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Abstract. Within the present study we shed light on the
question whether objective circulation patterns (CP) classi-
fied from either the 500 HPa or the 700 HPa level may serve
as predictors to explain the spatio-temporal variability of
monsoon rainfall in the Anas catchment in North West In-
dia. To this end we employ a fuzzy ruled based classification
approach in combination with a novel objective function as
originally proposed by (Stehlik and Brdossy, 2002). After
the optimisation we compare the obtained circulation clas-
sification schemes for the two pressure levels with respect
to their conditional rainfall probabilities and amounts. The
classification scheme for the 500 HPa level turns out to be
much more suitable to separate dry from wet meteorological
conditions during the monsoon season. As is shown during
a bootstrap test, the CP conditional rainfall probabilities for
the wet and the dry CPs for both pressure levels are highly
significant at levels ranging from 95 to 99%. Furthermore,
the monthly CP frequencies of the wettest CPs show a sig-
nificant positive correlation with the variation of the total
number of rainy days at the monthly scale. Consistently, the
monthly frequencies of the dry CPs exhibit a negative cor-
relation with the number of rainy days at the monthly scale.
The present results give clear evidence that the circulation
patterns from the 500 HPa level are suitable predictors for
explaining spatio- temporal Monsoon variability. A compan-
ion paper shows that the CP time series obtained within this
study are suitable input into a stochastical rainfall model.

1 Introduction

The strong seasonality of the Indian climate and especially
the onset and strength of the rainy season determines to a
high degree the socio-economic development and agricul-
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tural productivity of India’s arid and semi-arid regions, which
comprise more than 50% of its land area (MoE, 2004). With
2/3 of the Indian population depending on agriculture for
employment and 2/3 of the cultivated land relying on rain-
fed farming, water and food security closely follow climate
variability and extremes. Thus, seasonal predictions of the
onset and strength of monsoon rainfall are crucial for water
resources as well as agricultural management and planning in
India (Webster and Hoyos, 2004; Siddiq, 1999). During the
monsoon season, usually from June to September, the Indian
subcontinent receives 80–90% of the total annual rainfall in
a sequence of rainy periods (monsoon bursts) and dry peri-
ods (monsoon breaks) of 10–20 days duration which stem,
although they appear at first sight to be quite random, from
intra seasonal oscillations (Webster and Hoyos, 2004).

As re-analysis data on atmospheric and oceanic state vari-
able and fluxes but also climate model runs are globally
available on resolutions ranging from 2.5◦ to 1◦ downscaling
methods could help at least for generating historical mon-
soon rainfall estimates. Downscaling of precipitation can be
achieved either dynamical or empirical (Wilby and Wilks,
1997). Within the dynamic approach, a “cascade” of dy-
namic atmospheric models run on a nested grid, where the
finer resolved, regional models are driven by a Global Cir-
culation Model (GCM). Regional models may be either re-
gional climate models (Giorgi et al., 1999; Frei et al, 1998;
Jacob et al., 2001; Bergstrom et al, 2001), which are hydro-
static models, or non hydrostatic mesoscale weather fore-
casting models such as the MM5 (Kunstmann and Jung,
2003). Dynamical downscaling yields satisfactory results
when driven by GCMs in the assimilation mode. However,
even when the same GCM forcing is used within a climate
change scenario, regional climate models (RCMs) may pro-
duce significantly different results as recently shown by Ja-
cob et al. (2001) in a comparative study for the Baltex area
involving several different RCMs.
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Figure 1: Map view of the Anas catchment including the locations of the ten rain gauges. For 
location of the Anas catchment inside the Indian sub continent please check Figure 5 or 6. 
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Fig. 1. Map view of the Anas catchment including the locations of the ten rain gauges. For location of the Anas catchment inside the Indian
sub continent please check Figs. 5 or 6.

