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Abstract

Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the
occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set
of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-
consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality.
The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic
soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model.
A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs,
Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the
reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters
is also achieved. The new theory implies a change in modelling paradigm.
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Introduction

THRESHOLDS AND SWITCHES AT THE
CATCHMENT SCALE

Thresholds and switches occur in many models of the
hydrological cycle at the catchment scale. When a threshold
value in a state variable is surpassed, a flow rate is switched
on, and when the same state variable falls below that
threshold, the flow is switched off. The mental picture of
the model consists of bell-mouth inlets in water tanks, weirs
and orifices with invert levels above the channel floor, and
other similar devices of the hydraulic laboratory. In such
cases the threshold values are usually the same for switching
between ‘on’ and ‘off’, and the memory of such switches is
local in time. In a system with local memory the past exerts
its influence on the future through the current value of the
output. More complex switches are possible.

THRESHOLDS AND SWITCHES IN SOIIL-
ATMOSPHERE INTERACTION

At the pedon scale of one metre, the hydrological interaction

of soil moisture and the atmosphere is usually regarded as
subject to control by two switches:

(1) an outer switch setting the direction of water flux, as
evaporation, or evapo-transpiration, in the upward
direction, or as precipitation in the downward direction,
and

(2) an inner switch assigning the control of each flux to
either the atmosphere or the soil, depending on the
concentration of soil moisture in the upper layer.

In both cases the flux is initially under atmospheric control
at the so-called potential or maximum rates set by the
atmosphere.

The threshold for the outer switch is zero: at each point in
time, either evaporation or precipitation occurs, but not both.
In contrast, the threshold for the inner switch varies with
the evolving dynamics of soil moisture. The moisture content
in the top of the soil controls:

(1) the onset of ponding during precipitation, and
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(2) the onset of ‘phase two’ evaporation.

Ponding occurs when the soil reaches saturation at the
surface and the saturated upper soil reduces the infiltration
rate to a value less than the precipitation rate; in the case of
‘phase two’ evaporation, the flux drops below the potential
rate because water starts to move in the vapour phase through
a ‘bottleneck’ of variable thickness. This view is widely
accepted for soil-atmosphere columns with a horizontal
scale of one metre. At larger spatial scales a dynamic
patchwork of switches in different states may occur
(O’Kane, 1991). When a single-valued relationship is used
to relate moisture content to water potential, these switched
boundary conditions for the Philip-Richards equation
describe a system with local memory where the past exerts
its influence on the future through the current value of the
output. However, the dynamics of soil moisture exhibits non-
local memory. New models with non-local memory are
required.

THRESHOLDS AND SWITCHES IN SOIL MOISTURE

The soil moisture characteristic for unsaturated soil relates
water content to its potential. It is multi-valued. The
thresholds for switching between the infinitely many
branches of this characteristic — the so-called scanning
curves of all orders — are reversals in the moisture content
through local maxima or minima whenever they occur.
Consequently, the current moisture content of a small sample
of unsaturated soil may depend on many discrete turning
points in its past. Future values depend not only on the
current value of the output (potential) but also on past turning
points in the input (water content) as well. A full turning
point is a local maximum or minimum — contraflexure is
excluded. In other words, the memory of the process is non-
local. Smooth differential (and integro-differential)
operators, such as the Philip-Richards equation, cannot
model non-local memory.

HYSTERESIS IN SOIL MOISTURE AT DIFFERENT
SCALES

The word hysteresis is of Greek origin and is derived from
husteros meaning ‘coming behind’. It was introduced into
the scientific vocabulary about 120 years ago by the Scottish
physicist Alfred Ewing as follows “when there are two
quantities M and N, such that cyclic variations of N cause
cyclic variation of M, then if the cyclic changes of M lag
behind those of N, we may say that there is hysteresis in the
relation of M and N” (Ewing, 1895). Further historical
details are presented in Cross and Allan (1988).
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Fig.1. Rate independent switching and branching.

Nowadays ‘hysteresis’ is a term in widespread use. For
example, it is used in mechanics (plastic hysteresis; Krejci
and Sprekels, 1999), physics (ferromagnetic hysteresis;
Mayergoyz, 1991), chemistry (phase transitions; Brokate
and Sprekels, 1996), hydrology and soil physics (soil
moisture hysteresis; Parlange, 1980), and economics (shock
analysis; Cross, 1995). In many scientific and general
encyclopaedias the meaning of the word is illustrated with
a picture such as Fig.1 where x is the input and y the output.

Seventy-five years ago, Haines (1930) observed the
phenomenon of hysteresis in unsaturated soils. It is believed,
without adequate experimental verification, that (a) the
hysteresis of soil-water is deterministic and rate-independent
when considered on the time-scales of water flow, and (b)
the fundamental mechanism is hysteresis in the contact angle
of the air-water interface attached to the soil particles. As
the flow of water changes direction the air-water-soil contact
angle flips (de Gennes et al., 2003).

The observation that a catchment containing the same
quantity of water behaves differently when charging or
discharging water is sometimes regarded as evidence of
hysteresis. Furthermore, the residual errors in hydrological
predictions frequently show very high serial correlation,
especially during periods of flow recession between storms.
This suggests the presence of non-local memory.

The purpose of this paper is to provide a mathematically
consistent non-linear theory of thresholds, switches and
branches, collectively known as hysteresis, that may be
applied to hydrological processes at different scales
(O’Kane, 2004).

