Articles | Volume 11, issue 5
Hydrol. Earth Syst. Sci., 11, 1683–1701, 2007
https://doi.org/10.5194/hess-11-1683-2007
Hydrol. Earth Syst. Sci., 11, 1683–1701, 2007
https://doi.org/10.5194/hess-11-1683-2007

  18 Oct 2007

18 Oct 2007

Controls on runoff generation and scale-dependence in a distributed hydrologic model

E. R. Vivoni1, D. Entekhabi2, R. L. Bras2, and V. Y. Ivanov3 E. R. Vivoni et al.
  • 1Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
  • 2Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • 3Dept. of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Abstract. Hydrologic response in natural catchments is controlled by a set of complex interactions between storm properties, basin characteristics and antecedent wetness conditions. This study investigates the transient runoff response to spatially-uniform storms of varying properties using a distributed model of the coupled surface-subsurface system, which treats heterogeneities in topography, soils and vegetation. We demonstrate the control that the partitioning into multiple runoff mechanisms (infiltration-excess, saturation-excess, perched return flow and groundwater exfiltration) has on nonlinearities in the rainfall-runoff transformation and its scale-dependence. Antecedent wetness imposed through a distributed water table position is varied to illustrate its effect on runoff generation. Results indicate that transitions observed in basin flood response and its nonlinear and scale-dependent behavior can be explained by shifts in the surface-subsurface partitioning. An analysis of the spatial organization of runoff production also shows that multiple mechanisms have specific catchment niches and can occur simultaneously in the basin. In addition, catchment scale plays an important role in the distribution of runoff production as basin characteristics (soils, vegetation, topography and initial wetness) are varied with basin area. For example, we illustrate how storm characteristics and antecedent wetness play an important role in the scaling properties of the catchment runoff ratio.

Download