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Abstract. Conceptual hydrologic models are useful tools as
they provide an interpretable representation of the hydrologic
behaviour of a catchment. Their representation of catch-
ment’s hydrological processes and physical characteristics,
however, implies a simplification of the complexity and het-
erogeneity of reality. As a result, these models may show a
lack of flexibility in reproducing the vast spectrum of catch-
ment responses. Hence, the accuracy in reproducing certain
aspects of the system behaviour may be paid in terms of a
lack of accuracy in the representation of other aspects.

By acknowledging the structural limitations of these mod-
els, we propose a modular approach to hydrological sim-
ulation. Instead of using a single model to reproduce the
full range of catchment responses, multiple models are used,
each of them assigned to a specific task. While a modular ap-
proach has been previously used in the development of data
driven models, in this study we show an application to con-
ceptual models.

The approach is here demonstrated in the case where the
different models are associated with different parameter real-
izations within a fixed model structure. We show that using a
“composite” model, obtained by a combination of individual
“local” models, the accuracy of the simulation is improved.
We argue that this approach can be useful because it partially
overcomes the structural limitations that a conceptual model
may exhibit. The approach is shown in application to the dis-
charge simulation of the experimental Alzette River basin in
Luxembourg, with a conceptual model that follows the struc-
ture of the HBV model.

Correspondence to:F. Fenicia
(fenicia@lippmann.lu)

1 Introduction

Conceptual hydrological models consist of an ensemble of
fluxes and storages representing relevant processes and key
zones of catchment response. In the field of hydrological
research, these models are useful tools for two main rea-
sons. First, they are based on a reasonable representation
of the major hydrological processes, which enables an in-
terpretation of the real behaviour of the catchment. Second,
their data requirement and computational demand is limited,
which makes them easy to apply and to operate.

Conceptual models represent certain abstraction of reality,
which results in a simplification of the complexity and het-
erogeneity of the real world. This simplification is justified as
the complex process interaction at small scales can be repre-
sented by simple analytical approaches at larger scales (Siva-
palan, 2003; Dooge, 2005). It has been suggested that this
may be due to the self-organizing capacity of large systems
(Savenije, 2001). However, it is often the case that simple
models display a lack of flexibility in capturing the dynamic
and time varying nature of hydrological responses (Wagener
et al., 2003).

In order to improve model accuracy, one solution can be
to develop the model further, in such a way that more pro-
cesses are included (Fenicia et al., 2007). This approach,
which has the advantage of enabling a better understanding
of the system through a process of testing the effects of addi-
tional modelling assumptions, is time consuming and may be
limited by our ability of understanding catchment behaviour
through an analysis of its response.

A second possibility consists of using several models in-
stead of one to better characterize the various conditions that
influence the catchment hydrological behaviour. This ap-
proach, which is here investigated, is based on the idea that
an integration of the results obtained by different models pro-
vides a more comprehensive and accurate representation of
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catchment response than what can be obtained using a sin-
gle model. The number works published on this topic while
the discussion version of this article has been on line docu-
ment the increasing interest in this approach (e.g. Marshall et
al., 2006, 2007; Ajami et al., 2006, 2007; Vrugt and Robin-
son, 2007).

Multi-model approaches have been widely used in hy-
drological modelling in different frameworks and for differ-
ent purposes. One objective is the estimation of conceptual
model uncertainty. In this context, an ensemble of mod-
els is generated by multiple realizations from one or more
model structures. Model simulations are eventually weighted
or averaged or used to derive statistics of model outputs.
The assessment of model uncertainty is the purpose of the
GLUE framework (Beven, 1993; Beven and Freer, 2001),
and of other approaches such as model and multi-model en-
sembles (Georgakakos et al., 2004; McIntyre et al., 2005).
Most recently, approaches based on Bayesian model averag-
ing (BMA) methods have been successfully applied in this
field (Duan et al., 2007; Vrugt and Robinson, 2007; Ajami et
al. 2007).

A second objective is the improvement of model accuracy.
In this context, it is recognized that some models can be more
accurate than others in reproducing different aspects of the
system response. One possibility to take advantage of this
aspect is to simulate the system response through models of
different types, and use weighing procedures that attempt to
retrieve the individual strengths of each model in simulat-
ing the system response. Following this approach, Sham-
seldin et al. (1997, 2007); Xiong et al. (2001); Abrahart and
See (2002); Ajami et al. (2006); Duan et al. (2007), propose
different combination methods to integrate the outcomes of
different models. They show that in general the discharge
estimates obtained by combining different models are more
accurate than those obtained from any single model used in
the combination. Recently, BMA methods also proved to be
useful in this context (Duan et al., 2007; Vrugt and Robin-
son, 2007).