Rate independent systems with
switches and branches

The concepts of rate-independent processes and systems
with non-local memory were introduced, but not defined,
in the previous section. These concepts are central to the
discussion that follows.
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SYSTEMS WITH LOCAL MEMORY

The operation of a system S is described symbolically by
the relation y(f) = T[x(f)] where x(¢) and y(7) are input and
output functions of time ¢ respectively. When the operation
is linear and time-invariant the operation reduces to the
convolution integral

y) = [ x(0)h(t-7)dz

The function A(f) is the impulse response of the system and
may contain jumps and delta-functions. It includes as special
cases, Green’s functions that solve the initial value problems
of linear ordinary and partial differential equations. All such
systems have /ocal memory. To prove this, split the integral
at an arbitrary instant 7, the present moment in time. The
output at all future moments in time, 7> ¢, is

y®) = [ x(©)h(t, - 7)dz + 1‘ x(z)h(t - 7)dr
= y(t) + [ X@ht-0)dz,  t>1,

Clearly, future output y(¢ > £,) depends only on (a) the present
output y(¢,) , and (b) future input x(¢ > #,). Past inputs x(¢ <
t,) , exert their influence on the future through the present
output y(#)) and not in any other way. This is the definition
of local memory in a system S.

More general systems may be described by non-linear
convolution

yo = [ [ [ h(t—rl,...,t—rn)ﬁ x(z)dr,

Splitting the multiple integral at 7, <, shows that non-linear
convolution and, by extension, an expansion in a Volterra
series of convolution integrals also have local memory. Local
memory is not the same as finite memory. If h(f) = 0 for >
M, M is called the response time, or finite memory, of the
impulse response.

Processes with after-effect, or hereditary processes, such
as occur in the theory of plasticity, have non-local memory
because past inputs continue to influence future outputs in
ways other than through the present output.

The simplest examples of processes with non-local
memory occur in rate independent systems, the subject
matter of the next section. These are the building blocks of
more complex hysteretic systems.

RATE-INDEPENDENT SYSTEMS

A system described by an operator

T:y(t) =T[x(®)]

is said to be rate-independent, if and only if, the same
relationship holds when time is subjected to an affine
transformation, i.e. when 7 is replaced by at + b in both x
and y, the following test is an identity

y(at +b) =T[x(at +b)]

In other words, when the input is displaced and stretched in
time, the output from a rate-independent system is displaced
and stretched in time in exactly the same way.

Time t" on an affine clock corresponds to time t on the
original clock when t' = at +b. Affine time t’ is slowed
down or speeded up with respect to the original clock
depending on whether @ < 1 or a > 1 respectively.
Conservation of the ‘arrow of time’ requires a > 0. A
restriction b < 0 ensures the affine clock starts (t'=0) ata
point in time t = —b/a in the future.

The image under the rate-independent transformation 7'
of the input x(at + b) is the output y(ar + b). Consequently,
the parametric path P in the (x, y) plane is the same for all
values of @ and b, including a = 1, b = 0, but the speed at
which P is traversed is different for each value of a.

Suppose the operation of the system is described by
T'= cl where [ is the identity operator and c is a constant i.e.
w(f) = ex(f). This system is rate independent because the
image of the input x(at + b) under this T'is cx(at + b) which
is identical to the output y(¢) after the affine transformation
has been applied to its argument ¢. Time-invariant linear
systems that are rate-independent reduce to a constant times
the identity operator: 7= ¢/ (O’Kane, 2005). The only known
exception is the Hilbert operator (Holland, 2005).

The path P of arate-independent linear system is a segment
of a straight line in the (x, y) plane of slope ¢ that extends
through the origin. If sudden jumps in ¢ occur, for example,
at full-turning points in x(¢), or at thresholds on the x axis,
the system exhibits rate-independent switching on a cone
of line segments, or linear branches, in the (x, y) plane. This
switching and branching may have local or non-local
memory.

More general rate-independent operators may be
represented by a piece-wise smooth, multi-branch
relationship between the input and output in the (x, y) plane.
This is illustrated in Fig. 1.

In Fig. 1 when an input x(¢) is increasing, the output y(r)
follows a certain path, but on changing the direction of the
input, the output does not return on the same path. The input
x(?) first passes through a local turning point, a maximum
in the ~-domain. This is followed by a minimum in the ¢-
domain. These turning points select different branches of
the rate-independent (x, y) relationship. Reversal of the
branch is a consequence of the turning in time of the input
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function x(¢). Jumps in y are allowed at the turning points
— not shown here. Rate independence asserts that the
projection of x(7) and y() into the (x, y) plane is always the
same for all strictly monotonic transformations of time, i.e.
all possible speeding up and slowing down of the process.

THE HYSTERON WITH LOCAL MEMORY

The dynamics of switching and branching in the (x, y) plane
may be simple or complex. When there are one or two
possible branches through every point in the allowable
domain of the (x, y) plane, the system exhibits local memory.
The simplest possible rate-independent model that exhibits
switching and branching with local memory is the hysteron,
the ‘atom of hysteresis’, where two different thresholds on
the input x(¢) switch the output y(¢) between two values, 0
or 1 (see Fig. 2). Each threshold triggers a switch in the
output when the input passes through the threshold in the
appropriate direction. Passing through the threshold in the
reverse direction triggers no change in output. In other
words, the output is two-valued between the thresholds and
single-valued to each side. Consequently, there are four
branches, each represented by a line segment in the (x, »)
plane. The two horizontal branches are half-lines through
y =0 and y = 1 respectively with overlapping ends. Each
end is marked by the threshold on the x-axis where a jump
occurs to the other branch. The vertical branches are line
segments of unit length located at the thresholds on the x-
axis and connect the horizontal branches to form a rectangle
with two ‘tails’. Reversals in the input x(#) across both
thresholds generates a loop in the (x, y) plane. The loop
may be clockwise or anticlockwise around the rectangle.

