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Abstract. There is an increasing need for model coupling. 1 Introduction
However, model coupling is complicated. Scientists develop

and improve models to represent physical processes ocCUfyater management influences many aspects of our modern
ring in nature. These models are built in different software|ife and has many inter-disciplinary fields. Water manage-
programs required to run the model. A software programment deals not only with traditional tasks like safety and
or application represents part of the system knowledge. Thigjrainage, but also with our living standards, health and en-
knowledge is however encapsulated in the program and oftefironment. This results in the demand for an integrated ap-
difficult to access. proach, inter-disciplinarity and coupled models for different
In integrated water resources management it is often NeCsub-system element&gudstaal et a).1992. Examples of

essary to connect hydrological, hydraulic or ecological mod-hydrological models are rainfall-runoff models, free surface
els. Model coupling can in practice be difficult for many fiow models and groundwater models. There already exist
reasons related to data formats, compatibility of scales, abilmany coupled simulation programs in hydrology, for exam-
ity to modify source codes, etc. Hence, there is a need fop|e the coupling of groundwater and surface flow models and
an efficient and cost effective approach to model-coupling.the coupling of water quality and water quantity models. An-
Avrtificial neural networks (ANNS) can be used as an alterna'other examp|e iS integration Of water qua“ty in urban wa-
tive to replace a model and simulate the model’s output anders and waste water treatments. Other fields related to water
connect it to other models. management are biological and ecological models. Model

In this paper, we investigate an alternative to traditional Coup”ng of Sub_system elementsis necessary to answer com-
model coupling techniques. ANNs are four different models: pjex questions.

a rainfall runoff model, a river channel routing model, an es-

. It . del q logical model. Th The coupling of different models is intensive in time and
tarine salt intrusion model, and an ecological model. 1N€q,qq Segmented software development is most successful.
output results of each model is simulated by a neural net

. ) Lo ‘Conguer and divide is a common way to solve complex prob-
work that is trained on correspond!ng input and output d_atqems. The negative side is that a large amount of energy is
se’ijs. IhetmOQetlj are connectetd (;n cascade and their 'anecessary to integrate two different types of computer mod-
anT outpu r\]/ana els ar? chonnec el d | K al els. From a software point of view software interfaces have

Olt%St the reSLfJ ]ES of t t? couple n%urla hnetvt\;or alSO Fyitticulties with import/export tools, time steps, data formats
coupled system of four sub-system models has been Set-URy, gfrware versions. A real online time connection tends
These results have been compared to the results of the coyy, - .4 hybrid systems. To build on-line, tight couplings,

plgd neural networks. The results show that it is possible %t connections or hybrid systems are necessary. It is only
train neura_\l netvyorks and connect these models. The rESUIté;ost effective if it is used intensively. Another possibility
of the salt intrusion model was however not very accurate. Itis making components that can be plugged into one central
was difficult for the neural network.to represent both Shortframework. Many initiatives have been launched. One of the
term (tidal) and long term (hydrological) processes. problems is that all stakeholders and future users must adopt
and consequently implement one standard. This for exam-
ple requires exact definition of all interfaces and results in
less flexibility. Furthermore there are commercial and prac-
Correspondence td?. G. Kamp tical problems like product support, source update and legal
(robert.kamp@mx-groep.nl) issues.
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On the one hand water management requires answers frod Methodology
different disciplines and on the other hand it is difficult to
connect software programs. This research investigates thé&he goal of this paper is to show it is possible to couple four
ability of neural networks to build hydrological models and neural networks, representing hydrological models. An ar-
to connect them. The models are designed in different softiificial neural network (ANN) is an interconnected group of
ware or software components as separate units. The focuastificial neurons that uses a mathematical model for infor-
is on model simulation and the coupling of model results. mation processing. In most cases a neural network is an
Many modeling experiments have shown it is possible to useadaptive system that changes its structure based on external
neural networks to simulate hydrological or hydraulic mod- information that flows through the network. In more practical
els. In this paper a next step is made by using the abilityterms neural networks are non-linear statistical data model-
of neural networks to build neural networks and to connecting tools. They can be used to model complex relationships
them. If it is possible to use neural networks to replace sub-between inputs and outputblgykin, 1999. The internal
system models trained on simulation results, this could be structure of a neural network consists of layers and neurons
valuable alternative in modeling practice. If a modeler needsand weight values that control the transfer of internal sig-
to couple two different models he can build neural networks.nals. Neural network parameters, the weight values, have to
The modeler can connect the models independent of the cule adjusted in an iterative training procedure. In this process,
rent application and it is not necessary to change software€alled training, the neural networks needs input that consists
code or to connect the application to a computer framework of corresponding model input and output. After training, the
Normally those methods consume lots of time and resourcegleural network can simulate or mimic the model.