In order to improve model accuracy, instead of combining
the outputs of models that aim at simulating the whole range
of system response, it is possible use models that are directly
built and calibrated on different event types or data sequences
(Jordan and Jacobs, 1994; Zhang and Govindaraju, 2000; See
and Openshaw, 2000; Hu et al., 2001; Hsu et al., 2002, Solo-
matine and Xue, 2004, Wang et al., 2006; Jain and Sriniva-
sulu, 2006; Marshall et al., 2006, 2007; Corzo and Soloma-
tine, 2007). In this approach, the distinctive role of differ-
ent models in reproducing the system response is explicitly
recognized from the beginning of the model development.
See and Openshaw (2000) show the application of differ-
ent neural networks built on different event types. Hsu et
al. (2002) present a method of reproducing the catchment re-
sponse through multiple linear local models which are built
for specific flow conditions. Wang et al. (2006) used a combi-
nation of ANNs for forecasting flow: different networks were

trained on the data subsets determined by applying either a
threshold discharge value, or clustering in the space of inputs
(lagged discharges only but no rainfall data, however). Jain
and Srinivasulu (2006) apply a mixture of neural networks
and conceptual techniques to model the different segments of
a decomposed flow hydrograph. Solomatine and Xue (2004)
show an application of data-driven models M5 model trees
and neural networks in a flood-forecasting problem, consist-
ing of a combination of models locally valid for particular
hydrologic conditions represented by specific regions of the
input-output space. Corzo and Solomatine (2007) used sev-
eral methods of baseflow separation, build different models
for base and excess flow and combine these models ensuring
optimal overall model performance. Marshall et al. (2006,
2007) introduced a framework known as hierarchical mixture
of experts, where different models are applied at different
times with a probability that depends on the hydrologic state
of the catchment. The approach is similar to Bayesian Model
Averaging (Duan et al., 2007; Vrugt and Robinson, 2007).
However, in this case models may be developed specifically
for different aspects of the catchment response (Marshall et
al., 2007).

Approaches where different models are developed to per-
form similar modelling operations can be classified as “en-
semble” strategies. The last approach corresponds to a “mod-
ular” strategy, as different models are developed to perform
different tasks.

The approach introduced here can be attributed to the lat-
ter case. We in fact adopt a modular strategy based on the
“fuzzy committee” approach (Solomatine, 2006) to charac-
terize different aspects of a stream hydrograph. However,
while previous works are based on purely data-driven mod-
els, the present work focuses on conceptual model structures
and it is set in a multi-objective framework. The approach
consists in calibrating a conceptual model with respect to
different objectives (Gupta et al., 1998), representing model
performance towards different aspects of the simulation, and
in combining the best performing models associated to each
objective in such a way that the strength of each individual
model used in the combination is exploited. This approach
attempts at improving the global accuracy of the simulation
overcoming possible limitations in the model structures.

The approach is demonstrated using a conceptual model
that follows the structure of the well-known HBV model
(Lindström et al., 1997). The model is analysed with re-
spect to its ability of reproducing the rainfall-discharge be-
haviour of a catchment in Luxembourg, with particular refer-
ence to accurate reproduction of the high and low flows be-
haviour. Multi-objective optimization with respect to two de-
fined objectives representing model performances for the se-
lected hydrograph characteristics shows that there are several
solutions (the so-called “Pareto-optimal” set of solutions)
that simultaneously optimize the selected criteria. These
solutions represent a trade-off between the selected objec-
tives and show that individual optimal models are better in
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matching different aspects of the observed hydrograph.
The two best performing models associated with the se-

lected hydrograph characteristics (in this case high flows or
low flows) are subsequently weighted together using a fuzzy
combining scheme. The paper concludes with a discussion
on advantages, limitations, and physical significance of the
proposed approach.

2 Problem formulation

In this work, we use the following definitions: “global”
model is the model that aims at reproducing the full range
of system response through a single description of reality;
“local” model is the model that aims at reproducing a spe-
cific aspect of the system behaviour, which we call “event”;
“composite model” is the model that provides the description
of the full range of system response through a combination
of local models; we call “model” both the structure and its
realization through a given parameter set. The process of
developing a “composite” model by means of aggregating
multiple “local” models, each of which is specialized in sim-
ulating a certain aspect of the system response, can require a
series of operations, summarized hereafter.

– Events selection. Within a modular approach, which
presumes switching between different models, these
events should correspond to different aspects of the
system behaviour. Consequently, they should refer to
different ranges or different time periods of a certain
measured variable. As an example, Abrahart and See
(2000) use a data decomposition based on season, Jain
and Srinivasulu (2006) and Boyle et al. (2000) separate
the hydrograph in different segments based on physical
consideration on underlying processes, Corzo and Solo-
matine (2007) employ baseflow separation algorithms
to differentiate between high and low flows. While the
type and number of events may be based on physical
considerations (e.g. Jain and Srinivasulu, 2006), it can
also be performed through the help of automatic proce-
dures such as Self Organizing Map models (e.g. Abra-
hart and See, 2000; Hsu et al. 2002) or model trees
(e.g. Solomatine and Xue, 2004). In principle, the num-
ber of events should not be too high, in order to avoid
a too fragmented description of the system response,
which could also reduce the global efficiency for peri-
ods outside the calibration period.

– Model selection. The selected events could be repre-
sented by models of the same nature or of different na-
ture (e.g. conceptual, physically based, data driven). As
an example, Jain and Srinivasulu (2006) use conceptual
and data driven models to simulate different segments
of a flow hydrograph. They found that in the considered
case study models of conceptual type performed better

than data driven ones in reproducing hydrograph reces-
sion.

– Objective function definition. Objective functions ex-
press the quality of the simulation in numerical form by
aggregating model residuals in time. Different functions
may enhance the error in simulating different aspects of
the simulation while neglecting or downplaying the er-
ror in simulating other aspects. Since the use of a single
objective function may result in a loss of information
contained in the observed data (Gupta et al., 1998), the
use of multiple functions in the assessment of model
performance is becoming increasingly more popular.