SWITCHING AND BRANCHING WITH NON-LOCAL
MEMORY

When there is a large, or infinitely large, number of possible
branches through every point in the allowable domain of
the (x, y) plane, the current value of the output and the future
input is insufficient to select a unique future branch. This is
the case of non-local memory. The distinction is analogous

Fig. 2. The hysteron - the atom of hysteresis (anti-clockwise case).
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to that between Markovian and non-Markovian stochastic
processes.

A rate-independent operator with switching and branching
and non-local memory may model part of a hydrological
system. Since it is part of a larger system, its input is not
known in advance but is determined by its interaction with
the rest of the hydrological system. Consequently, it is
impossible to specify in advance the branch that will be
followed in a particular realisation of the system dynamics.

Hysteresis: theory and application

A NON-LINEAR SYSTEMS THEORY

The collective name for these strongly non-linear
phenomena is hysteresis. New mathematical concepts and
analytical and numerical tools for treating rate-independent
hysteresis have recently been developed. The modern
mathematical concept of hysteresis was suggested by M.
Krasnosel’skii and his co-workers (Krasnosel’skii and
Pokrovskii, 1989: see also Visintin, 1994; Brokate and
Sprekels, 1996; Krejci, 1996; Mayergoyz, 2003). New rate
independent models have been developed that:

(1) detect and place in temporal order the full turning points
of the input function, and

(2) use them to select the appropriate branches of the
hysteresis non-linearity.

Without such models, a self-consistent mathematical
description of hydrological systems with hysteresis is
virtually impossible. The goal of this paper is to establish
this and to show how this may be done. Two results are
presented: a conceptual model for the hysteretic soil-
moisture characteristic at the pedon scale and a hysteretic
linear reservoir at the catchment scale. Both are based on
the Preisach model. The Preisach model of hysteresis is built
from an infinite number of hysterons connected in parallel.
It is rate-independent and exhibits non-local memory.

A result of particular significance is the demonstration in
this paper that the independent domain model of the soil
moisture characteristic due to Childs, Poulavassilis, Mualem
and others, is equivalent to the Preisach hysteresis model of
non-linear systems theory, and is reminiscent of the
reduction of the theory of the unit hydrograph to linear
systems theory in the 1950s (Dooge and O’Kane, 2003). A
significant reduction in the number of model parameters is
also achieved. It also clarifies how hysteresis may be
introduced into (1) conceptual hydrological models, and (2)
the Philip-Richards model, with complete mathematical
consistency.
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HYSTERESIS IN HYDROLOGY

Rate-dependent hysteresis has been discussed in hydrology
for a long time, for example, in the looped-rating curve,
and in similar plots of state and rate variables from systems
of differential equations that model hydrological processes.
These rate-dependent loops do not show affine similarity
with respect to time, i.e. when the time argument of an input
function is stretched, or speeded up, the corresponding
output function is not stretched in the same way. For
example, the attenuation of a sinusoidal input to a linear
system depends on its frequency. Stretching the frequency
changes the attenuation. Hence, any looped plot in the
(x, y) phase plane is rate dependent. In contrast to this, rate-
independent hysteretic loops exhibit affine similarity with
respect to time, i.e. when the time argument of an input
function is stretched, the corresponding output function is
stretched in the same way. No smooth differential or integro-
differential operator has this property. Neither can this kind
of hysteresis be represented by a Volterra series of
convolution integrals (O’Kane, 2005).

HYSTERESIS IN SOIL PHYSICS

In the literature on soil physics, the phenomenon of
hysteresis is closely associated with the formation of loops.
Hysteretic looping in the (x, ) plane occurs when the input
x(¢) returns to an extremum of the same kind, i.e. from local
maximum to local maximum, or from local minimum to
local minimum. Closed loops occur only under special
circumstances. History-dependent branching on a very large
set of switches is the central concept in the new definition
of hysteresis, with looping taking its place as a special case.

THE NON-LINEARITY OF HYSTERESIS

Hysteresis is a non-linearity that is expressed through
thresholds, switches and branches. Exceedance of a
threshold switches the output onto a particular output branch.
Fixed thresholds make hysteresis a non-linear process. In a
linear system, doubling the input function doubles the output
function. If the input to a hysteretic system is doubled, the
output is not doubled, because the set of thresholds that are
exceeded is different in each case. Consequently, the set of
branches that is followed by the output is different in each
case, and strict doubling of the output is impossible.

The test for linear superposition is also violated when the
full turning points of the input function switch the output to
particular branches. Consider two sinusoidal input functions
of different frequencies and any linear combination of the
two. All three input functions have different sets of full
turning points. Consequently, the branches of the output

function that are selected at full turning points will also be
different in each case and the superposition test fails.

There is no contradiction between selection by threshold
or full turning point. It will be seen subsequently in the
Preisach model of hysteresis that it is the full turning points
in the input function select sets of thresholds that are
exceeded, rather than one individual threshold that is
exceeded. The output from any set of branches must then
be found by a weighted integration over the corresponding
set of thresholds. This set has a non-local memory since it
is defined by the turning points in the input function.