The ANN is used as a simulator that operates as an inter- The conventional way to couple simulations models is to
face between different computer models. The goal is to pro-connect software applications or to attach models to a global
vide an alternative to traditional model coupling techniques.framework. The term model includes both the actual model,
The assumption is that it is relatively easy to train a neuralas one representation of a real natural system, as well as the
network on the outcome of a sub-system model. Neural netmodel concept. This is the mathematical formulation of pro-
work simulations are relatively fast compared to traditional cesses. Hydrological models are defined as models that sim-
simulations and coupling. However neural networks needulate the water cycle. Finally the term model coupling itself
additional training. A neural network simulates the output of is defined as coupling of distinct existing models that were
sub-system models based on the input and output time seriedeveloped to simulate processes in one system. Coupling
of these models. The output time series is the response dh the present context mainly means coupling via exchange
the system and reflects system processes. In so doing, thariables rather than directly coupling process equations and
neural network learn the system processes. It is very diffi-code. In this methodology the focus is on loose coupling.
cult to program a system process or a conceptual model fronTight and loose coupling can be defined by a communica-
physical phenomena directly in a neural network. It is nottion/computation ratio. For a programmer loose coupling
a common practice to translate mathematical relations ongneans a choice for modular design. The advantage is the
by one into a structure of hidden layers and transfer func-ability to reuse a model and to build a complex system eas-
tions of a neuron. One example is that you cannot implementily. However, modularity often comes at the price of reduced
the unit-hydrograph directly into the elements of an ANN. performance. With this methodology we try to use neural
Instead, the neural network is used to learn the relations beretworks to connect the models without using the software
tween input and output data. Another restriction is that theapplication but by using the input and output data of the mod-
neural network should be retrained after each adjustment tels. This is a loose connection.
the hydrological model. If for example the area of a rainfall A simulation model is a set of algorithms and mathemati-
runoff model changes, the relation between a rainfall evental rules that represent physical processes. A model is used
and the river discharges changes as well. This results in ¢ design or predict part of reality. To build a model it is nec-
different output of the model and effects system response. essary to describe a specific part of reality by a system. For

In this research, the focus is on four hydrological sub-example a modeler describes a river by several river sections
system models in decoupled and coupled mode. The modelwith a certain profile. It is also important to define several
cover different parts of a river system in a catchment area andnodel parameters. This might for example be the friction co-
are selected on a few criteria. They must be of equal comeefficient or infiltration capacity. After calibration of a model
plexity and they must have clear connection points to makehe user can calculate for example a river discharge or a wa-
it possible to verify the results. Another criterion is that it ter level. After calibration and validation the system design
is possible to run the models in a coupled scenario to comis finished. This is a situation in which a certain input data
pare the neural network results. The models are described iget results in a fixed output data. In other words, if the system
Sect. 3. stays the same, the relation between input and output is also

the same. It can become a complex relation, but the system
response is fixed.
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Alzette 1996 - 2001: daily input parameters Alzette 1996 - 2001: HBV results
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Fig. 1. Alzette basin RR-model, input data (upper left), neural network prediction (right), correlation input variables (down left).
This is also a characteristic of a neural network. Neuralr 0 1 Model input and output for neural network.

network are able to simulate complex input and output rela-
tions. The structure of a neural network can be complex. A

. ; . No. Model Input Output Time step
neural network can function as a good universal function ap- —
proximation. In this method the neural network will simulate RRmodel  precipitation — run-off 1 day
. and evaporation
the output of a single computer model based on the computer 5, riverflow  run-off river discharge 30 min
model’s input parameters. The idea behind this is that all the 3 Estuary river discharge  salinity 30 min
system knowledge and physical processes are reflected in the and sea level
4 Secchi-depth  salinity Secchi-depth 30 min

system response.