– Model calibration. As model parameters most often do
not refer to measurable quantities, they have to be in-
ferred by calibration (Gupta et al., 1998). Hence, the
local models associated with the different events have
to be calibrated (or trained) to optimize the selected ob-
jective functions.

– Model combination. The local models are finally rein-
tegrated into one composite model. Several combina-
tion techniques have been introduced in the literature.
Shamsledin et al. (1997) were the first to analyze dif-
ferent combination methods to integrate the results of
different models. They applied three different com-
bination methods (the Simple Model Average method,
the Weighted Average Method and the Artificial Neural
Network method) to the outputs of five rainfall runoff
models, reporting that the results of the model com-
bination was superior to that of any single prediction.
Subsequent studies analyzed and compared a variety of
alternative combination techniques (Xiong et al., 2001;
See and Openshaw, 2000; Abrahart and See, 2002;
Solomatine, 2006; Ajami et al., 2006; Shamsledin et
al., 2007). A general consensus of these works is that
multi model predictions are superior to single model
predictions. The advantage of one combination method
with respect to another may depend on the application.
Abrahart and See (2002), for example, determined that
neural network combination techniques perform better
for stable hydrologic regimes, while fuzzy probabilis-
tic mechanism generated superior outputs for flashier
catchments with extreme events.

2.1 Model structure description

The model used in this application is a lumped conceptual
model that follows the structure of the HBV-96 model (Lind-
ström et al., 1997), of which we keep the same list of sym-
bols. In this study the model was run with an hourly time
step. The model structure consists of routines for soil mois-
ture accounting, runoff response, and a routing procedure
(Fig. 1). The structure is composed of three storage com-
ponents: a soil moisture reservoir, an upper reservoir, and a
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Fig. 1. HBV model schematic diagram

Table 1. Model parameters and corresponding units.

Parameter name Description Units

FC Maximum soil moisture storage mm
LP Limit for potential evaporation –
β Non linear runoff parameter –
PERC Percolation rate mm/h
CFLUX Maximum capillary rate mm/h
α Non linear response parameter –
K1 Upper storage coefficient mm/h
K2 Lower storage coefficient mm/h
MAXBAS Transfer function length h

lower reservoir. The output from the lower and upper reser-
voir is combined and routed through a triangular transfer
function.

The soil moisture routine represents the runoff generation
and involves three parameters,β, FC andLP . The propor-
tion of precipitation that produces direct runoff is related to
the soil moisture by the following relation:

R

P
=

(
SM

FC

)β

(1)

WhereP (mm/h) is the total rainfall,R (mm/h) is the direct
runoff,SM (mm) is the storage of the soil moisture reservoir,
FC (mm) is the maximum soil moisture storage, andβ(−)

is a parameter accounting for non linearity. The remaining
part is added to the soil moisture storage.

The model does not include the process of interception,
and the transpiration from vegetation is combined with the
evaporation from intercepted water into a total evaporation
term. Actual total evaporation (Ea , mm/h) is calculated from
potential total evaporation (Ep, mm/h) according to the fol-
lowing formula:

Ea=Ep · min

(
1,

SM

FC · LP

)
(2)

WhereLP(−) is the fraction ofFC above which the evapo-
ration reaches its potential level. Direct runoffR enters the
upper reservoir, and the lower reservoir is filled by a con-
stant percolation rate (PERC, mm/h) as long as storage in the

upper reservoir is available. Capillary flux from the upper
reservoir to the soil moisture reservoir is calculated accord-
ing to the following equation:

C=CFLUX ·

(
1 −

SM

FC

)
(3)

Where the parameter CFLUX (mm/h) represents the maxi-
mum flux rate. Outflow from the upper reservoir is expressed
as

Q1=K1 · UZ1+α (4)

Outflow from the lower reservoir is expressed as

Q2=K2 · LZ (5)

Where UZ (mm) and LZ (mm) are the storage states of the
upper and lower reservoirs respectively,K1 (mm/h) andK2
(mm/h) are storage coefficient, andα is a parameter account-
ing for non linearity.

The outlets from the two reservoirs are finally added and
routed through a transfer function with base defined by the
parameter MAXBAS (h) (Fig. 1). The model has a total
of nine calibration parameters, which are summarized in Ta-
ble 1.

2.2 Events selection and objective functions

In the present application, we considered high flows and low
flows as distinctive states of the system behaviour. Our aim
was to accurately reproduce the system response during both
events. In order to evaluate the performance of the “global”
HBV model in both conditions, we used two objective func-
tions, one enhancing the model error with respect to low flow
simulation, and the other enhancing model error with respect
to high flows.

The two functions are defined as follows:

NHF =

√√√√1

n

(
n∑

i=1

(
Qs,i − Qo,i

)2
· wHF,i

)
(6)

NLF =

√√√√1

n

(
n∑

i=1

(
Qs,i − Qo,i

)2
· wLF,i

)
(7)

Where:

wHF,i =

(
Qo,i

Qo,max

)2

(8)

wLF,i =

(
Qo,max − Qo,i

Qo,max

)2

(9)

And:
n: total number of time steps
Qs,i : simulated flow for the time step i
Qo,i : observed flow for the time step i
Qo,max: maximum observed flow
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The two weighing functionswHF andwLF allow placing
a stronger weight on the low or on the high portions of the hy-
drograph (Fig. 2). As a result,NLF places a stronger weight
on low flows errors and a weaker weight on high flows er-
rors thanNHF . By computing both objective functions over
the whole range of discharges, both functions constrain the
model to fit the entire hydrograph.

