
Hydrol. Earth Syst. Sci., 10, 789–796, 2006
www.hydrol-earth-syst-sci.net/10/789/2006/
© Author(s) 2006. This work is licensed
under a Creative Commons License.

Hydrology and
Earth System

Sciences

Pattern dynamics, pattern hierarchies, and forecasting in complex
multi-scale earth systems

J. B. Rundle1,2, D. L. Turcotte3, P. B. Rundle1,2, R. Shcherbakov2,3, G. Yakovlev2, A. Donnellan4, and W. Klein5

1Department of Physics, University of California, Davis, CA, USA
2Computational Science and Engineering Center, University of California, Davis, CA, USA
3Geology Department, University of California, Davis, CA, USA
4Earth and Space Science Division, Jet Propulsion Laboratory, Pasadena, CA, USA
5Department of Physics, Boston University, Boston, MA, USA

Received: 9 February 2006 – Published in Hydrol. Earth Syst. Sci. Discuss.: 20 June 2006
Revised: 5 October 2006 – Accepted: 10 October 2006 – Published: 30 October 2006

Abstract. Catastrophic disasters afflicting human society are
often triggered by tsunamis, earthquakes, widespread flood-
ing, and weather and climate events. As human populations
increasingly move into geographic areas affected by these
earth system hazards, forecasting the onset of these large and
damaging events has become increasingly urgent. In this pa-
per we consider the fundamental problem of forecasting in
complex multi-scale earth systems when the basic dynam-
ical variables are either unobservable or incompletely ob-
served. In such cases, the forecaster must rely on incom-
pletely determined, but “tunable” models to interpret observ-
able space-time patterns of events. The sequence of observ-
able patterns constitute an apparent pattern dynamics, which
is related to the underlying but hidden dynamics by a com-
plex dimensional reduction process. As an example, we ex-
amine the problem of earthquakes, which must utilize cur-
rent and past observations of observables such as seismicity
and surface strain to produce forecasts of future activity. We
show that numerical simulations of earthquake fault systems
are needed in order to relate the fundamentally unobserv-
able nonlinear dynamics to the readily observable pattern dy-
namics. We also show that the space-time patterns produced
by the simulations lead to a scale-invariant hierarchy of pat-
terns, similar to other nonlinear systems. We point out that
a similar program of simulations has been very successful in
weather forecasting, in which current and past observations
of weather patterns are routinely extrapolated forward in time
via numerical simulations in order to forecast future weather
patterns.

Correspondence to:J. B. Rundle //(jbrundle@ucdavis.edu)

1 Introduction

The critical need to forecast natural hazards has been under-
scored by the 26 December 2004M ∼ 9.3 Sumatra earth-
quake and tsunami that led to the deaths of more than 275 000
persons (Lay et al., 20051); Hurricane Katrina, a category 5
storm (winds of more than 155 mph) that weakened to a cate-
gory 3 storm before flooding New Orleans and the Gulf Coast
of the United States on August 29, 2005, causing as much as
$130 billion in damages and killing more than 1000 persons
(Travis, 20052); and theM ∼ 7.6 Pakistan earthquake of 8
October 2005 with estimated fatalities of more than 87 000
persons3. Secondary disasters can also occur such as land-
slides, flooding, and tornadoes.

Given the spatial scales of these events, and the rapid onset
of their most severe effects, the development of a physics-
based understanding of these hazards must be a high priority,
especially since human populations are increasingly moving
into the areas most likely to be affected by these disasters. A
physical understanding of these dynamical processes leads
to the possibility of forecasting and prediction, based upon
the use of numerical simulations, similar to the methods by
which progress has been made in the field of weather and
climate forecasting during the past few decades.