The idea of empirical downscaling is to establish a func-
tional relationship between a globally available and reliable
predictor variable such as geo-potential height of air pres-
sure, air temperature or the sea surface temperature and lo-
cally observed meteorological variables such as precipitation
or temperature in the area of interest. Crucial steps within
the empirical approach are of course the selection of an ap-
propriate predictor which explains the spatio-temporal vari-
ability of precipitation and the development of a predictor-
predictant relation. Within empirical downscaling we dis-
tinguish methods which directly link the predictors to the
surface variables in a basin of interest (e.g. Wilby et al.,
1999), resampling methods (Ẃojcik and Buishand, 2003) or
methods based on weather types. “Expanded Downscaling”
(EDS) proposed by B̈urger (2002) is a good example of a
direct method. The principle is to predict catchment scale
precipitation and temperature using a multivariate regression
model with the geo-potential height, the temperature and the
specific humidity of the GCM as predictors. The important
constraint is that for the present climate, the observed spatial
correlation structure of the surface variables has to be main-
tained.

Different methods for predicting inter seasonal variability
of monsoon rainfall over the Indian subcontinent have been
proposed over the years. Shukla and Mooley (1987) used
the EL Nino Southern Oscillation (ENSO) to explain 30%
of the temporal monsoon variability over the Indian subcon-
tinent. Early attempts to statistically link Eurasion snow-
fall in winter to the strength of the Indian monsoon did not

yield convincing results (Dickson, 1984; Bamzai and Shukla,
1999). Harzallah and Sadourny (1999), Clark et al. (1999)
and Clarke et al. (2000) proposed empirical schemes for link-
ing monsoon rainfall and sea surface temperature anomalies.
Gowarikar et al. (1991) developed a regional scale power re-
gression models for rainfall forecasting in selected regions of
India based on a time domain approach.

In the present study we want to focus on weather type re-
lated approaches. They were originally developed for Cen-
tral Europe and are based on the insight that atmospheric cir-
culation in the middle latitudes is strongly affected by the
Coriolis force. This understanding was first reflected by the
development of different sets of empirical circulation pat-
terns or weather types that were found to cause in average
always distinct weather in certain areas of central of southern
Europe (Hess and Bresowsky, 1969; Maheras, 1988, 1989).
Advancement of these ideas lead to the development of ob-
jective schemes for classification of circulation patterns that
are statistically linked to precipitation in the basin of interest
(Wilson et al, 1992; Bardossy et al., 1995; Wilby and Wigley,
2000; Conway and Jones, 1998;Özelkan et al., 1998).

The overall objective of the present study is to propose an
empirical pressure based approach for precipitation down-
scaling for the Anas catchment in the North West of India.
The present paper will shed light on the question to which
extend objective pressure patterns, also named as circulation
patterns (CP), that are classified by a fuzzy rule based classi-
fication scheme are suitable predictors to explain space time
variability of monsoon rainfall in this region. Due to the
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Table 1. Statistical properties of daily rainfall data for various stations of Anas catchment during the monsoon season.

Station Average Maximum Standard deviation Rainfall prob. Average wet day amount
[mm] [mm] [mm] [–] [mm]

Jhabua 5.2 226.8 15.9 0.301 16.7
Ranapur 5.1 222.0 16.3 0.232 21.9
Udaigarh 5.3 207.2 14.8 0.340 15.7
Amba 5.6 200.0 16.7 0.256 21.7
Rama 6.1 318.0 19.6 0.258 23.7
Meghnagar 4.8 193.0 14.9 0.262 18.1
Thandla 5.7 225.8 17.6 0.316 18.2
Bhabra 5.2 210.0 14.7 0.313 16.6
Sardarpur 5.0 173.0 14.8 0.253 19.8
Petlabad 6.6 212.0 18.9 0.354 18.7

much weaker influence of the Coriolis force in the tropical
latitudes it is not clear whether this approach, that has been
successfully applied for precipitation downscaling in central
and southern Europe (Stehlik and Bárdossy, 2002; B́ardossy
and Filiz, 2005), is applicable at all. In a second compan-
ion paper (Zehe et al., 2006) we will present an analysis of
monsoon rainfall observed in the Anas catchment, with spe-
cial emphasis of the spatial and temporal (auto-) correlation
structure, as well as rainfall simulations for the Anas catch-
ment with a multivariate stochastic rainfall model that uses
time series of CPs as large scale meteorological forcing.

