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Abstract

The Probability Distributed Model, or PDM, has evolved as a toolkit of model functions that together constitute a lumped rainfall-runoff
model capable of representing a variety of catchment-scale hydrological behaviours. Runoff production is represented as a saturation excess
runoff process controlled by the absorption capacity (of the canopy, surface and soil) whose variability within the catchment is characterised
by a probability density function of chosen form. Soil drainage to groundwater is controlled by the water content in excess of a tension
threshold, optionally inhibited by the water content of the receiving groundwater store. Alternatively, a proportional split of runoff to fast
(surface storage) and slow (groundwater) pathways can be invoked with no explicit soil drainage function. Recursive solutions to the Horton-
Izzard equation are provided for routing flows through these pathways, conveniently considered to yield the surface runoff and baseflow
components of the total flow. An alternative routing function employs a transfer function that is discretely-coincident to a cascade of two
linear reservoirs in series. For real-time flow forecasting applications, the PDM is complemented by updating methods based on error prediction
and state-correction approaches. The PDM has been widely applied throughout the world, both for operational and design purposes. This
experience has allowed the PDM to evolve to its current form as a practical toolkit for rainfall-runoff modelling and forecasting.

Keywords: rainfall-runoff model, PDM, flooding, updating, forecasting

Introduction

The Probability Distributed Model or PDM is a fairly general
conceptual rainfall-runoff model which transforms rainfall
and potential evaporation data to flow at the catchment outlet
(Moore, 1985, 1999; Moore and Bell, 2002; Moore et al.,
2005; Institute of Hydrology, 1992, 1996; CEH Wallingford,
2005). Figure 1 illustrates the general form of the model.
Runoff production at a point in the catchment is controlled
by the absorption capacity of the soil (treated together with
canopy and surface detention) to take up water. This can be
conceptualised as a simple store with a given storage
capacity. By considering that different points in a catchment
have differing storage capacities and that the spatial variation
of capacity can be described by a probability distribution, it
is possible to formulate a simple runoff production model
which integrates the point runoffs to yield the catchment
surface runoff into surface storage. Groundwater recharge
from the soil moisture store passes into subsurface storage.
The outflow from surface and subsurface storages, together
with any fixed flow representing, say, compensation releases

from reservoirs or constant abstractions, forms the model
output.

The components of the PDM model are described in detail
as the main subject of this paper. Formulations for the
probability-distributed soil moisture store are first derived
based on mass balance principles with the addition of
rainfall, losses to evaporation, drainage to groundwater
(recharge) and the production of direct runoff. The direct
runoff and recharge are routed via surface and subsurface
storages, representing fast and slow pathways to the basin
outlet. Representations of these surface and subsurface
storages — by a choice of Horton-1zzard equation solution
or by a transfer function discretely coincident with a cascade
of two linear reservoirs — are set down next. This is
followed by an overview of the model parameters and their
calibration, discussion of example applications and a
summary of the typical model form that is invoked within
the PDM toolkit. Having completed the description of the
PDM as a simulation model, methods of updating provided
for real-time forecasting applications are outlined. Methods
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Fig. 1. The PDM rainfall-runoff model

of empirical state-correction for the PDM and more generic
error-prediction techniques are described, and their relative
merits discussed. The paper ends with a historical
perspective on the evolution of the PDM to its current state
of development together with some concluding remarks.

Probability-distributed soil moisture
store

Consider that runoff production at any point within a river
basin may be conceptualised as a single storage, or tank, of
capacity ¢’, representing the absorption capacity of the soil
column at that point. The storage takes up water from
rainfall, P, and loses water by evaporation, E, until either
the storage fills and spills, generating direct runoff, ¢, or
empties and ceases to lose water by evaporation. Figure 2(a)
depicts such a storage, whose behaviour may be expressed
mathematically by

, ([P-E-(c'-S,) P>C+E
a=, P<c Q)
<c'+E

where S is the initial depth of water in storage, and where
P, E and (' represent the depth of rainfall, evaporation and
the resulting direct runoff over the interval being considered.
Now consider that runoff production at every point within
ariver basin may be similarly described, each point differing
from another only with regard to the storage capacity. The
storage capacity at any point, ¢, may then be considered as
a random variate with probability density function, f{c), so
that the proportion of the river basin with depths in the range
(c, ¢ + dc) will be f{c)dc.

The water balance for a river basin assumed to have
storage capacities distributed in this way may be constructed
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as follows. First imagine that stores of all possible different
depths are arranged in order of depth and with their open
tops arranged at the same height: this results in a wedge-
shaped diagram as depicted in Fig. 2(b). If the basin is
initially dry so that all stores are empty and rain falls at a
net rate P for a unit duration, then stores will fill to a depth
P unless they are of lesser depth than P when they will fill
and spill. During the interval the shallowest stores will start
generating direct runoff and at the end of the interval stores
of depth P will just begin to produce runoff, so that the
upper triangular area in Fig. 2(c) denotes the depth produced
from stores of different depth over the unit interval. Since,
in general, there are more stores of one depth than another
the actual runoff produced over the basin must be obtained
by weighting the depth produced by a store of a given depth
by its frequency of occurrence, as expressed by f{c). Now,
at the end of the interval stores of depth less than P are
generating runoff: let this critical capacity below which all
stores are full at some time ¢ be denoted by
C'=C'(t)(C" =P in the present example). The
proportion of the basin containing stores of capacity less
than or equal to C” is

problc<C")=F(C") = ¢ f(c)dc. )

