Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 11, issue 3
Hydrol. Earth Syst. Sci., 11, 1097–1114, 2007
https://doi.org/10.5194/hess-11-1097-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Sustainable Water: Uncertainty, Risk and Vulnerability in...

Hydrol. Earth Syst. Sci., 11, 1097–1114, 2007
https://doi.org/10.5194/hess-11-1097-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  27 Apr 2007

27 Apr 2007

Development of probability distributions for regional climate change from uncertain global mean warming and an uncertain scaling relationship

B. Hingray, A. Mezghani, and T. A. Buishand B. Hingray et al.

Abstract. To produce probability distributions for regional climate change in surface temperature and precipitation, a probability distribution for global mean temperature increase has been combined with the probability distributions for the appropriate scaling variables, i.e. the changes in regional temperature/precipitation per degree global mean warming. Each scaling variable is assumed to be normally distributed. The uncertainty of the scaling relationship arises from systematic differences between the regional changes from global and regional climate model simulations and from natural variability. The contributions of these sources of uncertainty to the total variance of the scaling variable are estimated from simulated temperature and precipitation data in a suite of regional climate model experiments conducted within the framework of the EU-funded project PRUDENCE, using an Analysis Of Variance (ANOVA). For the area covered in the 2001–2004 EU-funded project SWURVE, five case study regions (CSRs) are considered: NW England, the Rhine basin, Iberia, Jura lakes (Switzerland) and Mauvoisin dam (Switzerland). The resulting regional climate changes for 2070–2099 vary quite significantly between CSRs, between seasons and between meteorological variables. For all CSRs, the expected warming in summer is higher than that expected for the other seasons. This summer warming is accompanied by a large decrease in precipitation. The uncertainty of the scaling ratios for temperature and precipitation is relatively large in summer because of the differences between regional climate models. Differences between the spatial climate-change patterns of global climate model simulations make significant contributions to the uncertainty of the scaling ratio for temperature. However, no meaningful contribution could be found for the scaling ratio for precipitation due to the small number of global climate models in the PRUDENCE project and natural variability, which is often the largest source of uncertainty. In contrast, for temperature, the contribution of natural variability to the total variance of the scaling ratio is small, in particular for the annual mean values. Simulation from the probability distributions of global mean warming and the scaling ratio results in a wider range of regional temperature change than that in the regional climate model experiments. For the regional change in precipitation, however, a large proportion of the simulations (about 90%) is within the range of the regional climate model simulations.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Citation