The present paper is organised as follows. After present-
ing the study area and data base in Sect. 2, we will explain
the CP classification methodology and the statistical meth-
ods we employ for testing whether circulation patterns are
suitable predictors for catchment scale rainfall in the Anas
catchment 3. After presenting the results in Sect. 4 we close
with discussion and conclusions in Sect. 5.

2 Research area and data records

The Anas catchment is a head watershed of the Mahi river
basin which falls under a semiarid climatic zone in North
Western India. The catchment covers a geographical area of
1750 km2 with a mean altitude ranging from 280 m to 560 m
(Fig. 1, compare Fig. 5 for the location of the Anas catch-
ment in India). Daily rainfall data records for 10 stations
were provided from the State Water Data Centre (SWDC)
at Bhopal. Since 80–90% of the rainfall occurs during the
monsoon season (June to October) rainfall data were only
available for this period of the year. In a first step this data
had to be digitized to allow a statistical analysis.

The average daily rainfall amount, the observed maxi-
mum, the standard deviation, and the average rainfall prob-
ability as well as the average rainfall amount at a wet day
are listed in Table 1. Daily rainfall probabilities during the
monsoon period range from 0.25 to 0.35, the average rainfall

amounts at a wet day are with 16 to 25 mm quite high. The
total rainfall in the monsoon season which provides 90% of
the total annual rainfall ranges from 350 mm to 1300 mm for
dry to wet years, respectively. Although 1300 mm per year
appears to be quite high the climate is nevertheless semi-
arid due to the high annual potential evaporation and the
concentration of all the available precipitation on a period
of 4 months. The rainfall station at Jhabua has the longest
records ranging from 1957–1995. Records at Thandla range
from 1964–1995 and the data records at the remaining sta-
tions range from 1985–1994. A more thorough analysis of
the observed precipitation at the ten stations with respect to
the average spatial correlation and the average autocorrela-
tion is given in the companion paper (Zehe et al., 2006).

3 Methodology

3.1 Classification of circulations patterns

3.1.1 Basic idea of the downscaling approach

Stehlik and B́ardossy (2002) developed a methodology for
generating spatio-temporal variable precipitation data using
large scale daily pressure fields (simulated or observed) as
well as local scale precipitation. The method consists of two
main steps:

– An optimisation of fuzzy rules to classify pressure fields
into circulation patterns (CPs), to explain the basin scale
space-time variability of observed rainfall.

– A multivariate and stochastic generation of rainfall at
different locations in the area of interest. The model is
a conditional multivariate autoregressive rainfall model
based on a transformed multivariate normal distribu-
tion. Rainfall is linked to the individual CP using condi-
tional rainfall probability and amounts. The model ac-
counts for the spatial covariance of daily precipitation is

www.hydrol-earth-syst-sci.net/10/797/2006/ Hydrol. Earth Syst. Sci., 10, 797–806, 2006



800 E. Zehe et al.: Assessment of objective circulation patterns

a function of the actual CP as well as of the day in the
year. The annual cycles of the spatial covariance func-
tion and of the one day lag autocorrelation are described
by means of a Fourier series.

Why do we select circulation patterns as predictor and not di-
rectly use the pressure data and additional predictors for pre-
dicting monsoon precipitation e.g. by employing expanded
downscaling suggested by Bürger (2002)? As will become
clear in the next section the CPs are able to discriminate the
spatial locations where high or low pressure values are im-
portant for precipitation for the target area from those loca-
tions with no influence. This is a) an important insight and
leads b) to an enormous gain in computation time, because a
pressure pattern time series is a scalar predictor, that embeds
the information on the spatial pressure pattern with it. As the
focus of the present study is on the question whether pres-
sure patterns are useful predictors for explaining space-time
variability of precipitation in the Anas catchment, we omit
further information on the multivariate rainfall model. In-
terested readers will find detailed information in Stehlik and
Bárdossy (2002) as well as in the companion paper (Zehe et
al., 2006).

