties of the resulting temporal flow dynamics. A
simpler, more general approach was required to further de-
velop the ideas presented in this work.

There are two triggers which are shared by a number of
processes. Some processes are triggered, as already men-
tioned, by a rainfall intensity threshold. Examples include
macropore flow through soil (Beven and Germann, 1982;
Heppell et al., 2002), and surface runoff (Horton, 1933). This
triggering is termed infiltration excess. Some processes are
triggered by a storage threshold or storm amount. These in-
clude various types of preferential flow (Beven and Germann,
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1982; Kung, 1990; Haria et al., 1994; Wang et al., 1998;
Bauters, 2000; Dekker et al., 2001; Heppell et al., 2002),
interception (Crockford and Richardson, 2000; Zeng et al.,
2000), and hillslope outflow through subsurface flow path-
ways (Whipkey, 1965; Mosley, 1976; Uchida et al., 2005;
Tromp-van Meerveld and McDonnell, 2006). The storage
threshold will be referred to here as saturation excess, al-
though the use of this term is not often associated with some
of the above processes.

In this article we examine the simplest possible conceptu-
alizations for these two triggers. For infiltration excess we
will use a threshold rainfall intensity (Horton, 1933; Heppell
et al., 2002; Kohler et al., 2003) neglecting any soil mois-
ture storage controls on the infiltration capacity. For satura-
tion excess we use the opposite extreme, a threshold storage,
depending only on the storm amount and not its intensity.
While these two conceptualisations are very simplistic we
expect a mixture of the results from these two processes to
reflect more complex triggers, where triggering is a function
of both rainfall intensity and storage.

The saturation excess mechanism captures the carry over
of storage from one rainfall event to the next. As a result
there is an enhanced probability that a second flow event will
occur shortly after a flow event has just occurred because
storage is more likely to be nearer the threshold in this inter-
val. We hypothesize that this leads to temporal clustering of
saturation excess, which means that multiple events occur in
short periods of time separated by longer event-free intervals.

A second aspect of the paper is to address the issue of ob-
servability. For some processes we cannot measure directly
the flux. Preferential flow is one such example. What we can
observe of preferential flow is the timing of episodic pesti-
cide leaching events (Hyer et al., 2001; Fortin et al., 2002;
Laabs et al., 2002; Kjær et al., 2005) which are driven by
this process. We also know that preferential flow is related to
thresholds in soil moisture (Beven and Germann, 1982) and
this can be measured reasonably well. For other processes,
like subsurface hillslope outflow via soil pipes, the flux and
timing might be observable but the internal, storage process
much less so. There is clearly a need to better understand
the inter-relationships between timing, flux, and storage in
order to be able to make better predictions of these thresh-
old processes where the internal dynamics are largely hidden
(Rundle et al., 2006, this issue). In this paper it will be pos-
sible to make this inter-comparison for the saturation excess
trigger.

The paper begins with a brief overview of the simple mod-
els of rainfall adopted for this analysis. Based upon this we
derive analytically the statistics of the time between thresh-
old events for infiltration excess and saturation excess mech-
anisms, and for saturation excess we also present existing
and newly derived statistics of the runoff flux based upon the
original work of Milly (1993; 2001). Finally, we explore the
results in the context of storm properties and the climate set-
ting.

2 Rainfall models

For modelling purposes we adopt simple stationary descrip-
tions of rainfall without any seasonal dependence. Storms
are characterised only by three parameters, their total depth
h [L], a maximum within-storm intensityImax [L/T], and
a time between stormstb [T]. Storms are considered to be
instantaneous events, independent of one another, therefore
satisfying the Poisson assumption as used commonly in hy-
drology (Milly , 1993; Rodriguez-Iturbe et al., 1999). Such
an assumption is considered valid at near daily time scales
(Rodriguez-Iturbe and Isham, 1987).

As we are primarily concerned with an event based de-
scription of processes, this rainfall model is appropriate to
make direct comparisons between the process and its driver.
Our objective is to capture the inter-(rainfall)-event dynam-
ics, i.e. this event did or did not trigger the threshold and not
the detail of within-event processes which is left for future
research.

The Poisson assumption implies that the random time
between storms, the inter-storm time, that results is de-
scribed by an exponential probability density function (pdf)
(Rodriguez-Iturbe et al., 1999):

gT b [tb] =
1

tb
e−tb/tb (1)

which is fully characterised by its meantb [T]. Storm depths
are also assumed to follow an exponential pdffH [h] with a
meanh [L]. The maximum within-storm rainfall intensity is
also considered to be exponentially distributed with a mean
of Imax [L/T].

Clearly this rainfall model is a gross simplification of
real rainfall, particularly as it neglects seasonality. How-
ever its advantage is it makes the later derivations analyti-
cally tractable. Considering it’s use to describe within a sea-
son rainfall may be more appropriate, but the statistics we
will derive later may not necessarily reflect the transient dy-
namics of storage in certain climates (Rodriguez-Iturbe et al.,
2001). We also derive here statistics based upon an arbi-
trary initial condition which may account for this transient
behaviour.

3 Statistics of temporal dynamics

Based on the rainfall signal and soil properties we would like
to quantify the probability that a given flow event, involving
the exceedance of some kind of threshold, occurs. We use the
time between events as the random variable that characterises
this event probability. This concept is illustrated for a rain-
fall intensity threshold (Fig.1a) and a soil moisture storage
threshold (Fig.1b). The random time to reach these thresh-
olds for the first time is referred to as a first passage time
(FPT) denoted asτ1, and the time between flow events is re-
ferred to as the inter-event time (IET) denoted asτ2 andτ3 in
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Fig. 1. Definition of the more general first passage timeτ1 and the
inter-event timeτ2 andτ3 for (a) a threshold rainfall intensity infil-
tration excess (IE) trigger, where in this example intensities above
Iξ=80 mm/day trigger an IE event; and(b) a storage, or satura-
tion excess mechanism (SE), occurring whens=1. The variables0
denotes the initial storage.

Fig. 1a and Fig.1b. In the case of infiltration excess runoff, a
flow event is triggered when the maximum rainfall intensity
within a storm exceeds the infiltration capacityIξ . Simi-
lalry, when the soil water storage reaches a critical capacity
a saturation excess event is deemed to have been triggered.