The Preisach Model

THE HYSTERON, THE ATOM OF HYSTERESIS

The simplest hysteretic system is the hysteron shown in Fig.
2. Its operation is denoted by an operator R The input to
R, x(?), is compared to two threshold values a< L. The output
from R, y(f), can take one of two values, 0 or 1, depending
on the history of x(¢) as it crosses the thresholds; at any
moment in time the hysteron is either switched ‘on’ or ‘off’.
In Fig. 2, the bold lines represent the set of possible input-
output pairs. They overlap in the interval o <x < 3. If the
input is increasing and crosses the lower threshold, the
output remains at 0. If the input increases further and crosses
the upper threshold, the output jumps from 0 to 1. If the
input then decreases, the jump back to 0 occurs when the
input crosses the lower threshold, completing an anti-
clockwise hysteretic loop that is rate-independent.
The output y(¢)

y(t) =R, 4lto, m]x(t),  t=t, (1)

depends on the input x(¢), 1 > 1, and on the initial state 7,.
Here the input is an arbitrary continuous scalar function; 77,
is either 0 or 1. The scalar function y(f) has at most a finite
number of jumps on any finite interval £, <t <.

The output behaves rather ‘lazily’: it prefers to be
unchanged, as long as the phase pair x(f), (f) belongs to the
union of the bold lines in the Fig 2. The value of Eqn. (1) at
the moment 7 is defined by the following explicit formula:

y(t) = Ra,ﬁ[tO’ MolX(t) = (2)
ny, if a<x(r)<pfordl zeltyt];

1 if thereexistst, €[t,,t] such that
= X(t) = B, x(r) > a for dl 7 [t,,];

0, if thereexists t, e[t,,t] such that
X)) <, x(r) < g foradl r [t,t].
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Equation (2) can be read as follows:

(1) Condition 1 states that as long as x(7) remains within
the threshold values « and g, for all times 7 from the
present time 7, to some future time #, then the output
¥(#) of the hysteron will remain at its initial state 7,,
which can be either 0 or 1.

(2). Condition 2 states that if there is a time ¢, before a future
time t, such that the input x(¢) moves to the right of the
Pthreshold in Fig.(2) and x(¢) does not cross « threshold
after time ¢, then the output will become 1 at time ¢,
and remain there.

(3) The third and final condition states that if there is a
time ¢, before a future time ¢, such that the input x(¢)
moves to the left of the & threshold in Fig.(2) and X(t)
does not cross the S threshold after time 7, then the
output will be 0 and remain there.

Section 28 (pages 262-273) of Krasnosel’skii and

Pokrovskii (1989) presents the mathematical properties of

this hysteron under the headings of ‘ideal and non-ideal

relays’, terms in use in electrical engineering. Two of these
properties are:

®  Property 1: Exclusion of superfluous switching

The values of the output y(f), corresponding to the
continuous input (¢ > ¢) to an anticlockwise hysteron
(a < p) can be completely characterized on a closed
interval of time [t , t,] by the following rule:

if either y(f,) =0 and x(¢) < Bfor ¢ in that interval, or
»(t)=1and x(r) > « for t in that interval, then y(7) is
constant in that interval [t, t,] and is equal to y(t)).
Consequently, the output is piece-wise constant for (¢ >

).

® Property 2: Monotonicity with respect to inputs
Let {X'(t),7'¢ and {X"(t),”"} be two different inputs
and initial states of the hysteron. If they are monotonic
with respect to each other:

7o <n" and X (t) < X'(t), (t > t,)

then the corresponding outputs are also monotonic with
respect to each other:

Ra,ﬂ[t()a 7]X () < Ra,ﬂ[to’ 7" X' (1), (t = 1,)

The full turning points in the continuous input function
x(?) i.e. local maxima and minima with respect to time, divide
x(f) into monotonic pieces of two and only two types:
increasing or decreasing with respect to time. Both types
may contain points of contraflexure. This distinction
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simplifies the definition of the hysteron by separating it into
two cases. These cases are used in the Preisach model below.
The class of admissible input functions to the hysteron may
be extended beyond piece-wise monotonic functions to
include inputs with jumps at a finite number of discrete
points in time. This case is not treated in this paper.

THE PREISACH MODEL

The Preisach Model was originally conceived to describe
ferromagnetism (Preisach, 1935). It was subsequently found
to be an excellent model for other phenomena (often due to
the fundamental Mayergoyz Identification Theorem
(Mayergoyz, 1991). The basis of the model is the following:
Suppose there is a finite set of hysterons
R = Raj,ﬂy j=1..,N. Now consider a parallel
connection of these hysterons R with the weights ;= ()
> 0. The output is then

y(t) = Vito, 7] 3)

=2 Rt 7o (DIXO. >,

This idea can be represented graphically as shown in Fig. 3.

RQ‘B1
o
- Raz,ﬁz%\\
0| TRl NS
B
Rasvﬁs

Fig. 3. Weighted parallel connection of a finite number of hysterons.
The output y(t) is determined by the weighted sum of all the
hysterons and the input x(t). Each hysteron is switched to either 0 or
I depending on the history of the system.

Hysterons can also be connected in series. The final
outputs from » hysterons in series or in parallel are
fundamentally different, unlike linear sub-systems. Given
n linear sub-systems in series (or in parallel), the Equivalence
Theorem (Dooge and O’Kane, 2003; pages 11-13), shows
how to find the equivalent sub-systems in parallel (or in
series).

The standard way to represent the Preisach model is with
the Preisach (¢, f) half-plane, where > «. Each point on
the plane represents a hysteron. The coloured regions in
Figs. 4 and 5 represent hysterons that are ‘switched on’. In
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Fig. 5. The evolution of states on the Preisach plane.

the continuous case the parallel summation of the hysterons
can be taken as the integral over the region where the
hysterons are ‘switched on’ with some probability density.
These figures illustrate the Preisach Model. Here the input
x(#) moves along the x-axis, and controls the point on the
diagonal above itself. The output y(¢) is the ‘area’ of the
coloured domain with respect to some density.