3.1.2 Definition of fuzzy rules and objective functions

Input into CP classification is in principle daily geo-potential
data from a selected level e.g. 700 or the 500 HPa from the
NCEP data set. In the first step the pressure data are trans-
formed to standardised anomalies by subtracting the long
term monthly average from the actual value at each node and
dividing the resulting difference by the long term monthly
standard deviation. The basic idea of assessing a CP or pres-
sure pattern classification scheme is to identify a set of dis-
tinct locations in a spatial window where the configuration
of pressure anomalies is on average associated with drier or
wetter than average atmospheric conditions. Based on tri-
angular fuzzy membership functions the daily anomalies at
each location (x, y) are classified into the categories 1) high,
2) medium high, 3) medium low, 4) low or 5) indifferent
for the circulation pattern. The membership functions for
the five categories are v=1, low: (−2.0, −1, −0.2)T ; v=2,
medium low: (−1.4, −0.6,0)T ; v=3, medium high: (0, 0.6,
1.4)T ; v=4, very high: (0.2, 1, 2.0)T ; and v=5 indifferent,
constant as 1. Please note that the category “indifferent” is
essential, as it allows separation of important locations from
those which are not important.

Thus a circulation pattern, CPk, is fully characterised by
an index vectorv(k)={v(1)(k)...v(n)(k)

} that defines the lo-
cations of heights and depressions in the pressure window
according to four categories. As a rule of thumb the anoma-
lies at 10–12 locations in the windows is important, the rest
is indifferent and is not stored, and a set of 10–12 circula-
tion patterns is a good choice (Stehlik and Bárdossy, 2002).
A pressure field for a given day is classified into a circula-
tion pattern by calculating the degree of fulfilment (DOF) for

each rule based on the membership values,µ, of the actual
pressure anomaly value at each node in the window and se-
lecting the CP with the highest DOF (Bárdossy et. al., 2002).

To find out which locations are important as well as to op-
timise the CP classification scheme the selection of suitable
objective functions is of highest importance. Following the
approach of Stehlik and B́ardossy (2002) we defined:

O1 =

S∑
i=1

√√√√ 1

Nd

Nd∑
t=1

(p(CP(t))i−p̄)2 (1)

whereS is number of stations with precipitation observa-
tions,Nd is the number of days in the time series,p(CP(t))i
is the CP-conditional probability of a wet day at stationi, p̄i

is the total average probability at stationi. High values ofO1
indicate that the conditional rainfall probabilities of the CPs
differs strongly from the average values i.e. represent drier or
wetter than average meteorological conditions for the area.
Stehlik and B́ardossy (2002) propose a second objectiveO2
based on the conditional precipitation amountsz(CP):

O2 =

S∑
i=1

1

Nd

Nd∑
t=1

∣∣∣∣log

(
zp(CP(t))i

z̄p,i

)∣∣∣∣ (2)

wherez̄i is the overall average daily precipitation amount at
station i. High values ofO2 indicate that the conditional
rainfall amount of a CP differ clearly from the average value.
Within the optimization we used the sum ofO1 andO2 as one
possible objective functionO. However, the log transforma-
tion in Eq. (2) puts a stronger weight on the small and average
daily precipitation amounts as the logarithm is a very slowly
increasing function. Alternatively, to assign higher weights
to high and extreme daily precipitation values within the op-
timisation we defined an objective functionO ′

2 based on the
conditional precipitation amounts z(CP):

O2
′
=

S∑
i=1

1

Nd

Nd∑
t=1

∣∣∣∣∣
(

z(CP(t))i

zi

)b
∣∣∣∣∣ (3)

The total objective function,O ′, was again the sum ofO1
andO ′

2, with an exponentb=1 or 1.5.
For optimisation we use simulated annealing (Press et al.,

1992). The optimisation starts with an arbitrary set of fuzzy
rules, classifies the pressure anomalies into a CP time series,
determinesp(CP) andz(CP) by frequency analysis and com-
putesO or O ′. Then a rulek is randomly selected and one
of the five categories,v, is randomly assigned to a randomly
chosen location,xi , yi . A new classification is performed
andO or O ′ is calculated. IfO ′ or O ′ is larger than the cor-
responding value of the old classification then the change is
accepted. If not the change is accepted with a probability that
decreases exponentially with decreasing annealing tempera-
ture. More details on the optimisation are given in Bárdossy
et al. (2002).
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Fig. 2. Wetness index of the 500 HPa CPs plotted for 6 rain gauges (defined according to Eqs. 4 and 5). Values larger than 1 indicate that the
CP combines higher than average daily rainfall probabilities with higher than average conditional rainfall amounts. The figure header show
the values of the objective functionO2 (Eq. 1), the higher the values the better does the classification scheme separate between dry and wet
CPs.