The function F7.) is the distribution function of store capacity
and is related to the density function, f{c), through the
relation f(c) = dF(c)/dc. This proportion is also the
proportion of the basin generating runoff, so that the
contributing area at time ¢ for a basin of area 4 is

At =F(C ®)A 3)

The instantaneous direct runoff rate per unit area from the
basin is the product of the net rainfall rate, 7(¢), and the
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proportion of the basin generating runoff, F(C’(z)); that is

qt) = 7(t) F(C" (t)). (4)

During the i’th wet interval, (¢, +At), suppose rainfall and
potential evaporation occur at constant rates P, and £, so
that net rainfall 7, = P, — E, Then the critical capacity, C"(7),
will increase over the interval according to

C(r)=C'(t)+ 7 (r-t) t<z<t+At, )
the contributing area will expand according to Eqn. (3), and

the volume of basin direct runoff per unit area produced
over this interval will be

The PDM rainfall-runoff model

V(t+At)= [ q(z)dr = [S§ F(c)dc. (6)

During dry periods potential evaporation will deplete the
water content of each storage. It will be assumed during
such depletion periods that water moves between storages
of different depths so as to equalise the depth of stored water
at different points within the basin. Thus at any time all
stores will have a water content, C”, irrespective of their
capacity, unless this is less than C* when they will be full:
the water level profile across stores of different depths will
therefore always be of the simple form shown in Fig. 2(c).
The assumption which allows redistribution of water
between storages of different size during depletion periods
is particularly important for real-time applications of the
model where the possibility of updating the store contents
is envisaged. Moore (1985) shows how this assumption,
when not invoked, leads to a more complex water accounting
procedure which is less amenable to real-time empirical state
adjustment schemes. Particularly important is that a unique
relationship exists between the water in storage over the
basin as a whole, S(#), and the critical capacity, C’(z), and in
turn to the instantaneous rate of basin runoff production,
q(t). Specifically, and referring to Fig. 2(c), it is clear that
the total water in storage over the basin is

C'(t) * 0
S(t) =[5 ' cf()de+ C(t) [, f(c)de
(7
o
= £ - F(c))de.

For a given value of storage, S(z), this can be used to obtain
C"(¢) which allows the volume of direct runoff, V(z+A4¢), to
be calculated using Eqn. (6) together with Eqn. (5).

The dependence of evaporation loss on soil moisture
content is introduced by assuming the following simple
function between the ratio of actual to potential evaporation,
E'/E , and soil moisture deficit, S _— S(1):

E S | ®)

either a linear (b,=1 so E =(S(t)/S,,)E) or quadratic
form (b,=2) is usually assumed. Here, S is the total
available storage, and is given by

B, {(smax - S(t))}be.

Sma = [ Cf(Q)de = [Z (1~ F(c))dc =, ©)

where C is the mean storage capacity over the basin.
Further loss as recharge to groundwater may be introduced
by assuming that the rate of drainage over the interval, d,
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depends linearly on basin soil moisture content at the start
of the interval i.e.

di=ke " (S(t)-S ) (10)

where k_ is the drainage time constant and b, the exponent
of the recharge function (usually set to 1) and S, is the
threshold storage below which there is no drainage, water
being held under soil tension. An alternative formulation is
available which allows recharge to depend on both soil and
groundwater storage for use in catchments where soil/
groundwater interactions are important. Consider recharge
into a groundwater store of maximum capacity Sén * . Then
a groundwater deficit ratio may be defined as

glt)==2—>2 maxg() (11)
Sy

where S (7) denotes the groundwater storage at time 7. This
ratio can be used to define a groundwater demand factor
between 0 and 1:

f (t) _ [gc(:)jﬁ g(t) <a

1 otherwise

(12)

which achieves a maximum for values of the deficit ratio
g(t) in excess of «. It is then reasonable to suppose that the
recharge depth over the interval, D, will increase with soil
storage, S(z), and with the groundwater demand factor, f{?),
according to

S,
S

Here the recharge depth at saturation D =q  At, with g
the outflow from the groundwater storage when Sg(t) equals
Sy (i.e. the maximum rate of recharge). Note that the
drainage rate over the interval is d,=D/At. There are thus
only three parameters: o, £ and ¢, (with S/ thereby
implied from its storage function). It is seen that, for a
saturated soil store, recharge is diminished when the
groundwater demand factor is less than ¢, when the soil
ceases to be freely draining. This formulation derives from
a reparameterised form of percolation model used in the
National Weather Service rainfall-runoff model (Burnash
et al., 1973; Gupta and Sarooshian, 1983).

A third recharge formulation is available which assumes
that there is no soil drainage, d,. Direct runoffis split between
a fraction « which goes to make up surface runoff and a
fraction (1—«) going to groundwater storage.

With both losses to evaporation and recharge, the net
rainfall, 7, may be defined in general as

Di= (Dsat"' (Smax - Dsat)f (t)) (13)
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m=R-E-d. (14

During a period when no runoff generation occurs then, for
this general case, soil moisture storage accounting simply
involves the calculation

S(r)=S(t)+7,(r—t) t<z<t+At,0<S(r)< S -
(15)

When runoff generation does occur then the volume of
runoff produced, V(t+A4t), is obtained using Eqn. (6), and
then continuity gives the replenished storage as

S(t+At):{s(t)+”iAt_V(t+At) S(t+ A< S,

Sax otherwise (16)

If basin storage is fully replenished within the interval
(t,t+At) then V(t+At) should be computed from continuity
as

V(t+ At) = 7,At - (S, — S(1)). 7

The above completes the procedure for soil moisture
accounting and determining the value of runoff production
according to a probability-distributed storage capacity
model. Figure 3 provides a graphical representation of this
procedure for a wet interval (z,1+A4t) during which soil
moisture storage is added to by an amount AS(1+A¢) = 7 At
— V(t+At), and a volume of direct runoff, V(t+At), is
generated.