The region that is integrated depends on the past history
of the system. This history is recorded by a series of
horizontal and vertical lines forming a staircase shape L that
can be seen in Figs. 4 and 5. The evolution of the ‘staircase’
L is as follows: When an input x(¢) moves along the
horizontal axis, it controls a point on the diagonal /= «
above itself. When moving the point towards the upper right
corner in Fig. 4, this point on the diagonal drags the
horizontal line upwards, and colours in the domain between
this horizontal line and the diagonal (this yellow triangle
will be added to the region that is to be integrated). When
moving the point towards the bottom left corner in Fig. 5,
the diagonal point drags the vertical line to the left and
decolours everything to the right of this line and above the

diagonal (in moving from u to v the yellow region will be
cleared and hence removed from the region that is to be
integrated). The output y(7) is the integral of the region
defined by the blue domain with respect to some density. In
other words, the staircase is defined by the full turning points
in the input X(t) : vertical risers are inserted in L at local
minima and horizontal treads at local maxima. The staircase
L(¢) is the device, or mathematical object, for ‘remembering’
which hysterons are ‘on’ and which are ‘off’. It has non-
local memory. The reader is recommended to explore these
ideas using the following java applets (Rasskazov, 2002)
and (Flynn, 2003).

PROPERTIES OF THE PREISACH MODEL

Mayergoyz (2003) states the following properties of the non-
local memory in the Preisach model (anticyclonic case)
Wiping-out properties in L(#) (also known as the return point
memory)

® Each local maximum in the input x(f) wipes out the
vertices of L(f) whose a-coordinates are below this
maximum, and each local minimum in x(#) wipes out
the vertices of L(t) whose B-coordinates are above
this minimum.

® Only the alternating series of dominant input extrema
are stored by the Preisach model. All other input extrema
are wiped out.

Congruency property of hysteretic loops

® All minor hysteresis loops in the (x, y) plane
corresponding to back-and-forth variations of inputs
between the same two consecutive extremum values in
x(¢) are congruent.

Representation Theorem

e The wiping-out property and the congruency property
constitute the necessary and sufficient conditions for a
hysteresis non-linearity to be represented by the
Preisach model on the set of piece-wise monotonic
inputs x(7).

REDUCTION OF THE INDEPENDENT DOMAIN
MODEL TO THE PREISACH MODEL

A half-plane, similar to the Preisach half-plane, can be found
in the papers by Poulovassilis (1969, 1970a,b), Poulovassilis
and Childs (1971), Poulovassilis and Tzimas (1974),
Mualem (1974b, 1984), Mualem and Dagan (1975), Mualem
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Fig. 6. A volume element above the area As, x As on the half
plane. Taken from (Poulovassilis, 1962).
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Fig. 7. Neel type diagram taken from (Mualem, 1974a). The notation
p and ¥ are the normalised radii of the pores and openings of the
pores in the soil. This notation is equivalent to the alpha and
notation in the Preisach Model. The notation to record the history of
the turning points are R, — R, where subscripts of odd values record
the treads and the even subscripts record the risers of the staircase.

and Morelseytoux (1978), Mualem and Miller (1979) and
others on the independent domain model. See for example
Fig. 6 taken from Poulovassilis (1962).

However the absence in these papers of a figure similar
to Fig. 5 shows that the concept of the output as a linear
combination of a large number of hysterons, each with local
memory acting in parallel, is not recognised explicitly.

A staircase similar to that of Fig. 5 is partly present as the
necessary device, or mathematical object, for remembering
the turning points in the input function as they switch sets
of hysterons on and off; see, for example, Fig. 7 (Mualem’s
stairs attributed to Neel). The data structure required to
represent the stairs in a digital machine is not present.
Enderby’s math object (see Eqn. 4) as used by Mualem,
(1974a) is an attempt to define the required data structure.

Vi ‘//] 4)
1‘//0 ¥, [

These versions of the independent domain model are
incomplete because they lack an explicit algorithm and data
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Fig. 8. Poulovassilis’ discrete density diagram (Poulovassilis, 1962)

structures for generating the scanning curves of all orders.
The central assumptions of rate-independence and non-local
memory are overlooked, not just in these papers, but
throughout the soil physics literature (Flynn and O’Kane,
2004,; Flynn, 2004; Flynn et al., 2005).

Figure 8 also shows a discrete two-dimensional
representation of what is called in this paper, the Preisach
density. Of necessity, it has a large number of parameters. A
well chosen continuous density facilitates a reduction to
none, one or two parameters, which is greatly to be desired,
when attempting to solve the identification problem.

APPLICATION OF THE PREISACH MODEL TO THE
SOIL-MOISTURE CHARACTERISTIC

All of the models mentioned above required many
parameters to function: in fact, some of the models would
require an infinite number of parameters. To achieve a
reduction in the number of parameters it is necessary to use
the Preisach model (Preisach, 1935; O’Kane ef al.,2003a,b).
Using this model as a basis, the fitting of experimental data
was performed in Flynn (2004) and Flynn et al. (2005). In
that paper, three models were defined, called the Zero, Beak
and Wedge Models, which can be seen in Figs. 9, 11 and 13
respectively. Each of the models had a unique one-parameter,
non-uniform density. The densities had the given form to
match the van Genuchten equation and were defined by
restricting the Preisach half-plane within different regions
as shown in Figs. 9, 11 and 13. Because there was at most
one parameter, a least-squares fitting could be used. The
results from the fittings were much improved compared to
Haverkamp et al. (2002). In fact, the Wedge model resulted
in the best overall fits. The difference in the quality of the
fits can be seen by comparing the fitting results for a given
soil (soil n0.23 from the GRIZZLY database (Haverkamp
et al., 2002) in Figs. 10,12, and 14. For further details of
the results of using the Preisach model to fit a series of soils
see Flynn et al. (2005).
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(a)

(©)

(b) P

a=f

(d)

Fig. 9. Zero-parameter Model: (a) a sample hysteresis loop; (b) the measure support; (c) a density plot where the lighter shades correspond to
a higher density; (d) a three-dimensional view where the height is proportional to the density.