3 Model calibration

The model is calibrated following a standard framework of
multi-objective analysis which, for hydrological models has
been introduced by Gupta et al. (1998). This framework
adopts the notions of Domination and Pareto-optimality,
which are hereafter recalled.

We use the term solution to mean a parameter setxi . Each
solution xi is associated to a number of objective function
valuesNj (xi) (j=1..m, m=number of objectives), express-
ing the performance of the model. Lower values ofNj (xi)

indicate better performance.

– A solution x1 is said to dominate another solutionx2
when x1 is better thanx2 in at least one objective
(meaningNj (x1)<Nj (x2) for at least one value ofj),
and not worse thanx2 in any of the others (meaning
Nj (x1)≤Nj (x2) for all values ofj).

– The Pareto-optimal set of solutions is composed of
those solutions that are not dominated by any solution
of the feasible search space.

The outcome of a multi-objective problem in such a frame-
work consists in the Pareto-optimal set of solutions. This
set in general consists of more than one solution. The exis-
tence of more than one solution indicates that the objective
functions are conflicting to each other, meaning that an opti-
mal performance in one objective is “paid” in terms of sub-
optimal performances in the others. This has been demon-
strated adopting different models and various types of ob-
jective functions (e.g. Yapo et al., 1998; Boyle et al., 2000;
Vrugt et al., 2003).

When applied to hydrological models, the existence of
multiple optimal solutions can be related to a systematic
component of the modelling error (Gupta, 1998), which is
normally attributed to model structural inadequacies (Gupta
et al., 1998, Vrugt et al., 2003). While it is plausible to think
that other sources of error may contribute to this component,
such as data distortion caused by incorrect rating curves or
boundary conditions, it is also reasonable, when no other in-
formation is available, to put more confidence in the data than
in the model, and therefore try to build models that repre-
sent the observations as correctly as possible. In this sense,
the existence of multiple Pareto-optimal solutions can be re-
garded as a failure of the model structure. It in fact indicates
that the model is not able to simultaneously represent the full
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Fig. 2. Weight distribution for objective functions.

variability of catchment responses. All Pareto-optimal solu-
tions are “equally important”, in a sense that it is difficult
to prefer one solution over the other without any further in-
formation about the problem. The different solutions, how-
ever, are not “equifinal”, in the sense given to this term by
Beven (1993). Every solution has its strengths and limita-
tions in describing the different aspects of the observed sys-
tem behaviour, as expressed by the selected objective func-
tions. This observation can be used by trying to combine
different optimal solutions in such a way that the individual
strengths of each solution are exploited.

3.1 Combining scheme

Calibration of model parameters with respect to the two se-
lected objective functions results in a set of Pareto-optimal
solutions, which represents the performance of the global
HBV model. The Pareto-optimal front is delimited by the
two best models that minimize each of the individual ob-
jectivesNLF and NHF . These local models were named
HBVLF and HBVHF .

The two local models were then combined with an appro-
priate weighting procedure to generate a composite model
HBVC that aims at reproducing the whole range of dis-
charges exploiting the best parts of each local model.

Several approaches to combine the individual outcomes
of different models have been introduced. This combina-
tion can be straight-forward (Jain and Srinivasulu, 2006) im-
plying a switch between different models at different time
steps, but can also involve some kind of weighing (See and
Openshaw, 2000; Xiong et al., 2001; Abrahart and See, 2002;
Solomatine, 2006). Model weighing can improve simulation
results, and avoid unrealistic discontinuities in the simulated
system behaviour. The combining scheme that was used
to weight the contributions of each local model makes use
of a fuzzy attribution of weights, according to an approach
termed “fuzzy committee” by Solomatine (2006). The ap-
proach is similar to the Takagi-Sugeno fuzzy combination
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framework (Xiong et al., 2001). However, while in their
study it is applied to integrate the results of a model “en-
samble”, in this case it is used in a “modular” framework,
that is, to integrate models that are specifically developed for
different flow conditions. This approach has been selected
among others because it suits the idea that the definition of
a catchment “state”, which characterizes the type of runoff
generation mechanisms, is very qualitative and uncertain.

The HBVLF model is assumed to be accurate in simulat-
ing low flow events, but may be not accurate in simulating
high flow events. Vice versa, the HBVHF model is assumed
to be more accurate during high flows than during low flows.
In order to express this difference in the degree of believabil-
ity of the outputs of the two models, each model was asso-
ciated with a certain membership function. The degree of
membership associated with the low flow model is 1 when
the simulated flow is below the thresholdγ , it decreases lin-
early when the flow is between the thresholdsγ andδ, and
it is 0 when the flow is above the thresholdδ (Fig. 3). The
degree of membership of the high flow model follows a sym-
metric behaviour. Membership functions for the two local
models are described in equations 10 and 11;γ andδ were
named threshold for high flows and for low flows respec-
tively and are expressed as a fraction of the maximum ob-
served dischargeQo,max .

mLF (Q) =


1, if Q

/
Qo,max < γ

1 −
Q
/
Qo,max−γ

δ−γ
, if γ ≤ Q

/
Qo,max < δ

0, if Q
/
Qo,max ≥ δ

(10)

mHF (Q) =


0, if Q

/
Qo,max < γ

Q
/
Qo,max−γ

δ−γ
, if γ ≤ Q

/
Qo,max < δ

1, if Q
/
Qo,max ≥ δ

(11)

The outputs of the two models were finally combined accord-
ing to Eq. (12). This weighing approach allows a smooth

combination of the two models, and avoids discontinuities in
the reproduction of the system response.