At
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F(o)
S AS(t+A41)
0.5 —|
vy -
0 I

l : l:
50 ? 100? 150
c'w C'(r+ay
Storage capacity, ¢ mm
Fig. 3. The storage capacity distribution function used to calculate
basin moisture storage, critical capacity, and direct runoff

according to the probability-distributed interacting storage capacity
model.



A specific application of the procedure can be developed
for a given choice of probability density function. Analytical
solutions of the integrals in the probability-distributed
storage capacity model component (specifically Eqns. (6)
and (7)) are presented in Appendix A for a range of possible
distribution types. After a number of trials on alternative
distributions, a Pareto distribution of storage capacity is now
most widely used in practice and will be used here to
illustrate application of the method. The distribution function
and probability density function for this distribution are

b
F(C):l_(l_CJ 0<C< e (18)
Cmax
b-1
f(c):d':(c):b(l_cj 0<C< Coe (19)
dc Cmax Cmax

where parameter ¢ is the maximum storage capacity in
the basin, and parameter b controls the degree of spatial
variability of storage capacity over the basin. These
functions are illustrated in Fig. 4: note that the rectangular
distribution is obtained as a special case when b=/, and
b=0 implies a constant storage capacity over the entire basin.
The following relations apply for Pareto distributed storage
capacities:

St = Cra /(0 +2), (20a)
qozswﬁ—@—Cquwf“} (20b)
c (t) = Crnax {1_ (1_ S(t)/ Smax )1/(b+1) }' (20¢)
0.02
Probability
density -
function
f(c)
0.01 .~ b=2
=1
b=05
0 | [ |
0 100 200

Storage capacity, c mm

(a) Probability density function

The PDM rainfall-runoff model

V(t+At)=7,At—S,., {(1— C'(t)/c ) -l-Ct+ At)/cmax)m}.
(20d)

The relationship between rainfall and runoff implied by
the above expressions, for given conditions of soil moisture,
is presented in Fig. 5. A related, if not similar, procedure
forms the basis of the Xinanjiang model developed by Ren
Jun Zhao and co-workers in China (Zhao and Zhuang, 1963;
Zhao et al., 1980; Zhao and Liu, 1995). More recently it
has been popularised and extended in the form of the Arno
rainfall-runoff model in Italy (Todini, 1996) and, for large-
scale applications, the VIC land surface model in the USA
(Wood et al., 1992). Indeed, Moore (1985) traces the origins
of such probability-distributed principles in hydrology back
to the pioneering contribution of Bagrov in 1950, working
in what was then the USSR.

Extended forms of these relations are available in the PDM
toolkit to represent the case where storage capacity is limited
by both the upper bound ¢, _and a lower bound ¢, such
that c;, << c,, inthe Pareto distribution (see Appendix
A and Moore and Bell, 2002). Note that when C*(#) drops to
the value of ¢ = as a result of evaporation, the basin water
storage S(7) also equals this value. Equation (15) is used to
update S(?) during ‘dry periods’ allowing it to fall below
c,. and ultimately to zero. Only once net rainfall has
replenished water storage above ¢, does runoff generation
occur and the calculation of C*(z) and V(?) is resumed. Thus
the initial catchment response to rainfall can be moderated
or delayed if the minimum storage capacity is taken to be
greater than zero.

1.0
b=2
Distribution
function
F(c)
b=0
0.5
b=0.5
Cmax
0 T T T ‘#
0 100 200

Storage capacity, c mm

(b) Distribution function

Fig. 4. The Pareto distribution of storage capacity.
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Fig. 5. Rainfall-runoff relationship for the probability-distributed interacting storage capacity model, using the Pareto
distribution of storage capacity.

Surface and subsurface storages

The probability-distributed store model partitions rainfall
into direct runoff, groundwater recharge and soil moisture
storage. Direct runoff is routed through surface storage: a
‘fast response system’ representing channel and other fast
translation flow paths. Groundwater recharge from soil water
drainage is routed through subsurface storage: a ‘slow
response system’ representing groundwater and other slow
flow paths. Both routing systems can be defined in the PDM
by a variety of non-linear storage reservoirs or by a cascade
of two linear reservoirs (expressed as an equivalent second
order transfer function model constrained to preserve
continuity).

The nonlinear storage model is specified by the Horton-
Izzard equation (Dooge, 1973)

dg _

_ b

g>0, —oo<b<l, (1)
where g =((t) is the rate of outflow and u = u(t) is the
rate of inflow to the store per unit area, and @ and b are
parameters. This derives from the continuity equation for
the store

das

G- ua 22)

and the nonlinear storage form of the momentum equation

q=kS",  k>0,m>0 (23)
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where S= S(t) is the volume of water held in the storage
per unit area, & is the storage rate coefficient and m the store
exponent. Note that a=mk'™ and b=(m—1)/m.