To quantify the pdfs of the first passage times and the IETs,
we use the first four central moments. For completeness we
define the moments in this section and will derive analytical
expressions for them in Sect.5.2 andA. The meanTµ [T]
and thekth central momentµk of the random variableτ are
related to the pdfgT [τ ] by the following (Papoulis, 2001):

Tµ=E [τ ] =

∫
∞

−∞

τ gT [τ ] dτ (2)

µk=E
[
(τ − E [τ ])k

]
=

∫
∞

−∞

(
τ − Tµ

) k
gT [τ ] dτ (3)

for integersk ≥ 2, whereE [ ] denotes the expectation
operator. In addition to the mean and the varianceTσ2=µ2
[T2], we will also use the dimensionless statistic, the coef-
ficient of variation (CV),Tcv=

√
Tσ2

/
Tµ [−], the ratio of

Table 1. Storm and infiltration excess inter-event statistics

Statistic Storm Infiltration excess

Tµ tb tb eIξ /Imax

Tσ2 t
2
b

(
tb eIξ /Imax

)2

Tcv 1 1
Tε 2 2
Tκ 6 6

the standard deviation to the mean, which gives a measure
of the variability relative to the mean; the coefficient of

skewnessTε=µ3
/
µ2

3/2 [−], which describes the asymme-
try of the probability distribution, where positive values in-
dicate that the distribution has a longer tail towards larger
values than smaller values; and the coefficient of kurtosis
Tκ=µ4

/
µ2

2
− 3 [−], where positive values indicate a more

peaked distribution, in comparison to a normally distributed
variable, and ”fatter tails” i.e. an enhanced probability of ex-
treme values (Papoulis, 2001).

In order to compare the statistical properties of flow event
triggers with the rainfall signal, we summarise here the rain-
fall in terms of IET statistics. The idea here is to compare
and contrast storm IET and flow IET statistics for the vari-
ous threshold driven processes. Events which are temporally
independent of one another have an exponential IET pdf. Ta-
ble1 lists the statistics for the storm IET.

A property of the exponential distribution is that the mean
is equal to the standard deviation, and therefore the CV is
equal to 1. The CV of the IETTcv is often used to distinguish
temporally clustered and unclustered processes (Teich et al.,
1997). Temporal clustering is said to occur whenTcv>1,
a Tcv=0 indicates no variability and exactly regular events,
while aTcv<1 may indicate a quasi-periodic process (Wood
et al., 1995; Godano et al., 1997).

4 Infiltration excess inter-event time statistics

Here we assume for simplicity that the infiltration capacity
Iξ is constant (Heppell et al., 2002; Kohler et al., 2003), and
therefore soil moisture controls on the infiltration capacity
are considered insignificant. This approach provides an ex-
treme contrast to the saturation excess mechanism consid-
ered. It may actually better represent well more extreme rain-
fall, where the antecedent soil moisture has little impact on
event triggering. For exampleHeppell et al.(2002) classi-
fied preferential flow events in a clay loam soil as antecedent
soil moisture limited and non-antecedent limited events. The
non-antecedent limited events were related to storms where
the maximum within-storm rainfall intensity was much larger
than the mean storm intensity.
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This constant threshold filtering is the same as the rain-
fall filtering described inRodriguez-Iturbe et al.(1999) in
the context of the soil water balance. They showed that a
threshold filtering of the depth of rainfall with Poisson ar-
rivals resulted in a new Poisson process. The rate of events
over this threshold equalled the storm arrival rate multiplied
by the probability of exceeding the threshold storm depth by
a single event (Rodriguez-Iturbe et al., 1999). The differ-
ence for the IE trigger considered here lies only in seman-
tics. When the maximum within-storm rainfall intensityImax
is exponentially distributed with meanImax the probability
that Imax>Iξ is equal toe−Iξ /Imax and therefore the result-

ing mean time between IE events is equal toT I
µ=tbe

Iξ /Imax.
Table1 lists the IET statistics that result.

A soil with Iξ=2Imax results in a mean IET which ise2

times longer than the mean storm IETtb, and a variancee4

times greater than the storm IET variancet
2
b . The higher cen-

tral moments remain unchanged. The IE filtering therefore
results in temporal dynamics that are statistically the same as
the rainfall’s, but scaled by a factor related to the single event
probability of exceeding the threshold. This is illustrated in
Fig. 2a, which is a semi-log plot of an example infiltration
excess IET pdf, corresponding to the above example, shown
in comparison to the rainfall IET pdf.

5 Saturation excess filtering

In this section saturation excess is described on the basis of
Milly’s ( 1993) nonlinear storage-runoff model. Milly (1994)
used this model to describe the impact of rainfall intermit-
tency and soil water storage on runoff generation at catch-
ment scales, and which he successfully used to capture much
of the spatial variability in the annual water balance in catch-
ments across much of continental USA. We use this mini-
malist framework to model the triggering of runoff by the
exceedance of a threshold value of storage. We first review
his analytical results for the statistics of soil moisture stor-
age and the mean water balance components. We then go
on to derive from these results the variance of the saturation
excess runoff flux on a per storm basis. We will later relate
these statistics to those of the temporal dynamics of satura-
tion excess triggering.

5.1 Storage and the water balance

Milly’s ( 1993) water balance model is represented in terms
of a simple bucket with a fixed storage capacityw0 [L] which
wets in response to random storm events and dries in the
inter-storm period, of random duration, due to a constant
evaporative demandEm [L/T]. The threshold soil moisture
(sξ=1 [-]) for flow initiation is assumed to have been reached
when the store is filled to capacity. Any excess rainfall be-
comes saturation excess. The resulting stochastic balance
equation for water storages [-] (a dimensionless storage nor-

malised byw0) is:

ds

dt
= − L [s] +F [s, t ] (4)

wheret [T] denotes time,L [s] [T−1] the (normalised byw0)
evaporative losses from storage.F [s, t ] [−] denotes instan-
taneous random infiltration events (normalised byw0), oc-
curring at discrete timesti . Infiltration is limited by the avail-
able storage capacity i.e.F [s, ti ] = min

[
1 − s−

i , hi

/
w0

]
,

wheres−

i [−] denotes the antecedent soil moisture andhi

[L] the random storm depth. Evaporation losses are given
by:

L [s] =


0 for s=0

Em

w0
for 0<s ≤ 1

(5)

In this article we largely consider the transformation of
Eq. (4) directly into the statistical properties of IETs, how-
ever, we discuss briefly here how to numerically simulate a
storage time series. This is done in part to help explain the
conceptualisation of the process as well as to describe how
we generated example time series presented in Sect.6.3.1.
Simulation involves generating a random storm IETtb and
a subsequent storm depthh from their respective probability
distributions. Storage at any timet in the inter-storm period
can be calculated froms [t ] = max[0, s0 − Em(t − t0)/w0],
wheret0 is the time of the last storm when soil moisture was
s0. At the end of the inter-storm periodti=t0+tb storage im-
mediately prior to the storm is given bys−

i . Storage increases
from s−

i to s+

i = min
[
1, s−

i +h/w0
]

due to the storm also at
a time ti . This occurs as an instantaneous event with stor-
age taking on two separate values immediately either side of
time ti . The simulation is then continued withs+

i as the new
s0 and so on.