Fig. 3. Wetness index of the 500 HPa CPs plotted for 6 rain gauges (defined according to Eqs. 4 and 5). Values larger than 1 indicate that the
CP combines higher than average daily rainfall probabilities with higher than average conditional rainfall amounts. The figure headers show
the values of the objective functionO2 (Eq. 1).

3.2 Quality assessment of the classification scheme

Within the present study the following classification schemes
were tested: a set of 10 or 12 CPs, classified either from the
500 HPa pressure level or the 700 HPa pressure level on a
2.5◦ by 2.5◦ grid. As spatial window we selected 5◦ N 40◦ E
and 35◦ N 95◦ E which covers the Indian subcontinent as well

as large parts of the Arabian Sea and the Gulf of Bengal.
Furthermore, we compared the objective functionsO andO ′

for the exponents ofb=1 and 1.5 respectively.
The objective function itself is a good criterion to compare

the quality of different CP classification schemes. In addition
we used the following measures:
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Fig. 4. Average CP frequency and average wetted area fraction, which denotes the average fraction of rain gauges where rainfall is observed,
when weather is governed by a CP. The upper two panels denote the 500 HPa CPs, the lower two the 700 HPa CPs.

– The normalized conditional rainfall probability,np, de-
fined as the conditional probability of precipitation at
station i given the condition that the pressure at a day
is classified into a given CP divided by the average pre-
cipitation probability,pi , at this station. A strong devi-
ation ofnp from 1 indicates that the conditional rainfall
probability of the CP is much higher or lower than the
average.

np =
pi(CP)

pi

(4)

– The normalized conditional rainfall amount,nz, defined
as the conditional average precipitation amount on a wet
day for a given CPzi(CP) at stationi divided by the
average precipitation amount,zi , of a wet day at that
station. A strong deviation ofnz from 1 indicates that
the conditional rainfall amount of the CP is much higher
or lower than the average:

nz =
zi(CP)

zi

(5)

The product ofnz andnp, named the wetness index, is a joint
measure of whether the CP combines a higher/lower than
average conditional rainfall probability with a higher/lower
than average conditional rainfall amount.

Furthermore, to shed light on the significance of the CP
conditional rainfall probabilities we selected the three wettest
and the three driest CPs of the classification schemes with
largest/smallest values fornz and np obtained for the 700
and the 500 HPa level respectively. Next we took 1000 boot-
straps from the precipitation time series at each of the ten

locations and computed the CP conditional rainfall probabil-
ities for each bootstrap by frequency analysis for each of the
selected CPs. The values were ranked in ascending order and
we computed the fraction of bootstraps that were below the
CP conditional probabilities. For the wet CPs the fraction of
the bootstraps that are below has to be close to one to indi-
cate that the significance of high precipitation probabilities
is high. For the dry CPs it has to be the other way around:
the number bootstraps that exceed the CP conditional rainfall
probability has to be close to one to indicate that the classifi-
cation is highly significant with respect to dry CPs.

Finally we computed the monthly frequencies of occur-
rence for each CP within the classification scheme and cor-
related them to the monthly rainfall totals as well as the
monthly number of days observed at the 10 rain gauges. For
optimising the CP classification scheme we selected the pe-
riod from January 1985 to December 1994.