Recursive solutions of the Horton-Izzard equation are
provided in the PDM for a choice of non-linear storage form:
linear, quadratic, cubic, exponential and general non-linear.
A cubic form is usually considered most appropriate to
represent the groundwater storage. In this case where
g=k S?, an approximate solution utilising a method due
to Smith (1977) yields the following recursive equation for
storage, given a constant input u over the interval (7, t+A4¢):

S(t+ At)= St) - =~ lexp(- kS (t)at) - 1} (u— kS (t)).

3kS(t) 24)

Discharge may then be obtained simply using the nonlinear
relation

qlt + At) = k S*(t+ At). (25)

Solutions for the other nonlinear forms are presented in
Moore (1983) and Appendix A of Moore and Bell (2002).
When used to represent groundwater storage, the input u
will be the drainage rate, d, from the soil moisture store
and the output g(#) will be the ‘baseflow’ component of flow
q,(t). Explicit allowance for groundwater abstractions is
incorporated in an extended version of the PDM which can
also make use of well level data (Moore and Bell, 2002).

The most commonly used representation of the surface
storage component is a cascade of two linear reservoirs,



with time constants &, and k,, expressed as the discretely
coincident transfer function model (O’Connor, 1982):

g, = _§1qt,1_ §2qt-2+ woltt w1l (26)

with
51=—(51+ 53), 52=65.5%, 51=exp(-At/k), §»=exp(-At/k,)

kl(é‘*l —l)— k2 (5; -1

o= K,—k ki # ko
kel Vo-klilse L
ko~ ki
wo=1~(1+ At/k)) s, ki=ko
o= (51 -1+ At/k)) 5, ki=ko. Q7

The PDM rainfall-runoff model

Here At is the time interval between times /—/ and ¢ and it is
assumed that the input u, is constant over this interval. In
this case the input is the volume of direct runoff, V(7),
generated from the probability-distributed soil moisture store
and the output g, will be the surface flow component of the
total basin runoff, g (1). The total basin flow is given by
q,(t) + q,(1), plus a constant flow, g, representing any returns
or abstractions.

Model parameters, calibration and
example application

The parameter and structure options in the model are
summarised in Table 1. Note that a rainfall factor, f, is
incorporated in the model to allow conversion of a rainfall
observation to rainfall, P, thereby compensating for effects
such as lack of raingauge representativeness. The time
constants k_and k, are equivalent to k' in the general non-

Table 1. PDM model parameters

Parameter name Unit
£ none
t, hour
Probability-distributed store
cmm mm
cmax mm
b none
Evaporation function
b, none
Recharge function
1: Standard
k, hour mm b, -1
bg none
S, mm
2: Demand-based
o none
g none
qml mm h-l
3: Splitting
a none
Surface routing
k. k, hour
Groundwater storage routing
k, hour mm™!
m none
Constant flow addition
q, m’ st

Description

rainfall factor
time delay

minimum store capacity

maximum store capacity

exponent of Pareto distribution controlling spatial
variability of store capacity

exponent in actual evaporation function

groundwater recharge time constant
exponent of recharge function
soil tension storage capacity

groundwater deficit ratio threshold

exponent in groundwater demand factor function
maximum rate of recharge

runoff factor controlling the split of rainfall to surface

and groundwater storage routing when no soil recharge
is allowed

time constants of cascade of two linear reservoirs

baseflow time constant
exponent of baseflow non-linear storage

constant flow representing returns/abstractions
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linear storage function g=kS".

The calibration of the PDM model is carried out within a
generic Model Calibration Shell environment. This
Calibration Shell provides for both automatic optimisation
and informal visually-interactive parameter estimation. The
former uses a simplex direct search procedure (Nelder and
Mead, 1965) modified following suggestions made by Gill
et al. (1981). Informal estimation is supported by an
interactive visualisation tool which allows the user to see
the changing hydrograph response as a chosen parameter
value is varied. This can be an invaluable aid to
understanding the model response and the nature of the
dependence between parameters. Error response function
plots for a selected pair of parameters can also be used to
investigate parameter interdependence.

The seasonal response of a model, dominated by aspects
of the model structure and a certain subset of the model
parameters controlling the water balance, can be investigated
through a preliminary calibration at a daily time-step. A 15-
minute time-step can then be used to establish the model
parameters dominating the short-term dynamics of runoff
response and translation. Storm events spanning several
years can be included in the optimisation at a 15-minute
time-step. This is achieved by prescribing the event periods
to be included in the optimisation and switching to a daily
time-step between events, for purposes of continuous water
accounting. Other time-steps to the 15-minute and daily
interval can be used. If long (several years) continuous 15-
minute datasets are available, then modelling can be done
at this interval. The Calibration Shell visualisation facilities

FLOW (m**3/sec)

can be used to look at the response over seasons or years as
well as zoomed-in to flood hydrographs of special interest.
The objective function used to assess model performance
can be censored to exclude flows below a minimum value
so that it is not unduly influenced by long hydrograph
recessions.

The PDM model has been widely applied to a variety of
catchments in different countries. These include England,
Wales, Scotland, Belgium, Hong Kong, India, South Java,
Thailand and China. An example of its use as a simulation
model is shown in Fig. 6. The flows are for Beverley Brook
gauged at Wimbledon Common in London within the
Thames basin, draining an area of 44 km?. HYRAD
recalibrated radar rainfall data (Moore, 1999), which
combines radar and raingauge information, is used to form
the catchment average rainfall employed as input to the
model in this case.

Summary of the PDM rainfall-runoff
model

Whilst the design of the PDM model provides for a range
of different structural forms, the most commonly used
configuration comprises the following components:

(i) A probability-distributed soil moisture storage
component to effect separation between direct runoff
and subsurface runoff. This is based on a Pareto
distribution of soil moisture storage capacity over the
catchment.