Earthquakes are an example of a threshold system, in
which the stress on a fault increases persistently due to plate
tectonic forces. In general, driven nonlinear threshold sys-
tems are comprised of interacting spatial networks of statis-
tically similar, nonlinear units or cells that are subjected to
a persistent driving force or current. A cell “fires” or “fails”
when the force, electrical potential, or other physical variable

1http://earthquake.usgs.gov/eqcenter/eqinthenews/2004/usslav/
2http://www.nhc.noaa.gov/archive/2005/tws/MIATWSATaug.

shtml
3http://earthquake.usgs.gov/eqcenter/eqinthenews/2005/usdyae/
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σ(x, t) in a cell at positionx and timet reaches a predefined
force thresholdσF . The result is an increase in an internal
state variables(x, t) of the cell, as well as a decrease in the
force or potential sustained by the cell to a residual value
σR. Thresholds, residual stresses, and internal states may
be modified by the presence of quenched disorder, and the
dynamics also may be modified by the presence of noise or
disorder. Interactions between cells may be excitatory (pos-
itive) in the sense that failure of connected neighbors brings
a cell closer to firing, or inhibiting (negative) in the opposite
case.

In the case of earthquake fault systems, the cell or site
represents a locationx on a fault; the state variableσ(x, t)
represents the stress; the force thresholdσF is the static fric-
tional strength; the residual valueσR is the fault stress at
the conclusion of sliding; and the state variables(x, t) is a
time dependent displacement field. In earthquake fault sys-
tems, the fault slips when the static frictional threshold is
reached, in a process that reduces the stress to a lower, resid-
ual value. As a result of the earthquake, a portion of the stress
is lost during the event, and the remainder is redistributed to
other faults and regions in the system. If the redistributed
stress leads to a state of supercritical stress on other faults,
an avalanche of triggered failures may occur, increasing the
magnitude of the earthquake. Other examples of threshold
systems are common in nature, and include the occurrence of
floods in river networks, landslides, volcanic eruptions, eco-
logical systems, saturation and soil moisture, and biological
epidemics. Threshold systems are also seen in other science
and engineering applications, such as depinning transitions
in charge density waves and superconductors, magnetized
domains in ferromagnets, sandpiles, and foams (Rundle et
al., 2000, 2002a). As another example, for neural networks a
cell is a neuron,σ(x, t) represents the cellular electrical po-
tential,σF is the firing potential, andσR is the potential after
the cell discharges.

The failure of the levees when Hurricane Katrina struck
New Orleans was also an example of a threshold process.
Here the large amounts of rainfall and the storm surges led
to overfilling of Lake Ponchartrain and the catastrophic fail-
ure of the levee system that protected the sections of the city
lying below sea level.

Both weather and seismicity are complex, chaotic phe-
nomena. Current weather patterns are routinely extrapolated
forward in order to forecast the weather several days into the
future. These forecasts utilize numerical simulations of at-
mospheric behavior. A specific example concerns the future
tracks of hurricanes. The standard approach is to utilize en-
semble forecasting. Forecasts are made using a variety of nu-
merical simulations. If these simulations converge on similar
tracks, then the forecast is considered robust. The question
is whether a similar approach can be developed for earth-
quake forecasting, and whether it can then be extended to
other driven systems common in geomorphology and hydrol-
ogy.

Among the fields of research that have recently made sig-
nificant progress in recognizing, interpreting, and predicting
such patterns are weather forecasting, specifically predic-
tions in the onset of El Nino-Southern Oscillation (ENSO)
events. These methods utilize variations of Principal Com-
ponent Analysis, Principal Oscillation Pattern Analysis, and
Singular Spectrum Analysis (Preisendorfer, 1988; Penland,
1989; Penland and Sardeshmukh, 1995; Penland and Man-
gorian, 1993; Broomhead and King, 1986; Vautard and Ghil,
1989). Prediction of pattern development and evolution is
complicated by the presence of noise, nonlinear mode inter-
actions, and a variety of other factors, but progress has been
made in recent years as exemplified by the successful pre-
diction of the El Nino weather event of 1998. In most of
these methods, it is assumed that the observed time series
have Markov characteristics, so that the observed state of the
system at timet +1t depends only on the observed state of
the system at timet , where1t is a coarse-grained time step.
There are typically many time scales in the dynamics, some
of which can be as small as1t , and others that can be much
longer.

However, in making El Nino forecasts for a year in ad-
vance, it is typical to focus on processes, such as sea surface
warming off the Pacific coast of South America, that take
place over the preceding weeks to months. This assumption
of a relatively small range in time scale evidently holds rea-
sonably well for El Nino events.

An additional important assumption made by some inves-
tigators is that the space-time patterns of El Nino events can
be considered to be described by a linear stochastic equation
(Penland and Matrosova, 2006; Penland and Sardeshmukh,
1995), which is used to forecast the future occurrence and
evolution of El Nino events.