4 Results

4.1 CP classification schemes for 700 and 500 HPa

The first criteria for selecting a CP classification scheme are
high values of the objective function. For both pressure lev-
els a set of 12 CP in combination with the objective function
O ′

2 (Eq. 3) with an exponent b=1 yielded the highest values
for the total objective functionO. Figure 1 and 2 present the
wetness index of the circulation patterns for the rain gauges
Jhabua, Ranapur, Udaigarh, Amba, Rama and Meghnagar,
which are defined according to Eqs. (4) and (5). As the wet-
ness indices for the remaining 4 rain gauges exhibit the same
pattern, we omit the figures for reasons of brevity. Please
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Figure 5. Spatial distribution of 500hPa geo-potential height anomalies for the wet CP 4 (upper 
panel) and the dry CP 9 (lower panel), high values are shown in solid dark red lines while low 
pressure anomalies in solid blue lines. 
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Fig. 5. Spatial distribution of 500 hPa geo-potential height anoma-
lies for the wet CP 4 (upper panel) and the dry CP 9 (lower panel),
high values are shown in solid dark red lines while low pressure
anomalies in solid blue lines.

note that values around one indicate that the CP is associated
with average rainfall conditions during the monsoon season.
Wetness indices higher/lower than 1 indicate that the CP rep-
resents drier or wetter than average weather conditions. The
figure headers list, additionally to the station names, the val-
ues of the objective functionO1 (defined in Eq. 1). The
higher the values the better the does the classification scheme
separate between dry and wet weather situations.

The classification scheme for the 500 HPa level separates
dry from wet circulation patterns much more clearly than the
classification scheme for the 700 HPa level pressure level.
CP2, CP4 and CP8 from the 500 HPa level are associated in
with atmospheric conditions that are more than twice as wet
as the average. CP9, CP11 and CP6 result in much drier than
average conditions in the Anas catchment. For the 700 HPa
level CP11, CP12 and CP7 yield wet conditions, although
their wetness index is smaller as in the case of the 500 HPa
level. CP2, CP3 and CP6 represent on average dry meteoro-
logical conditions.

Figure 4 presents the average CP frequency and average
wetted area fraction, which denotes the average fraction of

 

 

Figure 6. Spatial distribution of 700hPa geo-potential height anomalies for the wet CP 11 (upper 
panel) and the dry CP 2 (lower panel), high values are shown in solid dark red lines while low 
pressure anomalies in solid blue lines. 
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Fig. 6. Spatial distribution of 700 hPa geo-potential height anoma-
lies for the wet CP 11 (upper panel) and the dry CP 2 (lower panel),
high values are shown in solid dark red lines while low pressure
anomalies in solid blue lines.

rain gauges where rainfall is observed when weather is gov-
erned by a CP. The upper two panels belong to the 500 HPa
CPs, the lower two to the 700 HPa CPs. The wet CP2 for
the 500 HPa level yields an average precipitation coverage
of almost 60% of the rain gauges, the dry CP9 causes in a
coverage of only 18%. In case of the 700 HPa the wet/dry
CPs are also associated with a larger/smaller fraction of the
catchment by precipitation, but the differences are less pro-
nounced. Due to the more even occurrence frequencies of
the CPs of the 500 HPa level the classification scheme has
a higher entropy than the 700 HPa classification scheme. In
the 700 HPa level CP4 and CP8, which are both associated
with average rainfall conditions, dominate almost 50% of the
time.

Figure 5 illustrates the average locations of the highs and
depressions associated with the wettest CP4 and the dry
CP9 in the 500 HPa level, as well as the location of the
Anas catchment in India. Due to a depression located over
the Indian Ocean and a strong anticyclone with kernel over
the Arabian Peninsula CP4 causes a streaming of moist air
masses from the southern Indian Ocean to North-Western In-
dia. The dry CP9 forms a “bridge” of two anticyclones rang-
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Table 2. Frequency of bootstraps who’s CP conditional rainfall probability was below the ones calculated for the original time series for the
wet circulation patterns CP11 CP7 and CP12, as well as for the dry ones CP8, CP2 and CP3 in the 500 HPa level. In case of the wet CP the
fraction is an estimator for the significance of the CP conditional rainfall probability, for the dry CPs one minus the fraction estimates the
significance level.