From the above model and the characteristics of rainfall
presented before, two similarity parameters can be defined:
the supply ratioα=w0

/
h, the ratio of storage capacity to

mean storm depth, and the demand ratioβ=w0
/ (

Emtb
)
,

the ratio of storage capacity to mean potential inter-storm
evaporation (Milly , 1993). Whenα=0 the rainfall supply
is infinitely larger than storage capacity and whenα=∞ the
supply is negligible compared to the amount in storage at
capacity. Similarlyβ=0 indicates infinite evaporative de-
mand andβ=∞ negligible demand relative to the storage
capacity. Typically one could expect the parameters to range
from about 1 to 100 depending upon the process considered.
For example a thin, near surface, water repellent layer with
10 mm of storage could have realisticα values of 1 to 10
depending upon the mean storm depth. Runoff controlled by
storage throughout the rooting depth may have much larger
values (Milly , 2001).

The ratioAI=
(
Emtb

) /
h=α

/
β defines the relative bal-

ance between mean potential inter-storm evaporation and the
mean storm depth and is otherwise known as the climatic
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aridity index (Budyko, 1974; Arora, 2002). An AI<1 de-
scribes a humid climate,Ai>1 an arid climate andAI=1
defines equal mean rainfall and mean potential evaporation.

Milly ( 1993) derived the pdf of water storage in the form
of two derived distributions of storage: one for a time im-
mediately before a stormfS− , the antecedent storage pdf,
and one immediately after a stormfS+ . The pdf for storage
for all timesfS , that resulted from that analysis was found
to be equal tofS− (Milly , 2001). This was essentially be-
cause storms were modelled as instantaneous events, with no
duration, and the expected time of the next storm is an ex-
ponential distribution emanating from a memoryless Poisson
process for the rainfall arrivals. The pdf offS is given by
(Milly , 2001):

fS=pβ e(α−β)s
+qδ [s] (6)

whereδ denotes the Dirac delta function,p describes the
probability storage is at capacity (s=1), andq the probability
that the soil is dry (s=0) and are given by:

p=
α − β

α eα−β
(7a)

q=
β − α

β eβ−α − α
(7b)

The resulting meanSµ [-] and varianceSσ2 [-] of storage
are given by Eq. (8) and Eq. (9) respectively (Milly , 2001):

Sµ=
1

α − β
+

1+β eβ−α

β eβ−α − α
(8)

Sσ2=
1

(α − β)2
−

1+ (α+2) β eβ−α(
β eβ−α − α

)2
(9)

Based on the definition of the expected value of a func-
tion g [x] of a random variablex , with a known pdffX [x]
(Papoulis, 2001):

E [g [x]] =

∫
∞

−∞

g [x] fX [x] dx (10)

Milly ( 1993) derived the mean actual evaporationEa [L] per
inter-storm period via:

Ea

h
=

w0

h

∫ 1

0−

L [s] fS [s] ds=1 −
α − β

α eα−β − β
(11)

where the 0− is used to denote inclusion of the probability
thats=0.

From mass balance considerationsMilly (1993) then de-
termined the mean runoff per stormQµ [L] as follows:

Qµ

h
=1 −

Ea

h
=

α − β

αeα−β − β
(12)

Extending such analysis, we derive here for the first time
the variance of flux per storm eventQσ2

[
L2

]
which we cal-

culate from the definition of the variance of a function of two

random variablesG [x, y] which have a joint pdffXY [x, y]
(Papoulis, 2001) which is given by:

E
[
(G [x, y] − E [G [x, y]])2

]
=∫

∞

−∞

∫
∞

−∞

(G [x, y] − E [G [x, y]])2 fXY [x, y] dx dy

(13)

The magnitude of saturation excess generated on a single
eventQi is given by:

Qi

[
hi, s

−

i

]
= max

[
0, hi − w0

(
1 − s−

i

)]
(14)

which depends upon the two random variables, storm depth
hi and the antecedent soil moistures−

i . As the pdf of soil
moisture immediately prior to a rainfall eventfS− is equiv-
alent to the pdf of soil moisturefS Eq. (6) in this instance
(Milly , 2001) and ash ands− are independent random vari-
ables we can apply Eq. (13) and the condition Eq. (14) to the
calculation of the saturation excess runoff varianceQσ2 by
the following:

Qσ2

h
2

=

∫ 1

0−

∫
∞

w0(1−s)

(
w0

h

(
h

w0
− 1+s

)
−

Qµ

h

)2

×

w0fH [h] fS [s] dh ds +∫ 1

0−

∫ w0(1−s)

0

(
−

Qµ

h

)2

fH [h] w0fS [s] dh ds

=
(α − β)

(
2α eα−β

− α − β
)(

α eα−β − β
)2

(15)

The statistics of storage (Eq.8, Eq.9) and the flux (Eq.12,
Eq.15) will be explored in more detail later on.

5.2 Statistics of saturation excess timing

For the type of stochastic process modelled byMilly (1993),
Masoliver(1987) andLaio et al.(2001) provided derivations
for the mean time to reach a threshold for the first time.
This methodology was subsequently applied to describe the
mean duration of soil moisture persistence between upper
and lower bounds in order to investigate vegetation water
stress (Ridolfi et al., 2000).

The mean FPT describes the expected waiting time till
an event dependent upon the initial condition, of which the
mean IET is a special case. The temporal dynamics also con-
sists of the variability about this mean behaviour, therefore in
Appendix A we present, for the first time, an extension of the
derivation for the mean first passage time (Laio et al., 2001)
giving a general solution to the higher moments of the FPT,
such as the variance.

Using equations (A5), (A13) and (A10), with n=1 , T0=1
andL [s] as given by Eq. (5) we can derive the mean time
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T s
µ

[
s0, sξ

]
till an arbitrary threshold storagesξ is reached for

the first time, when the initial storage wass0 ≤ sξ as:

T s
µ

[
s0, sξ

]
tb

=
α

(
αesξ (α−β) − βes0(α−β)

)
(α − β)2

−

β
(
α

(
sξ − s0

)
+1

)
α − β

(16)

This is the same result, after appropriate adjustment of pa-
rameters, as given by Eq. (31) inLaio et al. (2001). The
mean saturation excess IETT s

µ [1, 1] comes from substitu-
tion of s0=sξ=1 in Eq. (16):

T s
µ [1, 1]

tb
=

αeα−β
− β

α − β
(17)

As a result of our more general derivation we can use
equations (A5), (A13) and (A10) together withn=2, and
T1=T s

µ

[
s0, sξ

]
, to derive the raw momentT2. From the

relationship between the central moments and the raw mo-
ments (see TableA1), the FPT variance is calculated by
T s

σ2

[
s0, sξ

]
=T2−T 2

1 . After substitution ofs0=sξ=1 we can
show the variance of IET arising from the storage threshold,
T s

σ2 [1, 1] is given by:

T s
σ2 [1, 1]

t
2
b

=
2αβeα−β (α+β+2)

(β − α)2
+

(α+β)
(
β2

− α2e2(α−β)
)

(β − α)3
(18)

In this paper we do not present the full solution
for T s

σ2

[
s0, sξ

]
or the other higher moments as they

are rather cumbersome; however complete solutions for
the first four moments are provided as supplementary
material (http://www.hydrol-earth-syst-sci.net/11/923/2007/
hess-11-923-2007-supplement.pdf). Table2 summarises the
first four central moments of the IET for three limiting cases,
as discussed in more detail in the next section.