2 Threshold systems

Driven threshold systems are complex systems that are char-
acterized by both sudden observable events, such as earth-
quakes, as well as an underlying dynamics that is largely un-
observable, as well as being subject to unobservable stochas-
tic perturbations. It is important to note that the events do
not represent the true dynamics that governs evolution of the
system, they are only a product of the dynamics. Exam-
ples of such systems include not only earthquakes, but also
landslides and avalanches, floods, and other non-geological
systems including neural networks, and magnetic depinning
transitions in superconductors. In these cases, the observ-
able events are impulsive phenomena that are the result of
the persistent forcing of the underlying dynamics (Rundle
et al., 2000). While the time scale for the forcing is often
relatively long, the time scale for the observable events is
usually short. Since we cannot observe the underlying dy-
namics, we usually have no choice but to interpret, and to
try to forecast, the evolution of the system on the basis of
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the observable events. We are therefore led to define a state
vectorS(x, t) representing the rate of occurrence of the im-
pulsive events within a small, coarse-grained region centered
on the locationx (Rundle et al., 2000). One example of such
a coarse-graining would be to cover a geographic area such
as southern California with a lattice of small regions (boxes)
of a certain small size, for example boxes of size 0.1◦ (Lat-
itude) by 0.1◦ (Longitude). This procedure has been carried
out in recent work on earthquake forecasting (Holliday et al.,
2006). For the simulations we discuss below,x represents
the location of the center of a fault segment. For these sim-
ulations,S(x, t) = 1 if the segment slips at timet , and zero
otherwise (Rundle et al., 2000). For observed data,S(x, t)
may have any real integer value at timet .

For threshold systems driven at a constant rate, systems
that are large compared to the spatial scale of the impulsive
events can often be considered to execute small fluctuations
around a steady state. This assumption has been shown to
hold for earthquakes (Turcotte, 1997; Tiampo et al., 2003).

If we regard the system stateS(x, t) as representing the
real part of a complex-valued functionψ(x, t), then we have
shown in previous work (Rundle et al., 2000) thatψ(x, t) can
be written as:

9(t) ≡ ψ(x, t) =

N∑
n=1

αn e
i ωn t φn(x) (1)

where theφn(x) are eigenfunctions, or “eigenpatterns”, the
ωn are eigenfrequencies,N is the number of coarse-grained
regions or boxes, and the expansion coefficientsαn satisfy
the constraint:

N∑
n=1

|αn|
2

= 1 (2)

The notation9(t) = ψ(x, t) emphasizes thatψ(x, t) should
be regarded as anN -dimensional vector function in a Hilbert
space of theN coarse-grained boxes that we also denote by
9(t) (Jordan, 1969). In this picture, the state vectors of the
system oscillate around a steady state, and therefore the pat-
tern states can be represented by sums of complex exponen-
tials (Holmes et al., 1996). The eigenfunctions are therefore
complex, and it is possible that a precursor to a future large
earthquake may have a large imaginary part and a small real
part, meaning that the precursor might be difficult to detect.
This effect would produce a signal with a weak observational
amplitude.

Given our inability to observe the true dynamics, we there-
fore seek to define an apparentpattern dynamicsfor the sys-
tem. Our goal is to define a pattern dynamics operatorPD(t).
In previous work (Rundle et al., 2000), we conjectured that
such an operator can be constructed by the use of the equal-
time correlation operator (matrix)D. D(x, y) is obtained
by cross-correlating the observed real time seriesS(x, t) and
S(y, t) over a time interval [0, T ]. A more rigorous definition

of PD(t) has been developed in Klein et al. (2006)4, which
is found to be related to the inverse ofD, D−1. Details of
this construction are left to Klein et al. (2006)4 and future
publications.

For the present, we illustrate the general types of pat-
terns revealed by this analysis by plotting eigenvectors of
D, which represents the correlation of activity, considering
S(x, t) andS(y, t) as a Brownian “noise”.

