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Abstract

Developing integrated environmental models of everywhere such as are demanded by the requirements of, for example, implementing the
Water Framework Directive in Europe, is constrained by the limitations of current understanding and data availability. The possibility of such
models raises questions about system design requirements to allow modelling as a learning and data assimilation process in the representation

of places, which might well be treated as active objects in such a system. Uncertainty in model predictions not only poses issues about the

value of different types of data in characterising places and constraining predictive uncertainty but also about how best to present the

pedigree of such uncertain predictions to users and decision-makers.
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Introduction

One of the recurring themes of research at the Institute of
Hydrology at Wallingford under the Directorship of Jim
McCulloch was the development of models of river flows
and water quality. [H played a role in developing calibration
methods for conceptual rainfall-runoff models (Blackie and
Eeles, 1985); in the development of both the original
Systeme Hydrologique Européen (SHE) distributed model
(Beven et al., 1980; Abbott et al., 1986; Bathurst e al. 1986)
and also the Institute of Hydrology Distributed Model
(IHDM; Morris, 1980; Beven and O’Connell, 1982; Beven
et al., 1987; Rogers et al., 1985; Calver, 1988; Calver and
Wood, 1989; Binley ef al., 1991); the Probability Distributed
Model (PDM; Moore and Clarke, 1981, 1983; Moore, 1985);
the TATE model (Calver, 1996); the QUASAR water quality
model (Lewis ef al., 1997) and others.

Since then the need for accurate predictions of river flow
and water quality has increased as a result of increasing
environmental legislation. In the European Union, the recent
Water Framework Directive (WFD) will have a major impact
on the way in which water resources are managed for the
foreseeable future (see, for example, http://www.defra.gov.
uk/environment/water/wfd ). Implementation of the WFD
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requires that all designated water bodies be moved towards
‘good ecological status’ with the aim of achieving
‘sustainable use’ by 2015 (although ‘heavily modified” water
bodies can be derogated until 2027). While it is not yet clear
what all the phrases used in the WFD will actually mean in
practice, managing the process of achieving the requirements
of the WFD will demand estimates of the benefits to be
gained from new investments to improve water quality
towards good ecological status. If these estimates are to be
in any way quantified, they will require the implementation
of models. However, the science underlying water quality
models is by no means adequate; the extension to modelling
the ecological impacts is even less so. There are also
expected to be more than six thousand surface water bodies
of 27 types in England and Wales (plus lakes, estuaries and
groundwater bodies) designated under the WFD, all with
their own catchment areas with different characteristics of
soil, geology, hydrology, topography, land use, land
management and infrastructure. How can such predictions,
therefore, be made?

New computer technologies seem likely to change the way
environmental models are constructed and used. New
hardware and software solutions will be based on distributed
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high performance parallel computers, linked by fast network
connections that, to the user, should appear as a single
machine (the concept of the GRID). The user should not
have to worry about where the data necessary for a project
are stored, nor where any computational tasks are run. The
possibility of using high speed computer networking to link
together distributed database and computational engines
means that it will be possible to couple together models of
different environmental systems across disciplinary and
national administrative boundaries. This is, in fact,
happening already on a limited basis, as demonstrated in
the regional water resources models under construction in
Denmark (Henriksen et al., 2003), in the national
environmental management models being used in the
Netherlands (van der Giessen, 2005) and in the Europe-
wide Flood Advisory Service being implemented by the
European Union Joint Research Centre in Ispra, Italy (http:/
/efas.jrc.it/).

These new possibilities raise some really interesting
questions about how this type of interdisciplinary prediction,
such as that required for implementing the WFD, might best
be achieved. In the past, comprehensive modelling systems
have been constructed as large complex computer
programmes. These programmes were intended to be general
but were expensive to develop, difficult to maintain and to
apply because of their data demands and needs for parameter
estimation or calibration. With new computing technology,
it will be possible to continue in the same vein but with
more coupled processes and finer spatial and temporal
resolutions for the predictions. It is not clear, however,
whether this will result in a real improvement in model
accuracy and utility because the problems inherent in the
current generation of distributed environmental models may
not go away despite improvements in space and time
resolutions of the component models.

Those problems include the possibility of Type III
modelling errors, i.e.the neglect of processes because a lack
of understanding of how the system works is an ultimate
constraint on how well the system can be predicted. Not
much will be learned, however, about the structural
limitations of such models as long as existing ‘calibrated’
models are adopted in making predictions rather than
treating models simply as hypotheses about how the system
works and which might be rejected (Beven, 2002a,b, 2006)

There may be another approach. One of the features of
having the possibility of large catchment, regional or
national scale models is that everywhere is represented, so
there will be, de facto, environmental models of everywhere.
Once all places are represented, data may assume a greater
importance than model structures as a means to refine the
representation of each place within a learning framework.