6 Results and Discussion

6.1 Climate controls on threshold storage events

This section discusses the analytical results for the statistical
properties of the time between SE events and the statistics of
the SE event magnitudes based on an investigation of three
limiting climates: a super humid climate with an aridity in-
dexAI=0 by taking the limitα → 0 of the derived statistics;
a super arid climate with an aridity indexAI=∞ by taking
the limit β→0; and an intermediate climate withAI=1 by
taking the limitβ→α. The analytical results corresponding
to these limiting cases are summarised in Table2.

6.1.1 Super humid climates:AI=0

In very humid climates the temporal statistics of saturation
excess IET are identical to that of the rainfall (see Table2).
This is because with an excess supply of rainfall and negli-
gible evaporative demand the soil is always saturated. The
statistics are consistent with an inter-event time which is ex-
ponentially distributed. No filtering takes place as every rain-
fall event triggers flow and all rainfall becomes saturation
excess (see Table2). The rainfall signal is therefore an ex-
cellent indicator of the timing, frequency and magnitude of
SE events.

6.1.2 Super arid climates:AI=∞

The IET statistics of SE events for an arid climate (Table2)
resemble those of the IE filtering described above (refer to
Table 1). The average rate of SE events is scaled by the
probability of filling the store completely in a single event
i.e. by P [h>w0] =e−w0

/
h
=e−α. For example, consider a

water repellent soil with a distribution layer which triggers
finger flow after a critical water content (Dekker et al., 2001)
equivalent to 10 mm of storage. In an extremely arid climate
(β ≈ 0) with h=2 mm (α=5), andtb=5 days, the resulting
mean and variance of the preferential flow IET is 5e5 days
and 25e10 days2 respectively. Again the statistics are con-
sistent with an IET which is exponentially distributed. The
independence of events is maintained because soil moisture
is completely depleted before every rainfall event. In this in-
stance a simple filtering of the rainfall, forh>w0, provides a
good predictor of the timing, relative frequency and magni-
tude of storage threshold flow events.

The mean saturation excess magnitudeQµ is also propor-
tional to the mean storm depth scaled by the probability of
filling the store on a single event (see Table2). Unlike the
simple threshold filtering, as described by the temporal dy-
namics, the variance of the magnitude of saturation excess
events per stormQσ2 is larger than would be expected for
an exponentially distributed random variable with the given
mean. We believe this is due to the fact that the statistic in-
cludes a large number of zero values where storms do not
trigger a threshold storage event. A CV of event magnitude
Qcv=

√
2eα − 1 indicates that in the limit of a very arid cli-

mate the relative variability of the magnitude of these events
increases with increasing storage capacity and decreasing
storm depth (increasingα ). For the example described above
(α=5) the mean, variance and CV of event magnitudes are
equal toQµ=0.013 mmQσ2=0.054 mm2 and Qcv=17.2
respectively.

6.1.3 A balanced climate:AI=1

For the case when demand balances supply (AI=1),
the mean saturation excess IET is 1+α times greater
than the mean storm IETtb and the variance is
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Table 2. Summary statistics of the saturation excess inter-event times and event magnitudes in three limiting climates

Statistic Rainfall Humid Intermediate Arid
AI=0 AI=1 AI=∞

T s
µ [1, 1] tb tb tb (1+α) tb eα

T s
σ2 [1, 1] t

2
b t

2
b

2
3

(
α3

+2α2
+2α+1

)
t
2
b

(
tbeα

)2

T s
cv [1, 1] 1 1

√
3

√
2

√
α3+2α2+2α+1

1+α
≥ 1 1

T s
ε [1, 1] 2 2

√
3
(
4α5

+20α4
+40α3

+45α2
+30α+10

)
5
√

2α(α(α+3)+3)+3
≥ 2 2

T s
κ [1, 1] 6 6 B1α

7
+B2α

6
+B3α

5
+B4α

4
+B5α

3
+B6α

2
+B7α+B8

35(2α(α(α+3)+3)+3)2 − 3 ≥ 6a 6

Qµ h h h
1+α

h
eα

Qσ2 h
2

h
2 (1+2α)

(1+α)2 h
2 2eα

−1
e2α h

2

Qcv 1 1
√

1+2α
√

2eα − 1

aConstantsBi are given byB1=408, B2=3276, B3=11214, B4=22050, B5=27720, B6=22680,
B7=11340,B8=2835

2
(
α3

+2α2
+2α+1

) /
3 times greater than the variance of

storm IETs t
2
b (see Table2). To put this into con-

text using the example described above for a water repel-
lent soil i.e. w0=10 mm, h=2 mm per storm (α=5),
and sayEm=2 mm/day andtb=1 day (β=5), results in
T s

µ [1, 1] =6 days,T s
σ2 [1, 1] =124 days2, T s

cv [1, 1] =1.86,
T s

ε [1, 1] =644, andT s
κ [1, 1] =17.7. In comparison the rain-

fall hasT r
µ [1, 1] =1 day,T r

σ2 [1, 1] =1 day,T r
cv [1, 1] =1 ,

T r
ε [1, 1] =2 , andT r

κ [1, 1] =6 (refer to Table2). The co-
efficient of variation of saturation excess inter-event times,
being greater than 1, is indicative that the process is tempo-
rally clustered.

Unlike the filtering that is associated with the IE mech-
anism, the storage threshold filtering changes the form of
the IET pdf. Figure2b shows conceptually how the sat-
uration excess IET pdf changes from an exponential form
in very humid climates (the same pdf as the rainfall IET)
to a more peaked, fatter tailed distribution atAI=1, revert-
ing to an exponentially distributed variable again atAI=∞.
Interestingly it can be seen for the parameters chosen that
extreme IETs are actually more probable whenAI=1 than
whenAI=∞.