]
16-MAR-1989

T T

T
21-MAR-1989

Fig. 6. PDM model simulation of Beverley Brook at Wimbledon Common using HYRAD recalibrated radar rainfall data as input. Observed
Slow: bold line; simulated flow: dashed line; “baseflow”: small dots. The negative ordinate shows soil moisture deficit as a dashed line and

rainfall on a proportional scale.
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(ii) A surface storage component which transforms direct
runoff to surface runoff. This employs a two-linear
reservoir cascade formulated as a transfer function with
dependence on two past outputs and the current and
previous input. The coincidence of this four parameter
discrete time model with the two parameter continuous
time model that preserves continuity allows the transfer
function model to be (a) re-parameterised as a two
parameter model, and (b) to be used at different discrete
time intervals.

(iii) A groundwater storage component which receives
drainage water from the distributed soil moisture storage
as input and contributes the groundwater component
of total runoff as output. A cubic non-linear storage
routing function is adopted to effect this transformation.

Methods are available to update the PDM model with
reference to observed flows for real-time flow forecasting
applications. An empirical state-correction scheme provides
a range of options for correcting internal model water
contents or flow rates to yield more accurate updated model
forecasts. As an alternative, an ARMA error-prediction
scheme is available which exploits the persistence in model
errors to obtain improved forecasts. These methods are
described in outline next.

Updating the PDM rainfall-runoff
model

INTRODUCTION

If observed flows are not used, except for initialisation, a
model is said to be operating in simulation mode, acting as
a function which transforms rainfall and potential
evaporation to river flow. A model which has been calibrated
in simulation mode may be extended to use observed flows
by addition of further structure and associated parameters.
These might take the form of rules for adjusting model states
(state-correction) or predicting future errors (error-
prediction). The former are heavily dependent on the
structure of the simulation mode model, whilst the latter
are essentially independent. Parameter-adjustment is not
considered in the PDM. The view is taken that this approach
confuses the issue of correct model identification, which is
properly carried out through a controlled calibration
procedure. Parameter variability is better addressed by
improving the structural form of the model than by tracking
its variation in real-time.

A model incorporating observed flows either through
state-correction or error-prediction will be said to be

The PDM rainfall-runoff model

operating in updating mode. These two updating methods
are available for use with the PDM and are detailed below.

STATE CORRECTION

The term ‘state’ is used to describe a variable of a model
which mediates between inputs to the model and the model
output (Szollosi-Nagy, 1976). In the case of the PDM
rainfall-runoff model, the main input is rainfall and basin
flow is the model output. Typical state variables are the water
contents of the surface and groundwater stores, S, and S,,
and of the probability-distributed soil storage, S, (Fig. 1).
The flow rates out of the conceptual stores can also be
regarded as state variables: examples are ¢, the flow out of
the surface storage, and g,, the flow out of the groundwater
storage.

When an error, ¢ =Q-q=0Q-(q,+0q,), occurs between the
model prediction, g, and the observed value of basin runoff,
O, it would seem sensible to ‘attribute the blame’ to mis-
specification of the state variables and attempt to ‘correct’
the state values to achieve concordance between observed
and model predicted flow. Mis-specification may, for
example, have arisen through errors in rainfall measurement
which, as a result of the model water accounting procedure,
are manifested through the values of the store water contents,
or equivalently the flow rates out of the stores. A formal
approach to state correction is provided by the Kalman filter
algorithm (Jazwinski, 1970; Gelb, 1974; Moore and Weiss,
1980a,b). This provides an optimal adjustment scheme for
incorporating observations, through a set of linear
operations, for linear dynamic systems subject to random
variations which may not necessarily be Gaussian in form.
For non-linear dynamic models, such as the PDM, an
extended form of Kalman filter based on a linearisation
approximation is required which is no longer optimal in the
adjustment it provides. The implication of this is that simpler,
intuitive adjustment schemes can be devised which
potentially provide better adjustments than the more
complex and formal extensions of the Kalman filter which
accommodate non-linear dynamics through approximations.
Such schemes which make physically sensible adjustments
are called ‘empirical state adjustment schemes’. A simple
example is the apportioning of the error, & , between the
surface and groundwater stores of the PDM in proportion
to their contribution to the total flow. Mathematically this
may be expressed as

Q, =0, + 2 0Q,& (28a)

=9 +01-a)ge (28b)
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where

a= qb/(qs + qb) (29)

and the superscript * indicates the value after adjustment.
The ‘gain’ coefficients, g, and g, when equal to unity, yield
the result that q; + q; equals the observed flow, O, thus
achieving exact correction of the model flow to equal the
observed value. Values of the coefficients other than unity
allow for different adjustments to be made, and g, and g
can be regarded as model parameters whose values are
established through optimisation to achieve the ‘best’ fit
between state-adjusted forecasts and observed flows. A
generalisation of the above is to define o to be

G

T A+ B (30)

and to choose the incidental parameters S, and 3, to weight
the apportionment towards or away from one of the flow
components; in practice 5, and £, are assigned values of 10
and 1.1 to apportion more of the error adjustment to the
surface store. Note that the adjustment is carried out at every
time step and the time subscripts have been omitted for
notational simplicity. The scheme with o defined by Eqn.
(29) is referred to as the proportional adjustment scheme
and that defined by Eqn. (30) is the super-proportional
adjustment scheme. Replacing ozand (1—«) in Eqns. (28a,b)
by unity yields the simplest non-proportional adjustment
scheme.