The result may be a new way of looking at environmental
modelling that transcends the traditional goal of
incorporating all understanding of the complexity of coupled
environmental systems into a single mathematical
framework with a multitude of parameters that cannot, easily,
be identified for any particular place (Beven, 2000, 2002b;
Young, 2003; Young ef al., 2004).

Consider, for flood-prediction purposes, the possibility
of modelling the subtle (and interdisciplinary) coupling
between atmospheric forcing, catchment response, river
runoff and coastal interaction with tidally-dominated sea
levels; capturing these subtleties will require the dynamical
coupling of many processes and components from different
institutes and different computing systems. Components
would be a representation of the coastal seas, the regional
atmosphere and the terrestrial surface and subsurface
hydrology that would interact through different boundary
conditions. Built on the fluxes within those models, air and
water pollutant transport models and biogeochemical models
could, additionally, be implemented locally within the
regional scale domain. Each component should be able to
assimilate data transmitted from field sites and to assess the
uncertainty in the predictions. Such an integrated system
should operate both in real time, assimilating data and
boundary conditions from larger scale models and displaying
the ‘current state of the environment’, as well as providing
the potential to update model predictions into the future
under different scenarios.

The components would share 4-D/5-D visualisation tools
with appropriate interactive user interfaces. Users would
be able to access the current data, visualise predictions for
particular locations and play what-if scenario games over
different time scales. The structure of the system would
facilitate and even stimulate improvements to the
representation of different components and the constraint
of predictive uncertainty by field data collection. The
potential capabilities of the new computing technology being
developed for GRID-scale computing underlie all these
components, though much could be achieved using the Web
technology of today. Examples of steps towards this type of
integrated system (albeit essentially raster-based) include
the US Inter-Agency Object Modelling System (OMS,
Leavesley et al., 2002) and the UK Coastal Observatory
System (http://coastobs.pol.ac.uk/).

Modelling as a learning process

Even if the very best graphical user interface were available,
however, all environmental modellers recognise that their
predictive capability is limited and that something is learned
about the limitations of the modelling process in every
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application to a new site (though they virtually never say so
in published papers or reports to clients — there are clearly
strong incentives to be positive, even if this results in making
predictions with models that have not actually provided very
good simulations of calibration data). In the past, the learning
process has tended to be treated as learning about the
parameter values required in different situations, or, more
rarely, about the adequacy of particular model structures
(Beven, 2001). However, once everywhere is represented,
this emphasis will change to a process of learning about the
idiosyncrasies of particular places, albeit that initially this
will most probably be treated as a problem of learning about
parameter values appropriate to a place.

Treating modelling more explicitly as a learning process
will allow a new approach to this problem based on a
methodology that will match scale-dependent model objects,
data bases and spatial objects in applications within the areas
of interest. One of the most exciting benefits of the
possibility of representing everywhere in environmental
modelling is the potential to implement models available
from different institutions as a process of learning about
specific places. 1t will be possible, in fact, to have models
of all places of interest. However, as argued by Beven (2000,
2001, 2002a,b), as a result of scale, non-linearity and
incommensurability issues, the representation of place will
be inherently uncertain so that this learning process should
be implemented within a framework of uncertainty
estimation.

PLACES AS ACTIVE OBJECTS

Modern computer programming systems are generally
‘object-oriented’, in that components of the system are
treated as a structured hierarchy of objects. There will be
variable and data objects of different types embedded within
algorithm objects which make up a programme. In a classical
distributed model implementation in hydrology, for example,
coding in an object-oriented manner would treat each grid
square or spatial element as an object, with embedded
variables and interacting with other spatially contiguous
objects. Here, in the context of models of everywhere, a
system is envisaged in which sites of interest for a particular
prediction can be implemented as active spatial objects.
Defining the spatial context (which might be the reach of a
river, an estuary, a catchment, a farm) and the problem
context (which might be predicting discharge, water quality,
velocity distributions, erosion and deposition), then solution
of the prediction problem requires three types of
information: process representations (model structures), site
characterisation (parameters) and boundary conditions
(either as observations or as the result of other model
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predictions). Treating a place as an active object within a
distributed computing network would then allow this
information to be sought across the network to achieve a
specified purpose, recognising that this might result in
multiple model structures, parameter possibilities and a lack
of definitive information about boundary conditions, i.e. the
need to address uncertainty in the predictions.