Referring again to the IET statistics forAI=1 (Table2),
as the storage capacity increases, relative to the supply and
demand, (i.e. increasingα) the mean storage threshold IET
increases, as does the variance and this increases faster than
the square of the mean, which results in an increase in the CV.
Therefore the clustering of events in time tends to increase
with increasing storage capacity. Additionally increasing
storage capacity, relative to mean rainfall and evaporation,
leads to an increased coefficient of skewness and coefficient
of kurtosis indicating a more strongly peaked, fatter tailed
pdf. This suggests both an increased likelihood of relatively
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Fig. 2. Conceptual description of the relationship between the rain-
fall inter-event time (IET) probability density (pdf) and the IET
pdf for (a) infiltration excess and(b) saturation excess. For (a)
the dashing corresponds to rainfall (solid) and infiltration-excess
(dashed) withIξ

/
Imax=5 andtb=1 day. For (b) dashing corre-

sponds to rainfall (continuous), an aridity indexAI=0 (also con-
tinuous),AI=1 (large dashes) and anAI=∞ (small dashes) with
tb=1 day, andα=5 . Inter-event time pdf estimated atAI=1 from a
continuous simulation of 105 saturation excess events using Eq. (5)

www.hydrol-earth-syst-sci.net/11/923/2007/ Hydrol. Earth Syst. Sci., 11, 923–938, 2007



930 McGrath et al.: Temporal dynamics of threshold events

(a)

�

1

2

3

4

5
lo

g 1
0

T
Μs
@1

,1
D�

t� b

Β=1

Β=10

Β=100

(b)

�

1

2

3

4

5

lo
g 1

0
T
Σ

2
s
@1

,1
D�

t� b2

Β=1
Β=10

Β=100

(c)

0.5 1 1.5 2 2.5 3
AI=Α�Β

2

4

6

8

T
cvs
@1

,1
D

Β=1

Β=10

Β=100

Fig. 3. Variation of statistics of the storage threshold inter-event
time (IET) with aridity indexAI showing(a) meanT s

µ [1, 1] IET
normalised bythe mean inter-storm durationtb (Eq.17) (b) variance
T s
σ2 [1, 1] of the IET normalised bytb

2 (Eq.18) and(c) coefficient
of variationT s

cv [1, 1] of the IET (by combining Eq.17 and Eq.18)
for constantβ=1, 10, and 100 (dashed, dotted and continuous re-
spectively).

short IETs (increased peakiness) while at the same time an
increased likelihood of much longer IETs (more skewed and
fatter tailed). Such behaviour is characteristic of our earlier
definition of temporal clustering. For clarity and brevity we
restrict further discussion to the first two moments only, al-
lowing us to describe the average IET, the variability as well
as the temporal clustering by the CV.

The mean and the variance of the event magnitude de-
crease, and the coefficient of variation increases with in-
creasing storage capacity (largerα), or equal decreases in
mean storm depth and mean inter-storm evaporation (see Ta-
ble 2). For the example described above the mean, variance
and coefficient of variation of the event magnitude are equal
to Qµ=0.33 mmQσ2=1.2 mm2 andQcv=3.3 respectively.
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Fig. 4. Variation of statistics of the storage threshold magnitude
with aridity index showing(a) meanQµ event magnitude nor-
malised by the mean storm depthh (Eq. 12) (b) varianceQσ2 of

the event magnitude normalised byh
2

(Eq.15) and(c) coefficient of
variationQcv of event magnitude (by combining Eq.12and Eq.15)
for constantβ = 1, 10, and 100 (dashed, dotted and continuous re-
spectively).

6.1.4 All climates 0<AI<∞

The statistics for the limiting climates described above indi-
cate that the mean and the variance of the IET tend to in-
crease, and the mean and variance of the event magnitude
tend to decrease with increasing aridity. However, the vari-
ability of event timing relative to the mean (T s

cv [1, 1] ) tends
to peak at intermediate aridity, while the relative variabil-
ity of event magnitudes continues to increase with increas-
ing aridity. Figures3 and 4 summarises how the statistics
of saturation excess IETs and event magnitudes change as a
function of aridity for various levels of the demand ratio.

Strong demand (smallβ) results in a higher mean and
variance but a lowT s

cv [1, 1] and as a result more regular,
less clustered events, with a maximumT s

cv [1, 1] well into in
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the arid region (see Fig.3). Strong demand also results in a
higher mean and variance of the event magnitude at the same
aridity, but they tend to decrease as the aridity increases (see
Fig. 4). While the mean and variance decrease with increas-
ing aridity, the CV of the event magnitude increases.

The lower the demand, relative to the storage capacity
(largerβ), the larger the mean and variance of the IET and the
greater the tendency for temporal clustering of events (larger
T s

cv [1, 1]). The tendency for saturation excess events to clus-
ter in time is most pronounced in deep stores when supply
equals demand i.e.AI=1. This is consistent with the obser-
vation byMilly (2001) that as the storage capacity increases
the maximum variance in soil moisture tends to peak nearer
AI=1.

These results are at least qualitatively consistent with ob-
servations of decreasing mean annual runoff with aridity
(Budyko, 1974) and an increasing coefficient of variation of
annual runoff with a reduction in mean annual rainfall (Pot-
ter et al., 2005). Temporal clustering has been observed in
the flood record (Franks and Kuczera, 2002; Kiem et al.,
2003) however, this has been attributed to interactions be-
tween the Inter-decadal Pacific Oscillation and the El Nı́no
Southern Oscillation changing rainfall patterns. Our quan-
tification of temporal clustering here is based upon on a sta-
tionary model of climate. We have as yet found no literature
quantifying saturation excess in terms of its temporal dynam-
ics with which we can compare to the statistics derived here.

In summary our results suggest the following about thresh-
old storage triggering: In very arid climates the relative vari-
ability of the timing of events is low, as is the contribution
of saturation excess to the water balance, as evidenced by a
low mean event magnitude. However, the relative variabil-
ity of the event magnitudeQcv is high; Saturation excess
events in semi-arid environments appear to be prone to high
coefficients of variation in both the magnitude of events and
the time between events, while contributing a non-negligible
proportion of the overall water balance; Sub-humid climates
have a large proportion of rainfall converted to runoff. The
magnitude of these events occur with a lowerQcv than semi-
arid climates and temporal clustering may be a significant
feature of the dynamics; In humid climates storage threshold
events contribute a significant proportion of the water bal-
ance and the variability (relative to the mean) of the timing
and magnitude of these events is low.

6.2 Frequency magnitude relationships

It is often the case that we can only observe directly the trig-
gering of events but not the flux. For example the occur-
rence of soil moisture above a critical value may indicate
that macropores are required to have been filled and as a re-
sult preferential flow triggered. However, it is typically not
possible to measure the flux through either the soil matrix
or the macropores, but only relative changes in storage. The
timing of triggering and the magnitude of the events are re-
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Fig. 5. Ratio of the coefficient of variation of event timingTcv [1, 1]
and the coefficient of variation of the event magnitudeQcv as a
function of aridity. Dashing corresponds to constantβ=1 (large
dashed),β=10 (dotted) andβ=100 (continuous).

lated to one another through soil moisture storage. Therefore
in this section, we investigate the relationships between the
statistics of event timing and event magnitude.