CP 1 2 3 4 5 6 7 8 9 10

CP 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CP 8 1.000 0.999 0.999 0.978 1.000 0.999 1.000 0.992 0.985 1.000
CP 2 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998
CP11 0.000 0.009 0.000 0.001 0.000 0.063 0.000 0.002 0.000 0.002
CP 6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CP 9 0.001 0.016 0.001 0.042 0.011 0.000 0.000 0.024 0.002 0.000

1 = Jhabua, 2 = Ranapur, 3 = Udaigarh, 4 = Amba, 5 = Rama, 6 = Meghnagar, 7 = Thandla, 8 = Bhabra, 9 = Sardapur, 10 = Petlabad

Table 3. Frequency of bootstraps who’s CP conditional rainfall probability was below the ones calculated for the original time series for the
wet circulation patterns CP11 CP7 and CP12, as well as for the dry ones CP6, CP2 and CP3 in the 700 HPa level. In case of the wet CP the
fraction is an estimator for the significance of the CP conditional rainfall probability, for the dry CPs one minus the fraction estimates the
significance level.

CP 1 2 3 4 5 6 7 8 9 10

CP11 1.000 0.948 0.987 0.944 1.000 0.999 1.000 0.996 1.000 1.000
CP 7 0.998 0.993 0.999 0.993 0.989 0.996 0.983 0.990 1.000 0.985
CP12 0.993 0.997 1.000 0.914 0.980 0.993 0.994 0.998 1.000 0.892
CP 6 0.051 0.015 0.004 0.054 0.074 0.041 0.038 0.008 0.052 0.054
CP 2 0.005 0.048 0.000 0.060 0.070 0.054 0.085 0.011 0.001 0.095
CP 3 0.002 0.034 0.000 0.001 0.005 0.055 0.028 0.002 0.068 0.001

1 = Jhabua, 2 = Ranapur, 3 = Udaigarh, 4 = Amba, 5 = Rama, 6 = Meghnagar, 7 = Thandla, 8 = Bhabra, 9 = Sardapur, 10 = Petlabad

ing from the Indian Ocean to Mongolia which causes dry
and hot weather conditions. For comparison Fig. 6 shows
the average locations of the highs and depressions associated
with the wettest CP11 and the dry CP2 in the 700 HPa level.
CP11 in the 700 HPa appears with a pronounced depression
with kernel in South West India similar to the wet CP4 in the
500 HPa level. CP2 is quite different: a strong depression
over north-eastern India combined with an anticyclone lo-
cated South-West from the Malabar Coast is expected to lead
moist air from the Arabian Sea to central India. However,
the Anas catchment should receive dry air from the North-
Eastern part of India, that has to pass the mid-mountain bar-
rier at the East of the catchment. Hence, it is associated with
drier weather conditions.

4.2 Significance CP conditional rainfall probabilities

Table 2 lists the fraction of the bootstraps whose CP condi-
tional rainfall probability was below the values calculated for
the original time series for the wet circulation patterns CP11
CP7 and CP12, as well as for the dry ones CP8, CP2 and CP3
in the 500 HPa level. In the case of a wet CP this fraction is
an estimator for the significance of the CP conditional rain-
fall probability. For dry CPs the significance level is obtained

by subtracting the fraction from one. The significance of the
conditional rainfall probabilities for the wet as well as for the
dry CPs is for all rain gauges larger than 95%. As can be seen
in Table 3 the significance of the conditional rainfall proba-
bilities for the wet CPs CP11, CP12 and CP 7 in the 700 HPa
is similarly high as for the 500 HPa scheme. The significance
of the dry CPs CP2, CP3, and CP6 is a little weaker as for
the 500 HPa scheme

Table 4 shows additionally the correlation between the
monthly frequency of the wet and dry CPs in the 500 HPa
level with the monthly number of rainy days observed at the
different rain gauges during the Monsoon season. For the
wettest CPs CP 2 and CP 4 the correlations range between
0.35 and 0.45. Consistently, the frequencies of the driest CPs
show a clearly negative correlation with the monthly number
of rainy days. For the 700 Hpa classification scheme we ob-
serve the same behaviour: positive/negative correlations be-
tween the frequencies of wet/dry CPs and the monthly num-
ber of rainy days, however, with smaller values. A t-test
showed that all correlations are significant at the 95% level.
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Table 4. Correlation between the monthly frequency of the wet and dry CPs in the 500 HPa level with the monthly number of rainy days at
the different rain gauges during the Monsoon season.