QC (t)=
mLF (QLF ) · QLF (t)+mHF (QHF ) · QHF (t)

mLF (QLF )+mHF (QHF )
(12)

WhereQLF andQHF are the outputs of the local low flow
(HBVLF ) and high flow (HBVHF ) models, andQC is the
output of the composite (HBVC) model. Note that the
weighting schemes shown on Fig. 2 and 3, at first sight sim-
ilar, serve different purpose: the first one is used to stress
low/high flows in the objective function used to calibrate two
separate models, and the second one is responsible for ensur-
ing smooth compatibility between the models.

4 Case study

4.1 Study area and data description

The study area is within the experimental Alzette river basin,
which is located for the large part in the Grand-Duchy of
Luxembourg. For model calibration, three years of hourly
data from Hesperange, a gauging station placed along the
course of the Alzette River upstream of Luxembourg-city,
were used.

Catchment size is 288 km2, and land cover is composed
of cultivated land (27%) grassland (26%), forest land (29%)
and urbanized land (18%). Lithology is mainly represented
by Marls and Marly-Sandstones on the left bank tributaries
and Limestones on the right bank tributaries of the Alzette
River.

The rainfall-runoff behaviour of these units is quite differ-
ent. Marls areas are characterized by impermeable bedrock,
therefore rainfall water, after losses for evaporation or tran-
spiration, reaches the stream mostly as saturated subsurface
flow that develops at the interface between the weathered
zone and the underlying bedrock areas. When the weathered
zone becomes saturated, or during heavy rainfall events, sur-
face runoff occurs.

In limestone areas a large part of rainfall water infiltrates
and after subtraction of losses percolates to the groundwa-
ter aquifer, which is capable of storing and releasing large
quantities of water. The response to rainfall of Marl areas
is faster and characterized by larger volumes of water than
that of limestone areas. Moreover, the large part of the base-
flow during prolonged dry periods is mostly sustained by the
limestone aquifer.

The basin is instrumented by several rain gauges includ-
ing tipping-buckets and automatic samplers measuring at a
time step which does not exceed 20 min. Hourly rainfall se-
ries were calculated by averaging the series at the individ-
ual stations with the Thiessen polygon method. Daily poten-
tial evaporation was estimated through the Penman-Monteith
equation (Monteith, 1965). The meteorological variables
needed to compute the evaporative loss were measured at
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the Luxembourg airport meteorological station. Hourly es-
timates were then calculated distributing the daily amounts
through a sine function. The use of an hourly time step is
justified considering that the average concentration time of
the basin is of the order of a few hours.

4.2 Multi-objective calibration

The global HBV model was calibrated according to the two
objectivesNHF and NLF , previously defined. The prob-
lem was posed in a multi-objective framework and solved
by determining the Pareto-optimal set of solutions. In or-
der to efficiently sample the parameter space, the Multi-
Objective Shuffled Evolution Metropolis University of Ari-
zona (MOSCEM-UA) algorithm has been used (Vrugt et
al., 2003).

The MOSCEM-UA algorithm begins with a random se-
quence ofs points sampled throughout the feasible param-
eter space. For each point the set of objective functions is
evaluated. The sequence is partitioned intoq complexes, and
in each complex a parallel sequence is launched. New can-
didate points from each complex are generated from a mul-
tivariate normal distribution with mean at the current draw
of the sequence and covariance matrix calculated based on
the history of each sequence. The sequences evolve based on
a Metropolis-type acceptance criterion. The algorithm pro-
ceeds until a specified maximum number of iterationsm is
reached.

The MOSCEM-UA has three algorithmic parameters that
have to be specified by the user:s, q, andm. No theoretic
guidelines exist in determining these parameters; however, a
good criterion is to use a number of complexes that is at least
equal to the number of parameters.

Parameter bounds were determined by analysing the re-
sults of an initial run of the algorithm on a wide parameter
space. The selected parameter bounds are reported in Ta-
ble 2. The algorithm was run with the following parameters:
s=2000,q=10,m=50 000.
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Fig. 5. Normalized parameter plot. Pareto-optimal solutions from
Fig. 4 are shown. The two thicker lines represent the local mod-
els, which are the optimal solutions with respect to each objective
function (NLF and NHF ).

The outcome of the optimization algorithm is presented in
Fig. 4 and Fig. 5. Figure 4 shows the objective function val-
ues corresponding to the evaluated parameter sets together
with the set of Pareto-optimal solutions and the optima cor-
responding to each individual objective. This plot clearly il-
lustrates a trade-off in the selected objectives, and reveals the
inability of the model to match the selected aspects of the
hydrograph simultaneously.

The variation of the Pareto-optimal parameter sets is
shown in Fig. 5. The parameter values are normalised with
respect to the upper and lower bounds given in Table 2, so
that the feasible range of all parameters is between 0 and 1.
Each line on the plot represents one parameter set. The figure
gives a visual indication on the relation between the initial
feasible parameter range, and the parameter range that corre-
sponds to the optimal solutions. Conclusions about large or
small variability of parameter values would not be meaning-
ful, as the extent of the optimal range displayed in the figure
clearly depends on the initial lower and upper limits that are
selected.