LA 12l LA

Fig. 10. Data sets for soil no. 23. Fitted using the zero-parameter model. Horizontal and vertical error bars correspond to the measurement
errors in the soil pressure head and water content (i.e. +5 cm and +0.01cm’/cm’).

The modelling paradigm for
hysteresis

The linear reservoir is one of the simplest conceptual models
at the catchment scale (O’Kane, 2005, 2006). It will serve
to illustrate how hysteresis may be introduced into a much

wider set of hydrological models. The modelling paradigm
for hysteresis begins by separating the conservation laws
from the rate-independent relationships that provide closure.
The conservation laws have local memory but are rate
dependent. Consequently, hysteresis cannot be introduced
into them directly. The rate-independent relationships are
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(a)

(©

Fig. 11. The beak-model: (a) a sample hysteresis loop; (b) the measure support, (c) a density plot where the lighter shades correspond to a

(b) B
a=p
-
iﬂﬂﬂﬁﬂ\ﬂ
(d)

higher density, (d) a three-dimensional view where the height is proportional to the density.

Fig. 12. Data set for soil no. 23 fitted using the Beak-model with fitted Parameter a = —-212.991. Horizontal and vertical error bars

correspond to the measurement errors in the soil pressure head and water content (i.e., +2 cm and £0.01cm’/cm’

the locations where rate-independent hysteresis may be
introduced with complete mathematical consistency. This
hysteresis can have local or non-local memory. In the
example to follow, a rate-independent Preisach operator with
non-local memory is introduced into a linear reservoir in
the only possible place in the model that ensures consistency.
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CONSERVATION OF WATER MASS - LOCAL

MEMORY

The hydrological equation for a reservoir at any scale, and

therefore at the catchment scale, is a conservation law

ds

dt

X(t) - y(b),

S(to) =%

(6))
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(a)

(b) o

(d)

wia, B)

Fig. 13. The wedge-model with one parameter (a) a sample hysteresis loop; (b) the measure support; (c) a density plot where the lighter
shades correspond to a higher density; (d) a three-dimensional view where the height is proportional to the density.

s carp

Trmllr

Fig. 14. Data sets for soil 23 fitted using the Wedge-model with fitted parameter ‘a’ = 0.428625. Horizontal and vertical error bars
correspond to the measurement errors in the soil pressure head and water content (i.e. £0.01cm’/cm?.

where s(7) is the instantaneous mass in storage at time 7.
Starting from a given initial condition s, the storage
responds to the difference in the rates of inflow x(#) and
outflow y(7). Whenever x(f) = y(f), the storage s(f) has a
turning point. Full turning points are points where s(7) is a
local maximum x =y, dx/dt < dy/dt, or minimum x = y, dx/dt
> dy/dt, but is not a point of contraflexure (x =y, dx/dt = dy/
dr).

The integral form of this equation makes explicit the local
memory of conservation

s(t) = s(to) + [ (x(2) - y(e)dr, t>t,

Past inputs x(# < £,), exert their influence on future storage
x(¢>t,) through the present storage s(¢,) and not in any other
way.
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RATE INDEPENDENT CLOSURE — THE LINEAR
RESERVOIR

A second principle is required to close the dynamics of water
storage. Functions y = y(s) provide closures that are rate-
independent in the (y, s) plane. The simplest case is a linear
function

vy =3 ko

K (6)
The dynamics of this linear reservoir can be read as a single
negative feedback-loop where s(7), and consequently y(?),
are continuously adjusted to bring the output closer to the
input. The speed and completeness of the adjustment is
controlled by k. A feedback diagram in the graphical
language of Forrester (1968) highlights the place where
hysteresis may be included in the system dynamics (see Fig.

15).
x(t)
\
=

Fig. 15. Negative feedback loops in the hysteretic linear reservoir

THE LINEAR RESERVOIR WITH ONE HYSTERON

Hysteresis with local memory can be introduced by making

k a hysteron (O’Kane, 2005).

This can be represented in a feedback diagram, see Fig. 15.
In the interval (¢, ) on the s axis (Fig. 16), the output

from the hysteron is either of two possible values of &

i) k=k,

ek

oo o 5 s(t)

Fig. 16. A single hysteron on a cone. The cone is bounded by the
lines Y(t) = %) and Y(t) = %) The thresholds a and [ are the
thresholds of the cone. When s(t) > B the output changes to

y(t) = %) and when S(t) < a the output becomes Y(t) = % The

direction of the loop is determined by the values of k with respect to

: . . . 141
each other. In this case the loop is anticlockwise as i > 7 -
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depending on the history of s(7). As s(#) crosses the « or
thresholds, £ may jump from one value to the other,
generating a hysteretic loop on a cone through the origin in
the (y, s) plane. The slopes of the upper and lower lines of
the cone are equal to the reciprocal values of the £s.