6.2.1 Comparison of means

One would expect that the more frequently threshold stor-
age events occur the greater the contribution of saturation
excess to the overall water balance. In fact for the thresh-
old storage model the dimensionless mean saturation ex-
cess event magnitude equals the dimensionless mean satu-
ration excess frequency i.e.Qµ

/
h=tb

/
T s

µ [1, 1] as shown
by comparing Eq. (12) and Eq. (17). This makes physical
sense, for example whenT s

µ [1, 1] =∞, Qµ must be zero,

and whentb=T s
µ [s0, 1], Qµ must equalh. Noting that

N=T s
µ [1, 1]

/
tb describes the mean number of storms in the

IET, it can be shown using Eq. (11) thatQµ

/
h=tb

/
T s

µ [1, 1]

is equivalent toEa=h
(
N − 1

) /
N . More specifically this

indicates that the inputs (rainfall) must be greater than the
losses (actual evaporation) in the time between successive
events. Intuitively this must be true irrespective of the na-
ture of the loss functionL [s]. Whether such a relationship
between mean event magnitude and mean event frequency
should hold for more general loss functionsL [s] is yet to be
shown.

6.2.2 Comparison of relative variability

In addition to the issue of observability mentioned at the be-
ginning of Sect.6.2 the relationship between the variability
of event magnitudes and the variability of the timing of event
triggering may have important ecological implications. For
exampleSher et al.(2004) noted that the temporal variability
of resource supply events in arid ecosystems may be as or
even more important ecologically than the variability in the
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Fig. 6. Relationship between soil moisture storage and the temporal
dynamics showing(a) Mean inter-event timeT s

µ [1, 1] as a function
of mean soil moistureSµ; (b) Coefficient of variation of the inter-
event timeT s

cv [1, 1] as a function of the variance of soil moisture
Sσ2; and(c) Soil moisture time series corresponding to symbols in
(a) and (b). Dashing corresponds to constantβ=1 (large dashed),
β=10 (dotted) andβ=100 (continuous). Time series generated as
described in Sect.5.1with tb=1 day,Em=0.5 mm/day,w0=5 mm
andh=0.307 mm (2), h=0.536 mm (4), andh=1.66 mm (3).

magnitude of such events. Here we compare how the CV of
IETs relates to the CV of event magnitude in terms of their
ratioT s

cv [1, 1] /Qcv as a function of aridity (see Fig.5).
For all climatesT s

cv [1, 1] ≤ Qcv. In humid climates
T s

cv [1, 1] ∼Qcv meaning event timing and the magnitude of
event per storm are both similarly variable with respect to
their means. In very arid climatesT s

cv [1, 1] <Qcv indicating
less variability in event timing relative to its mean in compar-
ison to event magnitude.

The ratio approaches a step function in the limit of a large
storage capacity, relative to the climatic forcing i.e. largeβ

(or α not shown), and the step occurs around an aridity in-
dex of 1. Mean soil moisture essentially behaves the same
way when the storage capacity is large i.e. it is very close to
saturation for allAI<1 and very close to zero for allAI>1
(Milly , 2001). The smaller the storage capacity relative to
the climate forcing (smallβ) the lower the aridity at which
T s

cv [1, 1] andQcv can be differentiated and the more grad-
ual and smaller the difference with increasing aridity in com-
parison to larger capacities. Therefore large stores are ex-
pected to display much larger flux variability than temporal
variability. Despite increased variability in the timing of sat-
uration excess events for deeper stores for sub-humid and
semi-arid environments (see Fig.3), event magnitude vari-
ability increases much more rapidly with increasing aridity
and continues to do so forAI>1.

In terms of the issue of observability our results suggest
that the temporal variability of event triggering may give
some understanding of the relative variability of event mag-
nitude in humid climates as they are of a similar magnitude in
this region. Based upon the relationship between mean event
frequency and mean event magnitude the variance of event
magnitude per storm event might even be estimated reason-
ably. In arid climatesT s

cv [1, 1] is much less thanQcv and
tells little about the event magnitude variability but none the
less provides a reasonably certain measure (i.e. a standard
deviation about the same as the mean) of the variability of
event timing.

Returning to the hypothesis ofSher et al.(2004), our re-
sults suggest that the variability of the timing of potential
resource supply events, despite being of long duration on av-
erage, is small in comparison to the mean. The temporal
variability is also much less than the variability in the mag-
nitude of supply, at least on a per storm basis. This suggests
that adaptations by plants and animals to cope with temporal
variability may be particularly beneficial in arid climates as
it may be a reasonably certain (low variability) component of
the hydrological variability.

6.3 Relationship between temporal statistics and storage

For some hydrological processes neither the flux nor the trig-
gering are directly observable at the space and time scales at
which they occur in the field. This is true in particular for
preferential flow. What is measurable, at least at the point
scale, is soil moisture storage. Therefore we explore here
first how the temporal statistics relate to the statistics of stor-
age and then the sensitivity of the temporal statistics to the
initial storage.

6.3.1 Triggering and soil moisture variability

Figure6a shows the relationship between the dimensionless
mean saturation excess IETT s

µ [1, 1] and the mean storage
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Sµ for constant evaporative demand (constantβ). This can
also be seen in the time series of storage Fig.6c correspond-
ing to the symbols in Fig.6a. The mean IET increases non-
linearly as the mean storage decreases, and also increases
with increasing storage capacity (increasing values ofβ).
The mean IET is most sensitive to changes in low mean soil
moisture. This sensitivity is also high at very high mean soil
moisture when the storage capacity is large relative to the
climatic forcing (largeβ).

It is evident by comparing the time series Fig.6c and
Fig. 6a that high mean soil moisture is related to low soil
moisture variability and frequent event triggering. Low soil
moisture variability is also associated with a low mean soil
moisture and infrequent triggering. High variability in soil
moisture tends to be associated with intermediateSµ as there
is a greater potential for soil moisture fluctuations to explore
the entire capacity. This large variability in soil moisture is
also associated with high temporal clustering. It can be seen
from the relationship betweenT s

cv [1, 1] and the variance of
storageSσ2 (Fig. 6b) that for a constant evaporative demand
(constantβ), the maximumT s

cv [1, 1] occurs whenSσ2 is also
a maximum. This appears to be true for all but the smallest
stores (seeβ=1 in Fig.6b) but in this instance the degree of
temporal clustering is low in any case.

6.3.2 The role of initial storages0

So far we have largely discussed the controls on the IET, that
is the time between successive occurrences of storage at ca-
pacity. The analytical derivation of FPT statisticsTx [s0, 1]
allows us to determine the rainfall controls on the statistical
properties of the time to trigger saturation excess flow for
the first time since an arbitrary initial storages0. Figure1b
shows this FPT asτ1.