An adjustment to the probability-distributed soil moisture,
S= S, may also be made, either of the proportional form

S*:S+agge (28¢)
or the direct form of gain with « equal to unity.

It should be noted that all the above forms of adjustment
utilise the same basic form of adjustment employed by the
Kalman filter in which an updated state estimate is formed
from the sum of the current state value and the model error
multiplied by a gain coefficient. However, instead of
defining the gain statistically, as the ratio of the uncertainty
in the observation to that of the current state value, it is first
related to a physical apportionment rule multiplied by a gain
factor. This gain factor acts as a relaxation coefficient which
is estimated through an off-line optimisation using past flood
event data.

State-correction is essentially a form of negative feedback
and, although usually very effective, this feedback can
sometimes give rise to an over- or under-shooting behaviour
characterised by high accuracy at short lead times but with
degraded accuracy at moderate lead times before a recovery
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in accuracy at longer lead times. This behaviour appears to
be associated with a combination of some or all of the
following: large gain factors, time lags between the
correction of a state value and the appearance of an effect
on the modelled flow, and rapid increases in the model error
(often due to timing errors on the rising limb). The latter is
also a problem for error prediction schemes. Optimal values
for the gain factors tend to be greater than unity (over-
relaxation) whilst time lags can occur because correction of
soil moisture may not affect runoff until the next wet period.

ERROR PREDICTION

State-correction techniques have been developed based on
adjustment of the water content of conceptual storage
elements in the belief that the main cause of the discrepancy
between observed and modelled runoff will arise from errors
in estimating basin average rainfall, which in turn
accumulate as errors in water storage content. Rather than
attribute the cause directly and devise empirical adjustment
procedures the structure of the errors may be analysed and
predictors of future errors developed based on this structure
which can then be used to obtain improved flow forecasts.
A feature of errors from a conceptual rainfall-runoff model
is that there is a tendency for errors to persist so that
sequences of positive errors (underestimation) or negative
errors (overestimation) are common. This dependence
structure in the error sequence may be exploited by
developing error predictors which incorporate this structure
and allow future errors to be predicted. Error-prediction is
now a well established technique for forecast updating in
real time (Box and Jenkins, 1970; Moore, 1982). Error-
prediction is available as an alternative to empirical state
correction in the PDM. Predictions of the error are added to
the deterministic model prediction to obtain the updated
model forecast of flows. In contrast to the state correction
scheme, which adjusts values internally within the model,
the error prediction scheme is wholly external to the
deterministic model operation. The importance of this is that
error prediction may be used in combination with any model,
be it of TF, conceptual or ‘physics-based’ form, and for
representing rainfall-runoff or channel flow processes.
Consider that q,, is the forecast of the observed flow,
Q... , atsome time #+ ¢, made using the PDM rainfall-runoff
model. Since q,, will have essentially been obtained by
transformation of rainfall into flow through the PDM model
conceptualisation of the catchment, it will not have used
previous observed values of flow, except for the purposes
of model initialisation. It will consequently be referred to
as a simulation-mode forecast to distinguish it from a real-
time, updated forecast which incorporates information from



observed flows.
The error, 7,,, associated with this simulation-mode
forecast is defined through the relation

QH/{ = ql+€ +77t+€ . (31)

If the simulation-mode error 7,,, may be predicted using an
error predictor which exploits the dependence structure of
these errors, then an improved forecast may be obtained.

Let M., denote a prediction of the simulation-mode error,
7M.,, made ¢ steps ahead from a forecast origin at time ¢
using an error predictor. (The suffix notation t+ (ft should
be read as a forecast at time t+ ¢ given information up to
time 7.) Then a real-time forecast, G, ;, made ¢ time units
ahead from a forecast origin at time 7 may be expressed as
follows:

qt+/‘t = qt+/ + 77t+/‘t . (32)
The real-time forecast error is
anz\t = Qt+/f - que\t (33)

which, depending on the performance of the error predictor,
should be smaller than the simulation-mode forecast error

e = Qt+é’ G (34)

Turning now to an appropriate form of error predictor it is
clear that a structure which incorporates dependence on past
simulation-mode errors is required. Thus the autoregressive
(AR) model

M==0ha—Gth = =P, +d (35

is an obvious candidate, where ¢, is the residual error
(uncorrelated), and {¢, } are parameters. However, a more
parsimonious form of model is of the autoregressive-moving
average (ARMA) form

M==0 1=, _"'_¢p Tep

+0a  +08 ,+ -+ eqat—q 8
which incorporates dependence of past residual errors, a
a ...

In general, the number of parameters p+q associated with
the ARMA model will be less than the number z associated
with the AR model, in order to achieve as good a level of
approximation to the true simulation-mode error structure.
The ARMA model may be used to give the following error
predictor:

(36)

-1
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Mot = =0 Moy = P2 Mg = = P T
0@, 3 40,8yt o+ 0@, g =120 (37)
where
0 -i>0
Foeip = {aH . otherwise (38)

and a,_,; is the one-step ahead prediction error

Qi =&y jtvria = Theemi T Thorijtria

= Qi — Ovitria (39)

and

771#,4‘[ =i = QHﬂ—i - qt+/.—i for/-i<0. (40)

The prediction Eqn. (37) is used recursively to produce the
error predictions 7y, Mg, o Thyqp > from the available
values of a, a_, ...and 77, 7,_4, ... .