In the discrete case the output from a single cone-hysteron
(Fig. 16) is the following

YO = (C, [t 70]5(t)) (1) )

where s(t) is the input to the system, and C, j is an operator
which acts on S(t) and is defined as

Ca,ﬁ[toa ﬂo]S(t) = (8)

Ny, Ifa<s(r)<pfordl relt,t];

kl’ if thereexistst, [t,,t] such that
2

= s(t) > B,s(r) > o for dl 7 €[t t];

%, if thereexists t, €[t,,t] such that

s(t) <@, S(z) < pforal 7 [t t].

where the constants £ and k, correspond to different lines
of slope % and ﬁ respectively as shown in Fig. 16 and 7,
is the initial state, which can be either ﬁ or k_12 Note that
this definition is for a clockwise cone-hysteron when ﬁ > k—lz
and an anti-clockwise cone-hysteron if k—12 > k—ll

When integrating this operator-differential equation using
an Euler scheme, this definition may be approximated as
follows

_s® 9)
ynSN knaN
where knew is defined as
K,, s(t) > S
Kew=1 K,  s)<a , (10)

Kua» a<s(t)<p

where the subscripts new and old refer to successive points
in time in the numerical scheme; see also Krejci and
Pokrovskii (2004)

PARALLEL CONNECTION OF HYSTERONS ON A
CONE.

In the classical Preisach model a parallel connection of
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s(t)

Fig. 17. A parallel connection of cone-hysterons.

weighted hysterons were summed to produce an output.
Likewise a parallel connection of these hysterons can be
taken as shown in Fig. 17, to produce the following equation

y() = Yto, 7] (1) an

=> #C, 4 s lS(t),  t21,
j=1

where 4 is the weight of each of these cone-hysterons such
that

ig,ﬂi =1 (12)

and where (‘Zj,ﬁj) are the threshold values for a particular
cone-hysteron C% 5

Here too an algorithmic definition for Eqn.(11) can be
written as

y(t):Z::Mﬂ (13)

Koo

k,, s(t)> 4
knewI = ki’ S(t) < ai >
Kug» & <S(t) <4

The simple case where all of these cone-hysterons have
equal weighting will be used

1
M=
n

i=1...n. (14)
where 7 is the number of cone-hysterons Ca, - This can
be illustrated by taking an arbitrary number of equally
weighted cone-hysterons and using Eqn. 14 to construct the
output shown in Fig. 18. The cone-hysterons used to produce
Fig. 18 are represented on a Preisach-plane shown in Fig.
19. Note the arbitrary values of («, ).

Some of the features that should be expected from the
continuous case can now be seen; when the number of

y(t)

1.5
1.25

0.75
0.5
0.25

s(t)

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 18. Discrete hysteresis loop generated by 21 cone-hysterons.

@

—?

O o0 oo oo oo

20304050.60.70.80.9 1

PN
o

r—;siL €] LT*J B
’ +4’

Fig. 19. Preisach plane with 21 discrete cone-hysterons

~ =
Dol Oy o ko
Tt

o o © o

= s(t)
0.2 0.4 0.6 0.8 1 1.2

Fig. 20. Discrete hysteresis loop generated by 231 cone-hysterons.

hysterons is increased a smoother result should be expected;
this can see the by comparing Fig. 18 with Fig. 20.

In the continuous case the number of cone-hysterons
increases to infinity, N — oo . As with the discrete case, the
output from the continuous case is confined between the
two lines y = T and Y =1q>. When the cone-hysterons are
all switched to £, i.e. when Eqn.(14) becomes:

1S s(t)
ym:ﬁ;f' (15)

These cone-hysterons can only be switched to k, when
s(n)> B where B is the largest possible threshold for all
hysterons. Hence Eqn.(15) becomes
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Fig. 21. Preisach plane with 231 discrete cone-hysterons.
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Fig. 22. Parallel connection of 231 cone-hysterons with lines of
maximum and minimum possible slopes.

s(t)

y(t) = k_a S(t) 2 ﬁmax’ (16)
2

which is the equation of the upper line of the cone as shown

in Fig. 22. Likewise when all hysterons are switched to &

ie.

1 s(t
Y(t)=ﬁizl:%, (17)

which can only occur when s(#) < « , where «  is the
smallest possible threshold for all hysterons. Hence Eqn.
(17) becomes

s(t)
y=—"-,
K
which is the equation of the lower line of the cone as shown
in Fig. 22. Further details are given in Appendix A.

S(t) < &y, (18)

RESULTS

The Operator ordinary differential equation (ODE) for the
hysteretic linear reservoir

ds

= _ (19)
o X(t) — P{s(t)}.
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(see Appendix A for its derivation) was numerically solved
for s(¢) using a numerical algorithm. The algorithm
comprised of a standard four-step Runge-Kutta (RK4)
integrator, and a Preisach operator algorithm, which was
developed by Rasskazov in Brokate ef al. (2005) and has
been used in work by Flynn and Rasskazov (2005), and
Donegan (2004).

The input x(f) to the hysteretic linear reservoir for the
numerical experiments was a damped sinusoid of the
following type:

KO = Ae ™ (1 cos( ), 0)

where A4 was the amplitude, x was the damping constant
and 7" was the period. A uniform density in the Preisach
half-plane has been used in each.

Figures 23 and 25 show plots of the inflow y(¢) against
the mass in storage s(7) for the anticlockwise and clockwise
cases respectively. The relationship in both cases is strongly
hysteretic.

Figures 24 and 26 show the time series plots of the input
x(7), output y(¢), solution s(¢) to the ODE and the right hand
side of the ODE: x(¢) — y(¢) for the given sinusoidal input
Eqn. 20.

Whether the hysteretic linear reservoir is of use in
hydrology must await the examination of hydrological time-
series for the presence of hysteresis at larger spatial scales.