The relevance is best explained by the following analogy.
Let us assume that storage in the near surface determines the
occurrence of preferential flow in a highly nonlinear, thresh-
old like way. We also know from an experiment that there is
a rapid movement of rainfall to groundwater via this mecha-
nism. If we take a measurement of the near surface soil mois-
ture, that measurement is an initial condition relative to the
time of measurement. As it turns out our analysis (the FPT
statistics) reveals that this state of the system determines our
level of certainty about the time till the next preferential flow
event. Therefore we now have a measure of risk, the mean
and variance of the time till the next pesticide leaching event
by preferential flow, on the basis of a single measurement
of storage. This risk measure includes our knowledge of the
structure of rainfall as well as our uncertainty of the timing
and magnitude of rainfall events yet to to come.

Figure 7 shows the effect of initial storage on the mean and
the CV of the time till the next saturation excess triggering.
It can be seen that the mean FPTTµ [s0, 1] decreases ass0
increases towards saturation and is more sensitive tos0 at
higher soil moisture values. Also, as expected, the mean FPT
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is longer the higher the aridity (compare ratios ofα andβ in
Fig. 7). On the other hand the CV of the FPTTcv [s0, 1]
increases with increasing initial storage. At lows0 the more
humid the climate the lowerTcv [s0, 1] but this transitions at
highers0 such that the more balanced climates and systems
with deeper storage capacity, relative to the climatic forcing
(largerα andβ), tend to have a largerTcv [s0, 1].

Values ofTcv [s0, 1] whens0 is low are≤ 1. This can be
explained for the case of arid climates where the closers0 is
to zero, as well as being close toSµ, only extreme rainfall
will trigger an event and for reasons discussed in Sect.6.1.2
event triggering displays similar but scaled statistical proper-
ties to the rainfall. The more humid the climate the further
aways0=0 is toSµ and one would expect a more steady, less
variable, increase in storage towards capacity and therefore a
lowerTcv [s0, 1].

On the other hand when a storage threshold flow event has
just occurred (s0 = 1) the mean time till the next flow event
is a minimum andTcv [s0, 1] is a maximum.Tcv [s0, 1] is a
measure of our uncertainty, relative to our expected value,
of the timing of the next storage threshold event due to our
uncertainty in the timing and magnitude of rainfall. This im-
plies that if a SE event has just occurred, while we can expect
a second event to occur sooner than at any other time, our
ability to predict when that will be, relative to the mean time,
is actually at its poorest. The high variability of IETs when
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the initial soil moisture is at saturation we believe is due to
the greater potential for both much longer periods between
events, as a result of the greater potential for drying, as well
as a high potential for shorter IETs due to the high potential
for event triggering when storage is near capacity.

The variability of threshold hydrological processes seems
sensitive to an initial storage near a threshold.Zehe and
Blöschl (2004) also found the variability of modelled plot
and hillslope scale runoff to be highest when initial soil mois-
ture was at a threshold. In their case they considered a sin-
gle prescribed rainfall event but multiple realisations of sub-
scale spatial variability of initial soil moisture in relation to
the spatially averaged initial soil moisture. When the spa-
tially averaged soil moisture was at the threshold between
matrix flow and preferential flow, the variability of modelled
runoff was at its greatest.Tcv [s0, 1] is a measure of our un-
certainty in the timing of the next event due to our uncer-
tainty of the timing and magnitude of future rainfall events
on the basis of a measurement of storage. Additionally the
variability in runoff described byZehe and Bl̈oschl(2004) is
a measure of uncertainty in the magnitude of the event due to
an uncertain structure of sub-scale soil moisture. Combining
these two results it suggests that the time between two con-
secutive threshold flow events for which the flux is poorly
predictable is itself highly uncertain.

7 Summary and conclusions

Typically in hydrology we consider the transformation of
flux(es) (rainfall, evaporation) to a flux (runoff). Here instead
we focus on the transformation of (rainfall) event timing to
(flow) event timing. We analytically derived statistics of the
temporal dynamics of the flow triggering due to a rainfall in-
tensity threshold and a soil moisture threshold as models for
infiltration excess and saturation excess flow mechanisms re-
spectively. The intensity threshold lead to dynamics that did
not change the form of the IET pdf. The storage threshold
did change the form of the IET pdf leading to temporal clus-
tering of events which tended to peak around an aridity index
of one for deep stores.

The mean and the variance of the SE inter-event time were
found to increase with increasing climate aridity. The mean
and the variance of the SE event magnitude per storm, de-
creases with increasing aridity, while the CV increases with
increasing aridity. It is already established that hillslope sat-
uration excess may dominate in humid climates and to be
less significant in arid climates however, the results presented
here is the first time that there has been a quantification of the
relationships between the temporal structure of event timing,
the magnitude of events and the storage across climate gra-
dients.

While the two mechanisms explored are overly simplis-
tic descriptions of real world processes, the results from
these two extreme triggers suggest that the actual temporal

pattern of triggering will display a mixture of the unclus-
tered and clustered dynamics observed here. There is also
a need to better identify and predict thresholds which gov-
ern some processes. For exampleLehmann et al.(2006, this
issue) suggest that the threshold storm amount, governing
pipe flow in steep forested hillslopes, may be an emergent
property of the connectivity of zones of transient saturation
at the soil/bedrock interface. However, there is currently lit-
tle understanding of what determines the magnitude of these
thresholds at different sites (Uchida et al., 2005).

For analytical tractability we have neglected naturally tem-
porally clustered rainfall that may occur at event to inter-
annual time scales (Menabde and Sivapalan, 2000; Franks
and Kuczera, 2002). The impact of temporally clustered rain-
fall we expect will depend upon the degree of memory in the
system which would be parameterised by the magnitude of a
modifiedβ term. Systems with a smallβ would have little
memory of long rainfall IETs, while a largeβ would have
the potential to “remember” the clustered nature of rainfall.
The results presented here will likely be significantly mod-
ified when considering climates with strong seasonality and
this requires further investigation.

From the frequency-magnitude relationships we found that
the dimensionless mean SE event magnitude was equal to
the dimensionless mean event frequency and the coefficient
of variation of SE event magnitude was found to be always
greater than, or at least equal to, the CV of the IET. While
no aridity relationships were established for IE, it may be
possible to evaluate the contribution of IE as a deviation from
the frequency-magnitude relationships derived here. Finally
we also established inter-relationships between storage and
timing, with a peak in the variance of soil moisture reflecting
the peak in temporal clustering of events.