The approach in this paper is to simulate four separate hy-
drological and hydraulic models in a decoupled and a cou-
pled scenario. The decoupled scenario concerns the pencor'ascading manner such that the outputs are connected prop-
mance in emulating each of the four models and are usefui

1o test the trained ANNs. Th led . th rly to the inputs. This results in four models that are con-
o testthe traine S. The coupled scenario concerns i@ e g by neural networks. In the coupled scenario, the con-
performance of the coupled situation, which is the goal of

i X . nections are established without the original software appli-
this paper. The models are coupled in a cascading order th g PP

lobally follows the water stream in a river catchment It%tations.
9 y : . . ' The four different models have been integrated into one
starts with the upstream area with rainfall as input. From that

: : . . software model of only one application. This results in a
point the model follows the river water via a river, estuary . : .
: . . 2 model coupling of the four models with a standard technique.
and ends with an ecological model in the estuary which is

connected to the sea. The input and output variables in th;)rhls glves_the pO.S.SIb”Ity to compare results from the neural

; : . . network with traditional coupling.
coupled models therefore mainly consist of river discharges.
Other variables are rainfall and evaporation in the river catch- 1

L . . 2.1 Input data and simulations
ment, the salinity in the estuary and some ecological vari-

ables (see Tablg). The calculation consists of three steps. The first step starts
The final step in the methodology is the connection of thewith the coupled system formed by the four models. In cas-
neural networks. The trained neural networks are placed in @ading order these are the rainfall-runoff model (HBV), the
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1D-flow model: 1996 - 2001

discharge (ma.fs)

0 1 1 I I | | 1 |

0 1 2 3 4 5 6 7 8 9
time (steps) x 10"
1D-flow model: correlation 1D-flow model: 1996 (April~September)
1 ; ; T T 200 ; ; ; T
- gin
c
= 5 L — t ]
5 0.8 @150 ou
[iF] L)
g £
5 06 & 100
L] [
N =
®© : ; 5
§04 . SVTNUTI LN TOPNY. . CRRPURG. DRSHOOES ...... : - =] 50_
c = correlation input / output
© max. 184 steps ~ 3d20h /
0.2 . 0 . :
0 -50-100-150-200 -250 -300 -350 6000 8000 10000 12000
time lag (steps) time (steps)

Fig. 2. 1-D-River model, input discharge and neural network prediction (upper), correlation input/output discharge (lower left), input
discharge and NN predictiondetail (lower right).

river model, the estuary model and an ecological model withfirst connection is between the rainfall-runoff model and the
Secchi-depth. Input to this rainfall-runoff model (RR-model) river model. This model calculates daily discharges from
is five years of daily rainfall and evaporation data (see Eig.  rainfall and evaporation inputs. The results are connected
The downstream boundary condition for the estuary is the se#o the river model at an upstream discharge point. The time
level with standard tidal movements. The rainfall and evap-step is days.

oration consists of observed values. All other data are calcu- The river model is a hydraulic model with a time step of
lated by the integrated system. From these data it is possiblga|f an hour. The discharge from the rainfall-runoff model is

to construct corresponding input and output data sets.for subghe upstream input. The river model ends where the estuary

models, for example the upstream and downstream discharggagins. The river discharge downstream of this river is the

values for the river model. output of the model. The river is a one-dimensional flow
The second step consists of dividing the input and outputygdel.

data for each sub-model into a training set that consists of the The estuary is an area that starts at the river boundarv. with

first three years and of a test set that consists of the last tW?he ea thgdo tream bound The sea level h Y: dail

years of the data. With a training and test set it is possible to seaas wnstr unaary. S velthasadally

train four neural networks: one for each sub model. With thepattern. Because it is connected and part of the river system
' ' it is also subject to a calculation output step of half an hour.

test set it is possible the express the accuracy of individuaLlrhe upstream boundary is the same point as the downstream

neural networks. . . . . :
discharge point of the river. For the estuary a salt intrusion

In the th'r.d step the four models are coupled by connectlngmodel has been build. The salinity varies with space and with
the cascading neural network. The results after each cascacge

can be compared to the results of the intearated svstem. Thi Ime. For output a point has been selected where both the sea
compar =9 y ) &idal variation) and the river (seasonal discharge variations)
makes it possible to follow the progressing error after each : - i
. : . clearly influenced the salinity. The output of the model con
model in the cascading coupling.

sist of salinity values at every half an hour.