Using this error predictor methodology, the PDM model
simulation-mode forecasts, g, , may be updated using the
error prediction 7., obtained from Eqn. (37) (and the
related Eqns. (38—40), to calculate the required real-time
forecast, 0., according to Eqn. (32). Note that this real-
time forecast incorporates information from the most recent
observations of flow through the error predictor, and
specifically through calculation of the one-step ahead
forecast errors, a,,, ;, according to Eqn. (39).

Alternative error predictor schemes may be devised by
working with other definitions of the basic errors: for
example by using proportional errors. One such scheme can
be formulated by starting with the logarithmic model

IOth+r; :Iochﬁ R/ 41

so that the simulation-mode error is now defined as

e = IOg(Qtw/qu;)' (42)

An error predictor for 7,,, may be formulated in the normal
way using Eqns. (37) and (38) with the one-step ahead
prediction error given by

Qi = Mhyoi — Thsoijtsr—i-a- (40)

Instead of Eqn. (32) the real-time forecast, G. . , takes the
form

qw\t =0, exp(nnf,\t) : (41)

The PDM uses automatic optimisation to estimate the ARMA
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error-predictor parameters for a chosen model structure.
Often a third order autoregressive, with dependence on three
past model errors, provides an appropriate choice for UK
conditions and a 15 minute model/data time interval.

DISCUSSION OF UPDATING THE PDM

Whilst error-prediction provides a general technique which
is easy to apply, its performance in providing improved
forecasts will depend on the degree of persistence in the
model errors. Unfortunately, in the vicinity of the rising limb
and peak of the flood hydrograph this persistence is least
and errors show a tendency to oscillate rapidly and most
widely; dependence is at its strongest for errors on the falling
limb, where improved forecast performance matters least.
In addition, timing errors in the model forecast may lead to
erroneous error predictions being made, a problem which
is also shared by the technique of state-correction. The
general applicability and popularity of error-prediction as
an updating tool commends its use as an ‘off-the-shelf’
technique, but empirical state adjustment schemes should
also be considered as viable alternatives to the use of error-
prediction. State-correction is normally the preferred choice
with the PDM model.

Historical perspective and concluding
remarks

The PDM rainfall-runoff model had its origins in the search
for model formulations that were well suited to automatic
parameter estimation: specifically, models that avoided
threshold behaviours and were parsimonious of parameters.
Initially, this focused on invoking a probability distribution
of storage capacity to replace a simple single store
representation of runoff production (Moore and Clarke,
1981). The threshold behaviour of the single store results
in a discontinuity in the gradient of the model’s objective
function and difficulties of parameter optimisation. These
problems were circumvented by the probability-distributed
representation and, more importantly, led to a more realistic
representation of runoff production across a catchment. A
simplification of the theory (Moore, 1985) — allowing
storage elements to interact with each other so as to equalise
the depth of stored water across a catchment — led to the
formulations now employed in the PDM. Over time,
solutions were obtained for a range of distributions including
exponential, Pareto (reflected power), rectangular,
triangular, power and lognormal (see Appendix A). The
theory also allowed for representations of evaporation and
drainage to recharge as a function of catchment soil moisture.
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These early developments employed convolution to route
direct runoff (and drainage to recharge) to the basin outlet,
using the probability-distributed principle applied to the
time-of-travel to the catchment outlet. Specifically, the
probability density function (pdf) of translation time was
taken as equivalent to the kernel function or instantaneous
unit hydrograph. Invoking a pdf of inverse Gaussian form
provided a physical link with the St. Venant equations of
open-channel flow and the convection-diffusion equation.
It was not until 1986 that the model schematic of Fig. 1 first
appeared (see Fig. 3 of Moore, 1986). The parallel routing
formulation made explicit by this schematic was inspired
by the simplified catchment model schematic of Dooge (Fig.
1-8 in Dooge, 1973; Fig. 2.3 in Dooge and O’Kane, 2003).
Here, soil moisture feedback controls the partitioning of the
direct storm and groundwater response of total runoff,
deliberately avoiding the less identifiable separation of
overland flow and interflow. Convolution was replaced by
non-linear storage routing as being simpler and easier to
update for real-time application. The exposition of the
Horton-Izzard equation in Dooge (1973), and reference to
the source and related texts, provided the foundation for
the recursive solutions to this equation used for storage
routing in the PDM (Moore, 1983); Moore and Bell (2002)
provides further details and reference sources. This was
supplemented by the transfer function representation of a
cascade of two linear reservoirs efficiently parameterised
via one or two storage coefficients (O’Connor, 1982) as a
further routing option.

This early development of a generalised rainfall-model
toolkit was undertaken deliberating without recourse to a
‘brand name’ association, recognising that many models
share rather similar conceptual elements. However, with the
need to develop the River Flow Forecasting System (RFFS)
for operational use, the requirement for a software product
arose and the PDM brand name introduced (Moore and
Jones, 1991; Institute of Hydrology, 1992).

As the PDM toolkit evolved to represent a wider range of
hydrological behaviours it became clear that the original
aim of a model well suited to automatic parameter estimation
had been compromised. It became evident that a rainfall-
runoff model that performed well was typically not easy to
optimise automatically; the parallel configuration of routing
stores and more complex recharge functions particularly
introduced parameter interdependence. Thus a more realistic
representation of hydrological behaviour is likely to have
problems of parameter estimation. An acceptance of this
position has led to increasing reliance being placed on
manual calibration using interactive visual support tools,
using automatic optimisation only for late-stage refinement.
It is not clear that recent advances in calibration of rainfall-



runoff models (Duan et al., 2003) will change this position
radically, although the ability to search the parameter space
more comprehensively with increased computer power may
help.