Such a system would, however, also allow the power of
parallel computing resources to be applied to estimate the
uncertainty associated with the prediction as constrained
by site-specific observations, including those accessed over
anetwork in real time. Initially, model results, based perhaps
on only GIS databases and limited local information, may
be relatively uncertain but experience in monitoring and
auditing of predictions will gradually improve the
representation of sites and boundary conditions. It is this
learning process that will be critical in the development of
a new generation of environmental models that are geared
towards the management of specific places, rather than
general process representations.

LEARNING ABOUT MODEL STRUCTURES

That is not to say that models of places will not require
process representations, nor that current process
representations are always acceptably accurate. The
approach does not resolve the problem of making errors in
the choice of models (whether Type I, Type II or Type III
errors) but, by setting the modelling problem in the context
of a learning framework for specific places, it does allow a
gradual refinement of how places are represented, including
(at least in principle) allowing the rejection of models as
they are shown to be incompatible with new data. There
will always be a real research question about how detailed
a process representation is necessary to be useful in
predicting the dominant modes of response of a system,
given the uncertainties inherent in representing the processes
in places that are all unique and the process of learning about
that place. This appropriate complexity issue has become
obscured by the desire to build more and more scientific
understanding into models, including physical, chemical and
biological components (but see Young, 2003; Young ef al.,
2004). This desire is perfectly understandable; it is a way of
demonstrating understanding of the science of the
environment, but it results in models that have lots of
parameter values that cannot easily be measured or estimated
in applications to real places. There is always a certain
underlying principle in science, that as more understanding
is added and empiricisms are eliminated, then the application
of scientific principles should become simpler and more
robust. This does not seem to have been the experience in
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the practical application of environmental models where,
in very many cases, model predictions are so heavily
dependent on poorly specified boundary conditions of
different types. This is one reason why environmental
models often exhibit equifinality of model structures and
sets of parameter values in fitting available observations
(Beven, 1993, 2002a,b; Beven and Freer, 2001; Feyen et
al.,2001; Aronica et al.,2002; Christiaens and Feyen, 2002;
Mclntyre et al., 2002; Morse et al., 2003; Uhlenbrook and
Sieber, 2005). Such model representations might be useful
in producing some prior estimates of what might happen,
but it is the learning process about specific places in
improving those representations (and perhaps rejecting
many potential model representations) that will be crucial.
This will particularly be the case where the observations
are shown to be incompatible with the model predictions,
suggesting that the model can be rejected as a hypothesis of
how the system is working. In some cases, this might arise
as a result of checking model performance on more than
one performance measure (Freer ef al., 2002; Parkin et al.,
1996); in other cases, it might be the collection of new types
of data that reveals inconsistencies (e.g. the geochemical
modelling of the Birkenes catchment discussed by Hooper
et al., 2001 and Page et al., 2005: and the inference of
macropore flows in plot-scale tracer experiments, e.g. Koide
and Wheater, 1992). Two important points have to be
stressed about model inconsistencies. The first is that more
may be learned from model rejection than acceptance;
rejection of a hypothesis, when properly justified, is an
important stage in model development and improvement.
The second is that model rejection might be purely a result
of inadequate boundary condition data (or observations with
which the model is being compared). Very often modellers
accept and use input data files as if they were without error
but even a ‘perfect’ model (if this were feasible) would not
necessarily perform adequately with poor input data.
Moreover, to avoid Type Il errors, the possibility of input
errors in model evaluations must always be considered
(Beven, 2005, 20006).

Modelling as prophecy

Initiatives such as the Water Framework Directive are
increasing demands for predictions about the responses of
specific locations to change in a way that integrates
hydrological and ecological considerations in management.
However, such a demand does not mean that there is an
adequate scientific basis for making the necessary
predictions. In many cases, such predictions will be
associated with significant uncertainties and, in certain cases,
might actually prove to be wrong, even when using the best

science and model components currently available. In short,
predictions to users should be presented with great care lest
they be regarded as akin to prophecy (Beven, 1993). At the
very least, an integrated environmental modelling system
of everywhere would need to be powerful enough to be used
for assessing uncertainties in model predictions and the
consequential risks of potential outcomes. It is important
to recognise that, in doing so, even when taking account of
the important uncertainties in boundary conditions and
multiple process representations, not all possibilities will
be covered due to imperfect knowledge. Any uncertainty
assessment will, therefore, always be conditional on the
possibilities considered and the assumptions made. This,
then, raises the question of how best to present the pedigree
of model components, data bases and observations to the
user where that might have an important effect on decisions
made on the basis of the resulting predictions.