2.2 Connection points The ecological model is connected to the salinity values

at the same, fixed point along the estuary. Input to this eco-
The four models are connected at points that correspond witfogical model is the quotient of river water and marine water
physically suitable or representative points (see Tapl&he as simulated by the salt intrusion model. The river water is
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assumed to be muddy and the sea water to be relatively cleaB.3 River model in 1-D-channel flow
This quotient is input to the Secchi-depth model. The Secchi-

depth is taken as output and has the same time interval. For simulating river flow, the Duflow modeling software is
used. There are several publications on simulating hydraulic

flow, e.g.Bobovic and Abbot{1997); Dibike (2002; Price

3 Model description et al. (1998; Campolo et al(1999; Shrestha et al20095.
Duflow is based on the one-dimensional partial differential
3.1 ANNs equations that describes non-stationary flow in open chan-

nels. These equations are the mathematical translation of the
The basic elements of ANNs are neurons that are connecte@ws of conservation of mass and momentum. The equation

by transfer functions in layers and a network. In mathemati-of conservation of mass reads:
cal terms a neurok can be described by writing the follow- 9B 9Q

ing pair of equationsHaykin, 1999: o ax “)
” In which:
_ o B cross-sectional storage arga,the discharge. The equa-
Up = Z wij/ (1) . . . . . . .
= tions are discretized in space and time using the four-point

implicit Preissmann scheme. The space between calculation
points Ax is 3000 m, the calculation time stey is 30 min.

= b 2
Ye = ¢ (i + bi) @ The equation of conservation of momentum read:
where  x1,x2,....x, are the input signals, 9¢ 0H 9(aQv) g|0Q|Q
. ) gA + > =0 (5)
wi1, Wk2, - - ., Wiy are the synaptic weights of neuron 09t ox 0x C?AR

k; uy is the linear combiner output due to the input signals; In wich:

by is the bias andgphi (-) is the activation function; ang; g acceleration due to gravity, cross-sectional flow ared]

is the output signal of the neuron. The sigmoid transferwater level« correction factor for non-uniformity of veloc-

function is the most common form of activation used. In this ity due to advectiony mean velocity (averaged over cross-

functiona is the slope parameter andhe local field. sectinal area); coefficient of Clézy andR hydraulic radius
of the cross-section.

1

¢ (v) =T+ exp(—av) (3) 3.4 saltintrusion in alluvial estuary

A few rules of thumb are available to design an ANN for hy- An estuary is the transition zone between the river and the
sea. Alluvial estuaries have movable beds consisting of sed-

drological modeling Zijderveld 2003 Hagan et al. 199§ iments of riverine and marine origin. The water moving in

The ANNs have to be trained to calculate the values of the . : .
. . . the estuary can either erode the estuary bed or it can deposit
synaptic weights. A measured or observed data set is neces-

sarv with known input and corresponding outout values Sediments. This results in a dynamic equilibrium situation
y P P g outp ' (Hunkins 1981, Uncles et al.1983. In this paper we chose

the derivation of the steady state intrusion for the tidal av-

erage (TA) model. In the one-dimensional flow model, the

For the rainfall-runoff model a lumped model of the Alzette dlspe_r5|on at high wgter SIaClD{.-I ), varies with the_ t'.de
and river flow (see Figd4). The figure shows the variations

Basin, Luxembourg is used-¢nicia et al.2006§. One of - N .
the selection criteria is that the size of this basin is sufficientwIth tide and flow and the cahbrgtpn Fe.S”“S for low gnd high
for rainfall-runoff modeling. Large and complex models river flows. For neural networks it is difficult to combine fast,

. idal variations with relatively slow nal river discharges.
are not necessary to test model coupling. Many researcherI dal variations with relatively slow seasonal river discharges

have shown it is possible to simulate a rainfall-runoff model or this reason both a normal estuary model and a *Maxi-

with an ANN (Vos and Rientjes2005 Minns and Hal Ir:léjen; ti(:“:ql;y'Qor?]esl;}?tbze?':uld{' d-gl]eé?.tggj[ (S)?:] y ;{T‘o“n‘
1996. Input is rainfall (P) and the potential evaporation Ximu ity during a tidal period: simuiat

(E,). The output is the downstream discharg@)( The ofdeta!led, tidal motions by the neural network is not neces-
size of the catchment area is 31kmOther model param- sary. Figure3 SEOWS th.e resulc;s .\I/vhenllth.e mo?els i‘,r$§9“p'ed
eters are rainfall correction factor (interception), maximumtﬁ riprﬁsent t el ml? >(;|_mum daty ssm(;ty valueby b IS d

soil moisture content, limit for potential evapotranspiration,t e high water slack dispersion at the downstream boundary.