Hysteretic Linear Reservoir
k1=20; k2=0.05; beta_max=alpha_max=2
27—

y(t)

0.5

S

0 L T el S beeadeeedienoess loeeepeeeperagerenenns [ Lt
0.2 0.4 0.6 0.8

s(t)

o

Fig. 23. Anti-clockwise hysteresis loops generated from a plot of y(t)
against s(t) and with an exponentially decreasing input.
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Fig. 24. Time series for exponentially decreasing input x(t). Cone-
Hysteron parameters k, = 20 and k, = 0.05.

Hysteretic Linear Reservoir
k1=0.5; k2=20; beta_max=alpha_max=1.53

ol v v v v b b e e e e 1l
0.2 0.4 0.6 0.8 1 12
s(t)

Fig. 25. Clockwise hysteresis loops generated from a plot of y(t)
against s(t).

[ —
150 - x()
A --- ds/dt

R R R
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0 1z 3 4 5 6 7 8 9 1011121 1 1516 17 18 19 20
Fig. 26. The upper graph shows time-series plots of y(t), x(t) and

ds(t
Sd(t ) against t. The lower graph shows a magnified region of a

time-series plot of y(t) against t. The Cone-Hysteron parameters are
k, =05 k,=20 and g, = o, =153

max ‘max

Conclusions

Hysteresis is the collective name for rate-independent non-
linearities that are expressed through thresholds, switches
and branches. These cannot be removed by means of smooth
transformations of the system variables. Exceedance of a
threshold, or the occurrence of a turning point in the input,
switches the output onto a particular output branch. Rate-
independent branching on a very large set of switches with
non-local memory is the central concepts in the new
definition of hysteresis. Hysteretic loops are a special case.
A non-linear systems theory has been developed for the self-
consistent mathematical description of hydrological systems
that exhibit hysteresis. Two results have been presented: a
conceptual model for the hysteretic soil-moisture
characteristic at the pedon scale and a hysteretic linear
reservoir at the catchment scale. Both are based on the
Preisach model, which is a weighted parallel connection of
rate-independent hysterons, or atoms of hysteresis. While
each hysteron has local memory, many hysterons in parallel
can have non-local memory.

A result of particular significance is the demonstration
that the independent domain model of the soil moisture
characteristic due to Childs, Poulavassilis, Mualem and
others, is equivalent to the Preisach model, a result
reminiscent of the reduction of the theory of the unit
hydrograph to linear systems theory in the 1950s. A
significant reduction in the number of model parameters
has also been achieved.

This work also extends the modelling paradigm of
Forrester (1968) to highly non-linear systems that exhibit
hysteresis. The conservation laws of mass, momentum and
energy, when expressed in integral form, always exhibit local
memory and rate dependence. Consequently, hysteresis
cannot be introduced into them directly. The place to insert
non-local memory, hysterons, switches, thresholds and
branches is in the rate-independent relationships that close
the conservation laws. The introduction of the Preisach
model into the classic linear reservoir to make it exhibit
non-local memory and hysteresis illustrates the extended
paradigm.
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Appendix A

Derivation of the operator differential
equation with Preisach hysteresis

The history of the system is recorded as a ‘staircase’ on a
Preisach half plane. This ‘staircase’ divides the hysterons
into two independent regions S* and S, where the hysterons
are switched on or off respectively see Fig. 27. The output
in that case is

y(t) =1xm(S") + 0xm(S"), 3}

where m is the measure of a particular region. The measure
is simply the area of a particular region of the plane but it
can be extended to cover the case where the measure is non-
uniform, which was the case for the Wedge Model (Flynn
et al., 2005).

[ — S

Olmax

Fig. 27. Shown above is a representation of the Classical Preisach
Half-Plane. The boundaries are (0, 0) and ., f3, . The staircase
L(t) divides the half plane into two regions S*(t) and S (t) . The
region S*(t) is where the hysterons are all switched on i.e. 1 and the
region S (1) is where the hysterons are all switched off i.e. 0. Note
that L, S*and S are all time dependent, as the staircase division L(t)
between the two regions evolves over time as the point x(t) moves,
hence the regions S* and S~ either grow or shrink.

For a Preisach model with cone-hysterons, the output must
have a different form as the states % and k—lz must be
recorded on the half-plane. This can be achieved by
modifying the Preisach-plane as shown in Fig. 28. From
this it can be seen that the output will the following

y(t) — [M + M] S(t), 22)
K K,
where S, and ,, are the regions (see Fig. 28) where hysterons
are switched to &, or k, respectively, and s(f) is the current
input variable. This can also be represented in a block
diagram shown in Fig. 29.
Since 0<s(t) < S, then Eqn. (22) can be simplified

Bma)(

L S0

s(t)

Omax

Fig. 28. Shown above is a modified Preisach-Plane. The boundaries
are (0, 0) and (w,,, B, ). The staircase L(t) divides the half plane
into two regions S, ,(t) and S, (1). The region S, (1) contains the
hysterons which have their k-values switched to k, and the region
S,,(t) contains hysterons with their k-values switched to the k, Note
that L, S and S are all time dependent, as the staircase division L(t)
between the two regions evolves over time as the point x(t) moves,
hence the regions S* and S~ either grow or shrink.

Fig. 29. A schematic representation of Eqn. (35).

further by using the following
m(S) M(S,) +m(Se),
=m(S;) =m(S) -m(S,). (23)

Eqn. (22) can be rewritten as

m@ﬂ+“$‘“%qxu oh

t) =
y(){kl
=Fw%n%?%m

where Q = (T11+k_12) This can be written in operator form
as

y(®) = A{s(t)}, (25)

where P is the Preisach operator. The linear reservoir Eqn.(5)
with hysteresis is now an operator differential equation

ds
i X(t) - P{s(t)}. (26)
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