COMMUNICATING PREDICTIVE PEDIGREE TO THE
USER

It is easy to imagine a system based on models as active
objects in which modelling methods, data bases,
observations and uncertainty estimation are integrated
seamlessly and automatically for the user interested in the
results of predictions (even if this is still a long way off). If
much of the modelling process in assembling model
components and data in a particular application is to be
hidden from the user and if the sheer range and quantity of
data involved in applying a model continues to increase,
how is the user to assess whether the resulting predictions
(including estimates of uncertainty associated with those
predictions) have any value?

The word pedigree is here used in the sense of Funtovicz
and Ravetz who were the instigators of the NUSAP
methodology (see http://www.nusap.net). NUSAP provides
a way of specifying, at least qualitatively, a degree of belief
in a predictive method based on past experience of its use
and the data on which it is based (where this is relevant). A
version of the approach is now being applied operationally
in RIVM in the Netherlands (van der Sluijs et al., 2004).

The NUSAP methodology is one way of reflecting the
various issues involved in a user making some assessment
of the utility of model predictions, given the cumulative
past experience of model use. Different approaches to
making the required predictions can be compared within
such a framework, allowing the user to make some
statements about relative degrees of belief in each set of
predictions. It is quite possible, however, that if the range
of uncertainty associated with each set of predictions is
assessed and compared with the available observations (for
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example using the extended GLUE methodology proposed
by Beven, 2006), then the issue of equifinality of multiple
model structures and parameter sets consistent with what is
known about the system response will arise. The user might
still want to allow different degrees of belief in each model
structure or particular parameter sets (whether assessed by
NUSAP or other method) but what is really needed for
decision making, or prioritisation of investments for
improvements in water supply or quality, is some estimate
of'the risk associated with the possible model outcomes (and
possibly an assessment of the possibility of all the available
models being wrong).

One expression of the pedigree of a set of model
predictions is, then, the range of possible outcomes that is
predicted in a way that is consistent with all available
observations, together with an assessment of the possibility
of making a Type Il error in prediction (i.e. accepting a set
of models as representing the system response but which
prove to give unacceptable predictions). Such an assessment
might present the scientific uncertainty in predictions to a
user in a way that can feed directly into a risk-based decision-
making framework.

That does not mean to say that the scientific estimate of
risk of possible outcomes is entirely objective. This would
require risk to be evaluated in terms of a true probability
and this is possible only under unrealistically restrictive
assumptions (Beven, 2006). In the general case, the type of
predictions required for environmental decision-making
remain as an exercise in prophecy with many subjective
elements. This includes the choice of model structures to
consider, the treatment of error in the model inputs and
boundary conditions, the choice of feasible parameter values
and their interactions, and the choice of evaluation data and
performance measures. Even where such choices are made
on the basis of some consensus, there is certainly a
possibility of a Type II error in prediction (as is the case, for
example, of the IPCC consensus evaluations of the
predictions of global climate change and, indeed, of the very
large number of Monte Carlo predictions of climate change
carried out under the climateprediction.net project (http://
www.climateprediction.net) using cruder models even when
only models consistent with historical data are retained
(Stainforth et al., 2005).

What can be presented to the user is the range of possible
outcomes predicted by those models that are consistent with
the observations available, even if the choice of feasible
models is conditioned by the subjective decisions outlined
above, together with a list of the assumptions made in setting
up the models (perhaps with some NUSAP type weighting
scheme). This allows the user to assess the uncertainty in
the predictions that results from the specified assumptions
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in a form that can be used in decision making. Where the
model simulations have been subject to an evaluation against
observations, the user will realise that the range of
predictions comes from models that have been assessed as
being acceptable in some defined way. Where this is not
possible (such as in predictions relating to ungauged
catchments, or where there is a requirement to predict the
impact of ‘what if” scenarios for future changed conditions)
then the list of assumptions will need to be scrutinised more
carefully; any NUSAP-type evaluations of assumptions
provided by modelling experts will take on a greater
significance.