maximum value of capillary flow, recession coefficient, per- The salt intrusion mode| was developed Sgvenije(1959

colation from upper to lower response box and recession 00;993b 2009:

efficient. For a description of the rainfall-runoff model refer- S-S, D %
ence is made thindstrom et al.(1997). So— Sy _(E)

3.2 Rainfall-runoff model

(6)
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Estuary: salt concentration 1986 ~ 2001
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Fig. 3. Salinity in estuary model, neural network salinity prediction (upper), detail with daily tidal influence (lower left), correlation input
discharge and input water level with salinity output (lower right).
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Fig. 4. Dispersion coefficient in estuary, tidal average dispersion for validation (upper), tidal average dispersion along estuary x-axis for
calibration low river flows (lower left), tidal average dispersion along estuary x-axis for calibration of high river flows (lower right). Spring
tide is the bold, solid line and neap tide the bold, dashed line.
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DHWS KaQ x -
D5’W521+ D'O'“NSZO (exp(;) _ 1) @) 3.6 Training
The most important step is to train the ANNs. The data set
E should contain enough physical events such as high and low
Dg*=D™S(E/2) - exp<—2> ®)  flows. If this is not th?a cgsg, there is the possibilitygto create
artificial training data in a systematical way based on phys-
whereK is the Van der Burgh'’s coefficiens, Sp andSy the  ical features such as mean sea level, maximum flow, am-
salinity, salinity at the estuary mouth and fresh water salin-plitude at estuary mouth, typical time variations etc. Many
ity respectively. Q r is the fresh water discharge whichin  of these parameters can be subtracted from the conceptual
are negative since they are points upstreamjs the tidal model. Basic statistical parameters of a data source also give
average cross-sectional area at the estuary mouthzdad shape to the input space. Selecting correct data sets is impor-
the cross-sectional area convergence length. Furthermore tHant Qoan et al, 2005. In Kamp and Savenij¢2006 the
predictive equation for the downstream boundary conditionauthors showed additional optimisation of the original artifi-

and the shape function apply: cial data is possible in combination of a Genetic Algortihms
(GA). The GA constructs a new training set by selecting dif-
DS E ferent subsets from the original training set resulting in better
0 —1440—/Ng ) gina gs g
voho a performance of the ANN. In this paper this methodology was
not applied because a daily dataset of five years was avail-
E=H-cos (¢) (10) able.
ho ANNSs consist of an input layer, one or several hidden lay-

Ao gh 0T ers and an output layer. Each layer consists of one or more

=—-° (12) neurons and all neurons of two successive layers are con-
p Ao E0U§ nected. Every connection gives a signal to the next layer

multiplied by a factor. The neurons transfer this signal with

With £ the tidal excursiong the phase difference between , yansfer function. ANNs are described in detailligykin
high water (HW) and high water slack (HW3) tidal period (1999.

anduy tidal velocity amplitude at the estuary mouth.

Nr

3.5 Secchi-depth 4 Simulations

The under water light climate is an important factor for the 4.1  Case study

development of the aquatic eco-system. Growth of algae and

water plants is strongly dependent on the availability of light In the case study the simulation results of four separate hy-
under water. The contribution of optical active componentsdrological models will be mimicked by neural networks. The
to adsorption and diffusion of light is linear related to con- hydrological models were calibrated with the rainfall data
centration of components. Total extinction of light for plants from the Alzette basin with five years of rainfall and evap-
and algae in the most important wave length (400—700 nm)ration events. The case study is the simulation of four cou-

is described by the extinction coefficiekt;. The visibil- pled models that represents parts of a hydrological cycle. The
ity is expressed and measured as the Secci-degjBlom resemblance between the model and reality is investigated
(1992: during validation. To train the neural networks it was nec-

1 essary to split the available data into training data (the first
dg =dgy+Pn - Eabgaso+Ba - CenlatBa - Cdert-Bm - Cmin(12)  three years) and testing data (last two years). From many
runs with neural networks it showed that the use of cross-
validation did not improve the calculation and was not used
in the final simulation.