Validation of the results presented here was beyond the
scope of this paper. The generality of this work provides the
means to develop hypotheses and test the many assumptions
with numerical and empirical studies. The question of what
to measure and how will depend upon the process under con-
sideration but ideally simulataneous measurments of event
based flux, timing and storage in the context of the climate
are required to further develop these ideas. Re-analysis of
existing threshold phenomena in the context of the temporal
dynamics of the process and rainfall may provide an alter-
native. Such data may include long or ensemble records of
overland flow, stream sediment dynamics, pesticide leaching,
and pipe flow for example.
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Appendix A

Derivation of saturation excess temporal statistics

The integral equation for the pdf of FPTs,gT , for processes
like the saturation excess one described in this paper was
given by (Laio et al., 2001) as:

∂g (t |s0)

∂t
= − L [s0]

∂g (t |s0)

∂s0
−

g (t |s0)

tb

+
1

tb

∫ sξ

s0

fH [z − s0] g (t |z) dz (A1)

whereL [s0] [T−1] is the rate of losses from storage at an ini-
tial storages0, at timet=0, fH [-] is the pdf of storm depths
normalised by the storage capacity,z is a dummy variable
of integration, andsξ is an arbitrary threshold soil moisture.
The raw moments of the FPT are by definition:

T s
n

[
s0, sξ

]
=

∫
∞

0
tngT (t |s0) dt (A2)

Eq. (A2) motivates us to generalise the derivation to higher
order moments by multiplying Eq. (A1) by tn, instead oft to
just get the mean as done byLaio et al.(2001). So multiply-
ing Eq. (A1) by tn, assuming normalised storm depths are
exponentially distributed and integrating by parts the time
derivative and substitutingT s

n

[
s0, sξ

]
, results in the follow-

ing integro-differential equation for the FPT moments:

− nT s
n−1

[
s0, sξ

]
= − L [s0]

dT s
n

[
s0, sξ

]
ds0

−
T s

n

[
s0, sξ

]
tb

+

α

tb

∫ sξ

s0

e−α(z−s0)T s
n

[
z, sξ

]
dz (A3)

Integrating by parts the integral term in Eq. (A3), differen-
tiating the entire equation with respect tos0, and substituting
for the integral term by rearranging Eq. (A3), leads to a sec-
ond order ordinary differential equation for the FPT moments
T s

n :

L [s0]
d2T s

n

ds2
0

+
dT s

n

ds0

(
dL [s0]

ds0
− αL [s0] +

1

tb

)
=

dT s
n−1

ds0
− nαT s

n−1 (A4)

The general solution to Eq. (A4) is given by:

T s
n [s0, sξ ]=C2+C1

∫ s0

1
B1 [w, 1] dw+

∫ s0

1
B2 [w, 1] dw

(A5)
where:

ln(B1[a, b])=α (a − 1) +

∫ b

a

1

L[x]

(
1

tb
+

dL[x]

dx

)
dx

(A6)

Table A1. Relationships between raw and central moments.

Central moment Relation to raw moments

Mean Tµ =T1

Variance Tσ2=T2 − T 2
1

Coefficient of skewness Tε =
T3−3T1T2+2T 3

1(
T2−T 2

1

)3/2

Kurtosis excess Tκ =
T4−4T1T3+6T 2

1 T2−3T 4
1(

T2−T 2
1

)2 − 3

and

B2 [w, 1] = − B1[w, 1]

∫ 1

w

nB1 [1, y]

L[y]
×(

αTn−1
[
y, sξ

]
−

dTn−1
[
y, sξ

]
dy

)
dy (A7)

and w, x and y are dummy variables of integration. Two
boundary conditions are required to solve for the coefficients
C1 andC2. The first boundary condition is derived when the
process begins at the threshold (Masoliver, 1987; Laio et al.,
2001) and is obtained by substitutings0=sξ in Eq. (A3) to
get:

L
[
sξ

] dT s
n

[
s0, sξ

]
ds0

∣∣∣∣∣
s0=sξ

=nT s
n−1

[
sξ , sξ

]
+

T s
n

[
sξ , sξ

]
tb

(A8)

The second boundary condition is required to describe the
time to reach the threshold having begun at the lower bound-
ary and is obtained from substitution ofs0=0 in Eq. (A3)
(Masoliver, 1987; Laio et al., 2001) resulting in:

− nT s
n−1

[
0, sξ

]
= −

T s
n

[
0, sξ

]
tb

+

α

tb

∫ sξ

0
e−α(z−s0)T s

n

[
z, sξ

]
dz (A9)

The coefficientC1 can be obtained by differentiating
Eq. (A5) with respect tos0, inserting this into Eq. (A8), sub-
stitutings0=sξ and then solving forC1 , which is dependent
uponC2. Substituting Eq. (A5) in the second boundary con-
dition Eq. (A9) gives a second equation forC1 also depen-
dent uponC2. Equating these two expressions and solving
for C2 gives:

C2=

(
B3[3]+nTn−1[0, sξ ]tb

B3[1]
−

B4[3] − nTn−1[sξ , sξ ]

B4[1]

)
÷

(
e−αsξ

B3[1]
+

1

tbB4[1]

)
(A10)
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where

B4[A]=L[sξ ]BA[sξ , 1] −
1

tb

∫ 1

s0

BA[w, 1]dw (A11)

and

B3[A]=

∫ sξ

0
αe−zα

∫ z

1
BA[w, 1]dw dz+∫ 1

0
BA[w, 1]dw (A12)

The subscriptA is a reference toBA as given by Eq. (A6)
or Eq. (A7). Substituting Eq. (A10) into one of the original
expressions forC1 gives:

C1= −

(
nTn−1

[
sξ , sξ

]
− eαsξ

(
nTn−1

[
0, sξ

]
+

B3 [3]

tb

)
− B4 [3]

)
÷

( 1

tb
eαsξ B3 [1] +B4 [1]

)
(A13)

The central moments can be derived from these raw mo-
ments using the relationships described in TableA1 and as
discussed in Sect.5.2.

Appendix B

List of Symbols

Symbol Description Units

Soil parameters
Iξ Infiltration capacity L/T
w0 Storage capacity L
s Normalised soil moisture storage –
s0 Initial soil moisture –
sξ Threshold soil moisture –

Climate parameters

h Storm depth L
h Mean storm depth L
tb Inter storm duration T
tb Mean inter-storm duration T
Em Potential evaporation L/T
Imax Max within storm rainfall intensity L/T
Imax MeanImax L/T

Probability terms

fX Probability density X−1 a

gT First passage time probability density T−1

P [ ] Probability –
Continued. . .

aUnits X correspond to the random variable

Symbol Description Units

µ Mean X
σ Standard deviation X
σ 2 Variance X2

cv Coefficient of variation –
ε Coefficient of skewness –
κ Coefficient of kurtosis –

Dimensionless hydrological parameters and statistics

α Supply ratio –
β Demand ratio –
AI Aridity index –
Ea Mean actual evaporation L
N Mean number of storms in the IET –
Qx Saturation excess event magnitude

statistic

a

Sx Soil moisture storage statistic –
T I

x

[
Iξ

]
Infiltration excess IET statistic b

T r
x Storm IET statistic b

T s
x

[
s0, sξ

]
Statistic of the time to reachsξ since an
initial soil moistures0

b

aUnits correspond toQµ [L], Qσ2 [L2], andQcv [−]
bUnits correspond toTµ [T], Tσ2 [T2], Tcv [−], Tε [−],

andTκ [−]
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