Updating of the PDM for real-time forecasting
applications benefited from experience gained in the 1970s
and 1980s (Moore and Weiss, 1982a,b; Moore, 1982, 1986).
This experience concerned the recursive state-parameter
estimation techniques based on the Kalman filter (Jazwinski,
1970) and the transfer function noise models of ARMA form
popularised by Box and Jenkins (1970). Formal Kalman
filter techniques for state-correction were abandoned in
favour of the simpler empirical state-correction methods
described here. The ARMA noise models were used as the
basis of the error-predictor technique available as an
alternative method of updating the PDM forecast. The
parameters of these updating methods are well suited to
automatic optimisation, once the PDM simulation model
parameters have been first estimated.

In spite of its widespread application, the PDM has not
been formally published in extensive form in the open
literature. The detail has been confined to the manuals and
guides provided with the software product (CEH
Wallingford, 2005). Only rather general reviews of the PDM
have been given in published papers on flood forecasting
techniques (Moore, 1999; Moore et al., 2005). This paper
has rectified this omission.
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Appendix A:

Probability-distributed storage models

Analytical solutions of the integrals occurring in the probability-distributed storage model component are
presented below for a number of different distribution types.

PARETO DISTRIBUTION

b
F(c)=1- {Mj Con SC<C,

Cmax — Chin

S(t) - J;,(* . (1_ F(C))dc = Cpin (C - Cmin){l_ ((Cmax -C (t))/(cmax - Cmin))b+1}

C"(t) = G + (G — i) (S = SW)/(E =5
V(t+4t) = 7,4t - (S(t + 4t) - S(1))

RECTANGULAR DISTRIBUTION

C
F =
(C) max — Cmin
1
f - -
(©)=——

max min

t= Smax — f(l_ F(C))dC — Cmax((cmax /2) - Cmin)

Crmax ~ Cinin

S(t) = f(t)(l_ F(c))dc=C"(t) [1—&}

2(Cmax - min)
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ax

. ) ) _L(t) 1/2
C(t)—(cmax Cmm)ll {1 C, Cmin:| :l

" (t+At)

V(t+ At) = ij F(c)de

“(t+4t)-C(t)
2(Cmax - Cmin)

i Clt+at)<c,, V(+a)=C
Gy C(t+at)>c, V(t+at)=zat—(S,, —St)

EXPONENTIAL DISTRIBUTION
F(c)=1-exp(-c/c)
f(c)=c*exp(-c/c)

Swe = [ (L-F(c))dc=c

st)= [ - F(e)de=cl-exp(-C'(1)/c)

C'(t)=-clog(1-S(t)/)

V(t+ At) = Egm)F(c)dc

= 7,4t +C(exp(- C' (t + 4t/ T)— exp)-C" (t)/€)

TRIANGULAR DISTRIBUTION

F(c)=

0 otherwise

The PDM rainfall-runoff model

497



RJ. Moore

498

i)y Cmn<C ()<t St)=C (t)_w

3(Cmax — Chin )2

C’(1) may be obtained by solving the expression for S(z) above, for example by Newton-Raphson as
shown later, or as the solution of a cubic equation in C*(%).

V(t+ ) = Jj(i‘)”” F(c) de

i C'(t+At)<c V(t+At)=0

min

0 ensClragse  vera=2U oo g

i)y c<C(t+At)<c,,

V(t+At)=C (t+At)-c+ 26 ~C (e A0)] (ct)-s(t)

3(Cmax ~ Chiin )2 )
vy C'(t)+zAt<c,, V(t+ At) = 7,At - (S, - S(t)).

LOGNORMAL DISTRIBUTION

F(c)= @[Iogc—cj} = lerfc{_(logc_é‘y)}

o 2 o-\/E

where @(.) is the standardised normal distribution function

o= oty [ - |,

2

and parameters ¢ and o are the mean and standard deviation of the logarithms of storage capacity.

f(0) = — lexp{—w}.

co(2r)” 20°
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Sne = | - F(c))dc= Eexp{g *%}

st)= [ @~ F(c)de
_ *(t)—%lzc*(t)erfc(uo)— epoEg . %j erfc(uo . G_fﬂ

! =_(Iog<:*(t)—;}
where “o O'\/E :

C"(1) may be obtained by solving the above expression for C*(z), for example by Newton-Raphson
(as shown later).

V(t+4t)= E:;m) F(c)dc

- %[c (t + at)erfo(u,) - exp[cj,’ + %ZJ erfc (ul + U—fj] (C* (t)- S(t))

where U = _(IogC (t+ At)—g’j.

o2

NEWTON-RAPHSON SOLUTION OF S(t) FOR C'(t)
The Newton-Raphson solution of
(t)
s(t)= | (@-F(c)de
for C'(t) is based on the iterative scheme
0,,=0 - f (Hi )/ f(el)

where 9, is the estimate of C’(t) at the i’th iteration, and

1(6)=S(t)- [ @~ F(c)c
f(6)=2of(6)/06, =-1+F(8).

Thus the following iterative solution results
040~ (S0)- [ 4~ FO)defi(F(6)-

where 6, is set to the best initial estimate of C'(t); & is accepted as the best estimate of C*(t)
when the step (6, — 0, ;) becomes sufficiently small.
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