in which:

dso background Secchi-depthFEapg3sg absorption of

light dissolved material at 380 nnG¢hig concentration of

cholorofyl-a, Cqet coOncentration of suspensive organic mat- 4.2 Design and training

ter, Cmin concentration of suspensive mineral matter. And,

Bnr contribution of humus acids to inverse Secchi-depth,  For every neural network we used an input layer and two

contribution of chlorofyl-a to inverse Secchi-depfly, con-  hidden layers. All layers are feedforward layers. The model

tribution of detritus to inverse Secchi-depfly, contribution  input is presented to the input layer of the neural network by

of floating matter to inverse Secchi-depth. a time stepped delay line in which each input is duplicated
We assumed the concentration of suspensive organic maknd delayed several times. The first hidden layer consists of

ter Cqetis linear related to the quotient of muddy river water 7 or 3 neurons depending on training results. The second hid-

and the saline sea watesgi(). This Secchi-depth modelisim- den layer consists of three hidden layers. There are not many

plemented as a water quality model in the 1-D-flow model. design rules which leaves large freedom for the designer. For

www.hydrol-earth-syst-sci.net/11/1869/2007/ Hydrol. Earth Syst. Sci., 11, 18832007
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each neural network several configurations of neurons angbotential evaporation were used as input for the neural net-
layers have been tested by trial-and-error and using experiwork. Both input parameters were delayed by a time delay
ence. All transfer functions are sigmoid functions (BY. line of six days. Target values are the downstream river dis-
except for the output layer which has a linear transfer func-charges. However, training and testing the ANN showed a
tion. The trainings function is Levenberg-Marquardt back more basic problem. The training set should contain enough
propagation. A stepped delay line is used to simulate flowhigh flows. In the training set only a few high floods oc-

dynamics. In a stepped delay line the input at timantil n curred. No extreme high flood occurred in the training and

steps in histonyQ;_, form the ANN’s input: test set. This resulted in a poor prediction of only 0.66 (see
Fig. 6). This figure shows all model results as predicted by
Qr-1 the neural networks in uncoupled conditions. Another dif-
_ Q-2 (13) ficulty for neural networks is the fact that a rainfall-runoff
: model has different model states. The response in wet situa-
Or—n tions is much quicker than in dry periods, which are difficult

) training conditions. InCampolo et al(1999 the past flow
To assess the length of the delay line, a graph of the crosspayes were added in input for distinguishing between wet
correlation between input and output signals can be madeang dry conditions. In additional experiments the rainfall-
This graph provides the correlation of a delayed input vec-yynoff model past flow values were added resulting in better
tor and the (target) output signal. Cross validation for earlyyredictions, e.g. RMSE of 3.4 instead of 11.%s) see Ta-
stopping is not used. The average number of epochs or ca&es column (RMSEQ,_1). The R? improved from 0.51 to
culation runs for the training phase is 50. All design and traing 97. This approach should however be exercised with care.
parameters are opt?mised and based on the authors expefhe autoregressive model component can become too dom-
knowledge. For testing the root mean squared e®@iise)  inant, resulting in lagged model forecasie$ and Rientjes
is used. Also the Nash-Sutcliffe efficiency indelw) is 2005,
used to assess the predictive power of hydrological models, agditional attention has to be payed to different time
and the Pearson’s r-squared statistigs)(for measurement  gcales between the models. The rainfall-runoff model for ex-

of high flows are used: ample simulates daily discharge values, while the flow model
; ~ has a time step of 30 min. Therefore the standard discharge
ERMSEZ\/Z,-_l (Qi - Qi) (14) points in Duflow were used to simulate the HBV model re-
n sults as flow boundaries.
Yra(0i— 'Q,»)Z 4.4 River model in 1-D-channel flow
Ins=1— - — (15)
D1 (Qi - Qi) The largest river section connects the inflow from the

_ P 2 rainfall-runoff model to the inflow of the estuary and has an
R2 _ Yra(0i—0i) (i — Qi) (16) average slopel{ of 1.2x10~4*m~1. The distance between
\/Zﬂ (Q- B Q-)2 By (@ _ é)z the input and output point is 336km. The cross sectional
=14t ! =1t ! profile is 20 m wide B), rectangular and uniform with no
flooding area’s for water storag®y). The discharge@) is

whereQ; is the observed valu@i is the modelled value and 131m3/s at low flow, 50 M/s at hi
vhe =~ : gh flow and 100-150%yis
Q; is the mean of the observed data ahds the mean of the in extreme situations. The water dept) {s 1.6 m and the

modelled data. In the conjunction of the neural network mod- steady state) water velocity) at the top of the high wa-

els the observed values are the values obtained from othq r wave 0h/3:=0) can be described as a steady state flow
models. according to Manning-equation:

4.3 Rainfall-runoff model - 1h2/3\/7 an
For the Alzette basinRfister et al.2005 daily time series "
are available for five years (1996—2001) for precipitation andlf we assumeQ=vB;h and substitute it in the law of con-
potential evaporation (see Fid). A conceptual rainfall- ~ servation (Eq4), the high water wave velocity isSavenije
runoff model was available with calibrated parameters. From2001):
the cross-correlation graph of precipitation and the potential 5B 1 5B
evaporation, it appears that a history of six delayed time steps = ~ — 1?31 = =23 (18)
is sufficient. 3Bn 3B

The feedforward neural network consisted of one inputWith n=0.025 (Manning) for clean, straight and uniform
layer and two hidden layers with both three neurons havingriver bed, we find a theoretica=1.03 nys, and from the
both sigmoid transfer functions. The precipitation and thel-D-flow simulation model we find a wave celerity of
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right).

c:%:mo nys. A river flood upstream arrives 3 days and 4.5 Saltintrusion in alluvial estuary

20 h later in the downstream area (see B)g.This is impor-

tant for the stepped delay line used for training (E8). The salt intrusion is modeled in an estuary that connects the
The feedforward neural network consisted of one inputl-D river flow with the sea. The upstream boundary of the

layer and two hidden layers with five and three neurons hav-alluvial estuary is the fresh river inflow. FiguBeshows the

ing both sigmoid transfer functions. The input for the neural calibration results for the tidal characteristics in the estuary.

network in the connected model is the upstream river dis-Downstream the MSL is 2.0 m with an average amplitude of

charge which was simulated with a delay line of two time 1.25m. The geometric profile is wide at the estuary mouth

steps delayed by 3 days and 20h. The output of this neuand small at the river mouth. The width varies as an expo-

ral network model is the downstream river discharge. Thenential function with distance. The bottom level is constant

output will be connected to the salt intrusion model. (5.0m). These are conditions for alluvial estuaries that fit the
The results fitted quite well and resulted in model as described by Savenije (S&ct).
RMSE=4.4ni/s and an efficiency of R?=0.92 (see The feedforward neural network consisted of one input

Fig. 6). The results are good because the hydro-graph watayer and two hidden layers with five and three neurons hav-
symmetric and showed little deformation. In situations of ing both sigmoid transfer functions. Input is the fresh river
large water storage and non-uniform cross-sectional profilfrom the river. The second input is the sea level at the down-
this is not the case. stream area where the river disperses into the sea. The river
The time step of the rainfall-runoff model is days, while discharge is delayed by 12 calculation steps corresponding
the time step of the dynamic flow model is half an hour. with 6 h. The output of the salt intrusion model is the salinity
This means that 48 steps of the flow model corresponds t@t a point 120 km upstream from the estuary mouth. The sim-
one time step of the rainfall-runoff model. Without inter- ulation results are shown in Fig. In this point the salinity
polation the signal from the rainfall-runoff model will have is influenced by both the fresh river discharge and the tidal
sudden changes after a period of one day. It is better for anovement at the estuary mouth (see B)g.In the upper plot
dynamic, hydraulic system to prevent sudden steps and nuef this figure the performance corresponds with river flow
merical shock waves. Hence, we used interpolated values owariations. The tidal influence (lower left) effects the short
the intermediate time steps. term. This is also shown in the correlation graphs (lower
right).
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Fig. 8. Neural network predictions of four models ¢ascading couplegdimulation withimproved estuary modeResults from RR-model
with river discharge (upper left), river discharge from river model (upper right), salinity from estuary model traimeaixonum values
excluding daily, tidal variations (lower left) and Secchi-dept from ecological model (lower right).

Table 2. Simulation results of single models.

4.6 Secchi-depth

The Secchi-depth is an indication for the light penetration

2
Model RMSE R RSQR under water. This value is in our model directly derived from
RR-model 11.4s 051 0.66 the quotient of river and sea water. We assumed this is an in-
RR-model(Q;, ;) 3.4nf/s 097 097 dication of dissolved matter in the water column. Except for
River flow 44nfls 092 0093 salinity, all other parameters are assumed constant and there
Estuary 837mg/l  0.38 0.62 are no external variables distinguished in this model. If the

Secchi-depth

0.004m 0.99 0.99

of one day. The variations of the discharge includes several

salinity is high, the assumption is that there is relatively much
sea water hence less muddy river water. In that situation the
concentration of dissolved material is low and the visibility

is high. This results in a Secchi-depth which is proportional
The first process, the tidal movement, has a time periodyith salinity.