Wile moving from one solution to another on the Pareto-
optimal front (Fig. 4), the corresponding parameter values
may show a trend from one extreme to another (Fig. 5). The
existence of such a trend reveals potential deficiencies in the
model structure. This behaviour is significant for the param-
etersβ, which accounts for non linearity of the rainfall-direct
runoff relation, andK2, representing the storage coefficient
of the lower reservoir.

As an example, the parameterK2 shows higher values
when calibrated towards the high flows, and lower values
when calibrated towards the low flows. If we assume that
the correct value for this parameter is what corresponds to
the low flow calibration (as this parameter determines the
behaviour of the lower reservoir which mostly affects low
flow simulation), we can conclude that the calibration of the
model with respect to high-flows will result in overestimating
this parameter. As a result, the lower reservoir in the optimal
high flow model will empty faster than it should in order to
compensate for errors in the simulation of other processes.
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Table 2. Parameter ranges for model optimization and optimal values for local models.

Parameter name Units Lower Bound Upper Bound HBVLF HBVHF

FC mm 200 450 2.94 E+02 3.71 E+02
LP – 0.01 1 2.92 E-01 2.73 E-01
β – 0.01 2 1.57 E+00 8.71 E-01
PERC mm/h 0.01 1 1.60 E-01 5.06 E-01
CFLUX mm/h 0 0.1 1.77 E-04 3.56 E-04
α – 0 0.5 7.81 E-02 6.28 E-02
K1 mm/h 0.001 0.1 2.88 E-02 2.33 E-02
K2 mm/h 0.001 0.1 8.89 E-03 2.62 E-02
MAXBAS h 7 15 1.07 E+01 9.67 E+00
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Fig. 6. comparison(a) local low-flow model;(b) local high-flow
model;(c)composite model.

This behaviour is also evident on the hydrographs presented
in Fig. 6a and b. Figure 6b shows that the best performing
model with respect toNHF (HBVHF ) is characterized by
steeper recessions than observed, while Fig. 6a, representing
the best model with respect toNLF (HBVLF ), shows a bet-
ter agreement with the observations during recession periods.
The parameter sets corresponding to the two local models
HBVHF and HBVLF are shown in Table 2.

4.3 Local models combination and “composite” model

The local models were combined according to the proce-
dure described in Sect. 2.4. The combining scheme aims
at integrating the strengths of each individual local model
in reproducing specific characteristics of the simulation and

it requires the selection of two discharge thresholds:γ and
δ (Fig. 3). These two thresholds can be selected based on
knowledge of the system behaviour, or can be assessed auto-
matically to minimize the error of the composite model.

Manual selection of thresholds could be based on the
ground of a physical understanding of the behaviour of
the catchment. In this case, the thresholds could represent
switches in catchment behaviour that correspond, for exam-
ple, to changes in contributing areas related to catchment
storage, in channel properties related to the water level in the
stream. This evidence was not the case of this study, there-
fore the thresholds have been initially selected by a visual in-
spection of model performances across the range of observed
discharges. A procedure to perform automatic tuning of the
thresholds is described in the next paragraph.

Analysis of the observed rainfall and flow led us to a con-
clusion that it would be reasonable to choose the follow-
ing thresholds for flow:Q=0.12 mm/h for high flows and
Q=0.07 mm/h for low flows. As the maximum discharge in
the calibration period is 0.64 mm/h, this results inγ =0.11
andδ=0.17. Performances of the composite model with re-
spect to the hydrograph simulations are represented in Fig. 6.
Figure 6a shows the performances of the low flow local
model, Fig. 6b shows the performance of the high flow local
model, and Fig. 6c shows the performance of the compos-
ite model developed from the combination of the two local
models. It is possible to observe visually that the compos-
ite model incorporates the best features of both local models,
considerably improving the overall accuracy.

Model performance in term of the calibration objectives is
presented in Fig. 7. The solution corresponding to the com-
posite model lies beyond the Pareto-optimal set, showing that
the composite model improves the accuracy of the simula-
tions. Figure 8 shows the performance of the Pareto-optimal
global models and of the composite model with respect to
indicators of more common use in hydrological modelling.
Specifically, we compare the performance of the models with
respect Nash and Sutcliffe coefficient (NNS) and with respect
to the Root Mean Square Error (NRMSE), which is given by
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Fig. 7. Comparison of the performances of global, local (HBVHF ,
HBVLF ) and composite (HBVC ) models.

Eqs. (6) or (7) for a weightw of one. It is possible to note
that the composite model outperforms the global models also
with respect to these objective functions.

It is also noteworthy that the performance of some Pareto-
optimal models is higher than that of both single best so-
lutions corresponding to each individual criterion. This is
due to the fact that the selected objectives calculate the error
with respect to the whole range of flows, even with different
weights. An improvement in low flow description, for exam-
ple, given the same performances in high flows, reduces the
total error as calculated byNHF .

4.4 Automatic tuning of the thresholds

When no evidence exists in determining the thresholds cor-
responding to changes in the system behaviour, these thresh-
olds can be calculated by trying to maximise the performance
of the model. With this purpose, a sequence of thresholds
was generated on a grid in the (γ , δ) space, and the Pareto-
optimal set of solutions corresponding to different values of
the thresholds has been calculated. Results are represented
in Fig. 9. It is possible to observe that even the employed
simple type of search improves the global model accuracy.