CP 1 2 3 4 5 6 7 8 9 10

CP 2 0.329 0.257 0.330 0.402 0.250 0.349 0.238 0.337 0.374 0.263
CP 4 0.349 0.400 0.374 0.359 0.415 0.358 0.401 0.313 0.313 0.456
CP 8 0.156 0.168 0.162 0.165 0.214 0.156 0.184 0.147 0.169 0.200
CP 6 −0.223 −0.313 −0.361 −0.382 −0.301 −0.405 −0.399 −0.319 −0.332 −0.399
CP 9 −0.355 −0.332 −0.318 −0.270 −0.347 −0.376 −0.372 −0.310 −0.370 −0.372
CP11 −0.286 −0.246 −0.232 −0.258 −0.251 −0.186 −0.219 −0.132 −0.228 −0.201

1 = Jhabua, 2 = Ranapur, 3 = Udaigarh, 4 = Amba, 5 = Rama, 6 = Meghnagar, 7 = Thandla, 8 = Bhabra, 9 = Sardapur, 10 = Petlabad

Table 5. Correlation between the monthly frequency of the wet and dry CPs in the 700 HPa level with the monthly number of rainy days at
the different rain gauges during the Monsoon season.

CP 1 2 3 4 5 6 7 8 9 10

CP 2 −0.295 −0.322 −0.338 −0.233 −0.260 −0.225 −0.296 −0.307 −0.401 −0.339
CP 3 −0.243 −0.266 −0.290 −0.281 −0.306 −0.265 −0.291 −0.242 −0.276 −0.300
CP 6 −0.153 −0.261 −0.296 −0.113 −0.163 −0.136 −0.195 −0.252 −0.197 −0.249
CP 7 0.169 0.217 0.260 0.218 0.118 0.247 0.208 0.241 0.284 0.275
CP11 0.241 0.366 0.214 0.284 0.342 0.276 0.319 0.274 0.271 0.242
CP12 0.275 0.311 0.400 0.256 0.377 0.363 0.327 0.336 0.367 0.270

1 = Jhabua, 2 = Ranapur, 3 = Udaigarh, 4 = Amba, 5 = Rama, 6 = Meghnagar, 7 = Thandla, 8 = Bhabra, 9 = Sardapur, 10 = Petlabad

5 Discussion and conclusions

The presented results give clear evidence that objective cir-
culation classified patterns especially from the 500 HPa level
are suitable to explain the spatio-temporal variability of mon-
soon rainfall within the Anas catchment. The CP condi-
tional rainfall probabilities of the wettest and the driest CPs
are highly significant. Furthermore, 30% of the variation of
the monthly number of rainy days at all stations may be ex-
plained by the occurrence frequency of the three wettest CPs
of the 500 HPa level. Shukla and Mooley (1987) found a
similar strong relation between the EL Nino Southern Oscil-
lation (ENSO) and the temporal monsoon variability over the
India.

Near to the Equator one would of course expect the CPs
from 700 HPa level, which are in average located at a height
of 3000 m, to have a stronger influence. However, as the
Anas catchment is located approximately 23◦ north, the Cori-
olis parameter is of order 0.4. Although this is only half
as large as in the mid-latitudes, the influence of the Coriolis
force seems still large enough that the CPs from the 500 HPa
level are the better predictors.

The overall objective of this study was to give evidence
that objectively classified pressure patterns are suitable
predictors for monsoon rainfall in North West India, despite
the low influence of the Coriolis force. We may state that
this goal has been successfully achieved. However, the
identification of a suitable predictor is only the first essential

step towards modelling monsoon precipitation by means
of empirical downscaling. The next essential step, which
is addressed in the companion paper (Zehe et al., 2006),
is to establish a suitable predictive relationship between
the predictors and the rainfall in the Anas catchment. This
is achieved by means of a multivariate stochastic model
originally proposed by Stehlik and Bárdossy (2002) which
uses CP time series as large scale meteorological forcing.
Either pressure fields from reanalysis data or from climate
model runs maybe be classified into such a CP time series.
The proposed approach may be used for generating historical
rainfall time series for e.g. for water resources planning
as well as for questions of climate impact assessment.
Interested readers shall therefore refer to Zehe et al. (2006).

Edited by: M. Sivapalan
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