The feedforward neural network consisted of one input

days and is a much slower process. Itis important to underayer and two hidden layers with seven and three neurons
stand that it is difficult for one ANN to simulate both time ,5ing both sigmoid transfer functions. The salinity in the
scales in one training. To improve the performance the Movygyary at the fixed point 120 km upstream from the estuary
ing average value of discharge is used for input. This giveSyqyth is input data for the neural network. This point is con-
petter results but introduces a'Iarger'error in the starting pepeacted to the output of the salt-intrusion model. Output of
riod when the model has to build a *history”. the model is the Secchi-depth value. This is calculated at the
Training the ANN was difficult and gave poor results. In- same fixed point in the model. In this process there is no
troducing a moving history was necessary but did not givejime |ag and the time delay line is not used. Training a neu-
satisfying predictions. Although both the sea level and river 5 network with no time lags can result in a high accuracy.
discharge have an effect on salinity, it is difficult to separate; can pe compared to universal function approximation. In

these two processes. this specific model the neural network also showed accurate
results withR?=0.99 (see Fig6).
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Table 3. Simulation results coupled models.

Model Coupled models  Coupled models with Progressive error. Single ANNSs with
(RMSE) RR-modely, _, (RMSE) input:Qys, _,, P, Ep, hsea(RMSE)
RR-model 11.41¥s 3.4n¥/s 3.4n¥/s
River flow 13.7 /s 11.3ni/s 12.8ntls
Estuary 1424 mg/l 1148 mg/l 1695 mg/l
Secchi-depth  0.636m 0.26m 0.59m
4.7 Model coupling and results shows that the accumulation of errors are not caused by ANN

design and training errors, but by the ANNs having difficulty
Models sharing the same physical variables, for example wato correctly represent the physical processes.
ter levels or discharges, can be connected if these variables
are available for both input and output. In this paper we used
a cascading model coupling with a line-up of four hydrolog- 5 conclusions
ical sub-systems. The line-up of models is (1) the rainfall-

runoff model producing discharge, (2) the 1-D-flow model | g research ANNS represent four hydrological models.
for the river, (3) the salt intrusion model and (4) the Secch|--|-he ANNs were trained with a data set of three years and

depth model. The rainfall-runoff model produces dischargethey were tested with a data set of two years. The ANNs

as input to the river model; the river model generates dis,’have been coupled in a cascading set-up and compared to an
f:harge to the est_uary; and the estuary mo‘_’e' generates S_a“nitegrated hydrological model. We found that it is possible
ity for the _Secchl-depth_ quEL The_latter Is a water quality to use ANNSs for model coupling. The ANNs were capable to
model for light penetration in ecological processes. simulate the output of the different model components. The

For each model an ANN has been designed and trainedngividual ANNs were tested and three of the four resulted
Each single model has been tested before use inthe cascadifiggood results. However, the final model results are as ac-

in Table2. In general the ANNs are able to simulate the simyjation the salt intrusion model was not accurate enough.
model results. For the rainfall-runoff simulation an improved The ANNs could simulate the tidal movement (short term)
model has been developed which also uses previous flow vakyt simulated the salt-intrusion (long term) inaccurately. Ad-
ues as input. These two rainfall-runoff models correspondgitional research has to be done on a method that can separate

with the first two columns of Tabl8. This table and Fig7  the short and long term processes for the salt-intrusion in an
present the results of the coupled models in cascade. Naistyary.

all predictions are accurate, due to several problems. In the We can conclude that model coupling as such has proved
river model, the flow can normally be well simulated if it has to be feasible and efficient, however the overall accuracy
a uniform cross-section and no flooding area’s. In this modelmc four coupled models was not sufficient due to the poor
however it was difficult to obtain accurate results because Otperformance of the ANN in mimicking the salt-intrusion
the lower accuracy of the output of the rainfall-runoff model. model.

In addition, the ANN of the estuary could hardly distinguish
the two processes with different time scales. The Secchi-EOIiteGI by: D. Solomatine
depth, finally, is proportional to the salinity without any time

delay and gave perfect results. The final, coupled model per-

forms not very good, because errors are accumulated in the
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