The thresholds values corresponding to the Pareto solu-
tions are represented in Fig. 10. With respect to the manu-
ally selected values, the Pareto values are smaller for the low
flow thresholdγ , and larger for the high flow thresholdδ,
which enlarge the area where both models are evaluated and
weighted.

5 Discussion

The synthetic view of reality that is incorporated in concep-
tual hydrological models often does not allow a simultaneous
optimal representation of different aspects of the system be-
haviour. To overcome this problem, a modular approach to
hydrologic simulation has been presented. This approach al-
lows for different models to operate simultaneously, each of
them developed to reproduce a specific aspect of the system
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Fig. 8. Comparison of the performances of global and composite
models with respect to additional objective functions. The compos-
ite model outperforms any global model.
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Fig. 9. Comparison of the performances of global models, local
models (HBVHF , HBVLF ), composite model (HBVC ) with manu-
ally selected thresholds, and composite models with automatic tun-
ing of thresholds.

behaviour. The various models are then combined through an
appropriate weighing procedure, which produces a compos-
ite representation of the catchment behaviour. The combin-
ing scheme exploits the strengths of each individual model in
a synergistic manner.

The presented method allows for different parameter sets
of a fixed model structure, but, in principle, could be applied
allowing for different model structures too (e.g. conceptual,
physically based, data driven). Specifically, we build sep-
arate models for high flow and low flow simulation, which
are subsequently combined through a soft combination ap-
proach. This approach follows the Takagi-Sugeno fuzzy
combination framework (Xiong et al., 2001). However, in
contrast to Xiong et al. (2001), the procedure is here applied
to combine models that are explicitly derived to express dif-
ferent aspects of the system behaviour. Results show that the
composite model reaches a higher overall accuracy than what
can be obtained using any global model.

The “modular” approach has been increasingly applied to
various hydrological problems in the past decade. Mostly,
this approach has been applied in the development of purely
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data-driven models (Jordan and Jacobs, 1994; Zhang and
Govindaraju, 2000; See and Openshaw, 2000; Abrahart and
See, 2002; Hu et al., 2001; Hsu et al., 2002, Solomatine and
Xue, 2004, Corzo and Solomatine, 2007). Recently, its po-
tential has been explored in the field of conceptual modelling
(Marshall et al., 2007). In our work we use this approach to
overcome the limitations of an HBV-type conceptual model
in reproducing simultaneously various aspects of the system
response. The advantage of using conceptual versus data-
driven models is that conceptual models provide an inter-
pretable representation of reality, which may be more dif-
ficult to obtain with data-driven models.

In contrast to Marshall et al. (2007) where the model
weighing process is set in a Bayesian framework, we here
adopt a fuzzy approach to combine model predictions. Strict
Bayesian approaches in fact require assumptions on data
errors that are difficult to justify in practical applications.
Moreover, while Marshall et al. (2006, 2007) show the bene-
fit of integrating different outcomes of a three parameter con-
ceptual model, which due to its under parameterization has
an obvious lack of predictive capability, we here use a nine
parameter version of a well known conceptual model, which
has an higher potential to adapt to the observations. Our in-
tention is in fact to demonstrate how a modular approach can
help to improve the level of accuracy of a model formulation
which is commonly used in hydrologic applications.

While the practical utility of a multi model approach as
here proposed relies on an improvement of the simulation ac-
curacy, the physical implications involved require interpreta-
tion and justification. The switching between different mod-
els, in fact, implies an alternation between different views
or descriptions of reality. If the natural system is not modi-
fied by natural phenomena or artificial activities, it may seem
physically inconsistent to represent it by means of separate
descriptions.

The hydrological processes involved in the rainfall-runoff
transformation, however, are extremely complex and charac-
terized by a high degree of spatial and temporal variability.

Despite at large scale catchment behaviour can be expressed
by simple laws (Savenije, 2001; Sivapalan, 2003; Dooge,
2005), there may be several factors influencing catchment
response that a model concept does not represent. As a re-
sult, the catchment response can be visibly different from
its model representation. The different “personalities” that
a catchment may display are determined by a series of phe-
nomena and processes that can be in general identified, but
that is difficult to separate and quantify.

The different interacting causes of variability in hydrolog-
ical behaviour include:

– Seasonality effects.As a consequence of vegetation or
biologic activities, aspects like land cover or macropore
distribution in the top-soil vary, affecting processes such
as interception, infiltration, pathways of water on the
soil surface and in the weathered zone. As a result of the
changing catchment properties, the catchment response
may be strongly season dependent.

– Environmental forcing conditions. Forcing conditions
influence the amount and distribution of water in the
soil, determining the catchment hydrological “state”
which drives catchment response. With changes in hy-
drological states, such as from low to high flow or from
dry to wet conditions, the compartments of the catch-
ment that contribute to discharge (e.g. saturated and un-
saturated zone, near stream saturated areas) vary dy-
namically, leading to different domains of formation
and integration of the hydrological processes.

– Non linear behaviour. The occurrence of several hydro-
logical processes is characterized by highly non linear,
threshold-like behaviour. Groundwater levels, rainfall
intensities, soil moisture conditions control the occur-
rence of processes such as surface runoff or rapid sub-
surface flow, and can trigger the contribution of differ-
ent compartments of the catchment.