The possibility of predicting the full range of possible
outcomes will be limited both by understanding of how the
system works and by computer time. This will particularly
be the case where the acceptability or otherwise of a model
might depend on the representation of input error, and also
where coupled model components mean that uncertainty in
one component might cascade as an input error into another
component. Integrated models of everywhere will require
cascades of multiple components for many components, all
of which will involve some uncertainties. There will,
therefore, be situations in which the assessment of possible
outcomes will be necessarily limited, even using massively
parallel computing resources (as in climateprediction.net).
It does seem, however, as if computing power will continue
to increase (and costs to decrease) making the type of
multiple model and parameter set evaluation outlined in this
section feasible for an increasing range of coupled models.

Future proofing modelling systems:
adaptive modelling, adaptive
management

An essential element of this strategy will be the need, as far
as possible, to ‘future proof’ the model and database systems
used, avoiding, for example, a strict raster- based approach
or a commitment to one particular modelling framework.
The key must be flexibility and adaptive modelling. Raster
databases will continue to be driven by remote sensing
imaging inputs to the modelling process and, in some cases,
by convenient numerical solution schemes for partial
differential equations. However, it is often inappropriate to
force an environmental problem into a raster straight-jacket.
Treating places as flexible active objects might be one way
around this future proofing problem. Defining the spatial
domain of a prediction problem would allow that place, as
an active object, to search for appropriate methods and data
for resolving that problem, and also for appropriate methods
and data for providing the boundary conditions for the
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problem (which might then involve other modelling or data
extrapolation techniques).

There are some interesting implications of such an
approach. One is that the variety of modelling methods
available to solve a prediction problem might be compared
more readily, leading to a better understanding of issues of
appropriate model complexity for different modelling
problems. This will especially be the case if, as part of the
learning process, simulations are saved to be compared with
later observations of the real outcome. Rarely has this ‘post-
audit’ analysis been used in environmental modelling,
although it has been instructive in groundwater modelling
(Konikow and Bredehoeft, 1992; Anderson and Woessner,
1992) and is routine in atmospheric modelling in the
evaluation of forecast skill (although the evaluation of global
climate model predictions still requires an element of
compromise at the regional level (Shackley ez al., 1997).

The underlying learning framework is best suited to
systems that are not changing. In that way, new data should
allow a refinement of the acceptable model representations
and a reduction in the predictive uncertainty in modelling
particular places. However, most prediction problems
involve learning about a system as it is changing (even
though such non-stationarities are often neglected in
traditional model calibration exercises). Predictions of the
effects of current or future change under different scenarios
will be even more uncertain than the simulation of current
conditions but there has been very limited work on
estimating the uncertainties of potential outcomes in future
scenario simulations, and still less on the conditioning of
those predictions in monitoring changes under changing
conditions. Data assimilation, in this context of changing
conditions, then becomes a tool for following drift in system
response (within the limitations of data uncertainties and
variability) with the possibility of changing management
strategies as the prediction of future responses also changes
over time.

There is one very important corollary to modelling as a
process of learning about places in this way. It is that such
learning cannot proceed without data assimilation, and data
assimilation requires the continued collection of data. Thus,
learning about places will imply both the continued
monitoring of the systems of interest (particularly in
detecting non-stationarities in the future that might indicate
model inadequacies) and more directed, cost-effective, local
measurement campaigns to learn more about places of
particular significance (flood risk sites, lake and river sites
of particular ecological significance, storm water overflow
sites, etc).

Conclusions

There is a theme running through this discussion of
environmental models of everywhere: a focus on data and
on making the data that do exist (including past model
predictions) available. Data will be required to characterise
places, to drive model predictions, to evaluate the results of
model predictions and constrain predictive uncertainty, to
reject some models previously considered feasible, and to
monitor changes in system response. The role of models
has always been — albeit sometimes rather implicitly — to
extrapolate data in both time and space. This role will now
become more explicit in extrapolating from those sites where
data are available to the more numerous sites without data
and where the characteristics are poorly known. There will
still be an argument for using models based on understanding
to do that extrapolation (particularly for predicting the
impact of changes into the future) but, given the
demonstrated limitations and uncertainties of current models
based on process understanding, there will also be the
opportunity to reconsider the extrapolation problem for
particular places as a more general learning and data
assimilation process.

In essence, it would appear that learning about places,
and taking account of the inherent uncertainty in doing so,
will become more important than using particular model
structures. The significance of having models of everywhere
is that all places are represented, and will remain represented.
Thus, flexibility and assimilating data in the learning process
will be very important in trying to characterise places with
all their idiosyncrasies. One of the most important things to
study in this modelling methodology will be the value of
different types of data in terms of both continued monitoring
and directed field campaigns as well as in learning about
places and constraining predictive uncertainties.
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