A multi-model approach can implicitly take into account the
variability in hydrologic behaviour that is not explicitly con-
sidered in the realization of a single model structure. By al-
lowing different models to operate for the simulation of dif-
ferent aspects of the system response it is implicitly recog-
nized that a single model cannot explain by itself the full vari-
ability of catchment responses. In the specific case, where
the different models are represented by individual parame-
ter sets, it can be assumed that model parameters, depending
on the particular stage of the simulation, describe different
behaviour of the catchment expressing different processes.

In conceptual modelling it is typically assumed that model
parameters, if not physically based or clearly related to catch-
ment attributes, are representative of inherent properties of
the catchment, and therefore not supposed to vary (Wagener
et al., 2003). However, model parameter may have different
values depending on aspects such as the length of the calibra-
tion period or the performance measure used for calibration.
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A reason for this could be non-stationarity of errors in forc-
ing conditions such as rainfall. In absence of information
on data errors, we here regard this problem as a symptom of
model structural errors.

Understanding where the model fails, and where the catch-
ment shows a certain “personality” that is different than what
is estimated a-priori, can guide towards a better understand-
ing of the system. When building a model, in fact, we use
a possible representation of the most relevant processes and
their interrelation. The analysis of the performance of the
model represents a possibility to test the hypotheses made.
In this sense, identifying a switching between different states
can clarify triggers or thresholds in the catchment behaviour,
helping to guide model refinement and providing new under-
standing that could be a base for field research.

It can be concluded that the presented approach can be
seen as an effective way to improve model accuracy by rep-
resenting different aspects of the system behaviour by dif-
ferently parameterized models. The multi-objective frame-
work makes it possible to perform the detailed analysis of
the models’ performance and to construct an optimal model
structure. The use of a “fuzzy committee” allows for soft
combination of local models and prevents discontinuities be-
tween the model predictions. The approach is quite universal
and can be used to combine different types of models, from
conceptual to data-driven ones.

We remain confident that the ultimate goal of hydrologic
research has to be the understanding of catchment behaviour.
Multi-model approaches may be useful in practical applica-
tions as they improve accuracy in model predictions, and in
research to represent and clarify the non linear behaviour of
catchment response. However, they do not have to be con-
sidered as a shortcut to bypass process knowledge and con-
ceptual thinking. When this is the case, they should be re-
garded as black box approaches that yield little increased un-
derstanding on the physical system.

6 Future research

The proposed approach involves several subjective decisions
that influence the results of the analysis. As described in
Sect. 2, these decisions include the selection of events that
characterize different aspects of the system behaviour, the
choice of the model structures that are used to simulate the
selected events, the choice of objective functions and cali-
bration strategy, and the choice of a combining scheme that
aggregates the local models into a composite model.

Ideally, the effects of every choice should be justified
based on an argument that proves its value with respect to
other alternatives. Clearly, this is a difficult task, as it ex-
pands enormously the number of possibilities to be investi-
gated. However, it would be interesting to compare this ap-
proach to others (e.g. Ajami et al., 2006; Marshal et al., 2006,
2007; Ajami et al., 2007; Vrugt et al., 2007), and evaluate the

strengths and limitations of each. This requires the effort of
a comparative work, which could be an objective for future
research.

In order to improve the proposed approach, a first chal-
lenge is to complement it with algorithms aimed at discover-
ing various regimes in the time series representing the mod-
elled system; this would allow for optimal combination of
domain (hydrologic) knowledge incorporated in models with
the automatic machine learning or time series analysis rou-
tines. A second challenge is to implement different states
of catchment behaviour directly within the model structure,
in order to obtain a comprehensive description of the overall
catchment behaviour within a single representation of reality.
The switching between different models causes if fact a loss
of continuity between model internal states. This however,
could complicate the application of the approach.

7 Conclusions

This paper presents a modular approach to overcome the lim-
itations displayed by simple conceptual models in reproduc-
ing simultaneously different aspects of the system response.
Modular approaches have been already introduced in the lit-
erature. However, previous studies focused on the develop-
ment of purely data-driven models, while in this paper we
evaluate the approach in the field of conceptual modelling.

We considered an HBV-type conceptual model, and we
evaluated its ability of reproducing high flow and low flow
behaviour of the catchment. We performed a multi-objective
optimization between the selected calibration objectives, and
we showed the limitations of the model in capturing simulta-
neously both aspects of the system response. Subsequently,
we identified the two models that optimize each calibration
objective, and we combined them through a fuzzy weighing
approach. We showed that the “composite” model, obtained
by a combination of individual “local” models, outperforms
any “global” model, which aims at reproducing the whole
range of catchment response through a single parameter set.

The approach is straight forward, easy to apply, and useful
for problems that require an accurate simulation of the catch-
ment response. We also think that the use of different models
to reproduce a single system may have its physical justifica-
tion, as the catchment may display different “personalities”
during various regimes, which are difficult to capture within
a single conceptualization of reality.

The approach has its limitations, which may be object of
further investigation. In particular, the approach involves
several subjective decisions whose effect has not been ex-
amined. Some of these decisions, such as the identification
of different regimes of catchment behaviour, could be helped
by the use of automatic procedures. The approach could be
compared to others to assess its relative value. These aspects
can be object of future research.
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