To compute the equal-time correlation operatorD(x, y),
we evaluate:

D(x, y) ≡
1

T

T∫
0

S(x, t) S(y, t) dt (3)

If we considerx to be the spatial coordinate centered on the
coarse-grained (box) locationxi , andy to be the spatial coor-
dinate on the coarse-grained (box) locationxj , then we have
theN × N square, symmetric matrixDij , which can be di-
agonalized by standard techniques of singular value decom-
position (Rundle et al., 2000):

D = Q32 QT (4)

HereQ is anN ×N matrix of orthonormal eigenvectors;QT

is its transpose; and32 is a diagonalN ×N matrix of eigen-
valuesλ2

n, n = 1,...,N . The eigenvectorsqn(x) comprise the
columns ofQ. TheN positive eigenvalues ofDij are written
in Eq. (4) as the square of the diagonal elements of3.

3 Numerical simulations and Virtual California

Numerical simulations are needed in the study of driven
threshold systems due to the wide range of temporal and spa-
tial scales involved, and because the true dynamics are funda-
mentally unobservable. Simulations are typically carried out
on computers ranging from workstations to supercomputers,
and can be used to determine both the spatial and temporal
eigenpatterns that characterize the activity, and the pattern
dynamics, or pattern evolution operatorPD(t).

Here we give a brief example of this approach using the
Virtual California simulation for earthquakes. Virtual Cal-
ifornia, which was originally developed by Rundle (1988),
includes stress accumulation and release, as well as stress in-
teractions between the San Andreas and other adjacent faults.
The model is based on a set of mapped faults with estimated
slip rates, prescribed long term rates of fault slip, parameter-
izations of friction laws based on laboratory experiments and
historic earthquake occurrence, and elastic interactions. An
updated version of Virtual California (Rundle et al., 2001,
2002a, 2004, 2006a, b) is used in this paper. The geologic
data on average rates of offset in the model is discussed in

4Klein, W., Gulbahce, N., Gould, H., Rundle, J. B., and Tiampo,
K. F.: Precursors to earthquake and nucleation, Phys. Rev. Lett.,
submitted, 2006.
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Figure 1: Rundle et al 2006, HESS

Fig. 1. Fault segments making up Virtual California. The model has
650 strike-slip fault segments, each approximately 10 km in length
along strike and 15 km in depth.

full detail in Rundle et al., 2006. The faults in the model are
those that have been active in recent geologic history. Earth-
quake activity data and slip rates on these model faults are
obtained from geologic databases of earthquake activity on
the northern San Andreas fault. A similar type of simula-
tion has been developed by Ward and Goes (1993) and Ward
(1996, 2000). A consequence of the size of the fault seg-
ments used in this version of Virtual California is that the
simulations do not generate earthquakes having magnitudes
less than aboutM ≈ 5.8.

Virtual California is a backslip model – the loading of each
fault segment occurs due to the accumulation of a slip deficit
at the prescribed slip rate of the segment. The vertical rectan-
gular fault segments interact elastically, the interaction coef-
ficients are computed by means of boundary element meth-
ods (Crouch and Starfield, 1983). Segment slip and earth-
quake initiation is controlled by a friction law that has its
basis in laboratory-derived physics (Tullis, 1996; Karner and
Marone, 2000; Rundle et al., 2004, 2006a,b). Onset of initial
instability is controlled by a static coefficient of friction. Seg-
ment sliding, once begun, continues until a residual stress is
reached, plus or minus a random overshoot or undershoot of
typically 10%. Onset of instability is also possible by means
of a stress-rate dependent effect, in that segment sliding can
initiate if stress on a segment increases faster than a pre-
scribed value due to failure of a nearby segment. Finally, the
friction law used in Virtual California also includes a term
that promotes a small amount of stable segment sliding as
stress increases. This latter term has been shown to promote
stress-field smoothing along neighboring segments, offset-
ting the stress-roughening effects of increasing fault com-
plexity, and allowing larger earthquakes to occur. To pre-
scribe the friction coefficients we use historical earthquakes
having moment magnitudesM ≥ 5.0 in California during
the last∼200 years (Rundle et al., 2004, 2006a, b).

Virtual California includes the major strike-slip faults in

Event Time: 265375.0  Years

Maximum Slip: 9.317 Meters

 RED  => RIGHT Lateral Slip

 BLUE => LEFT Lateral Slip

 DARK => Epicenter

Epicenter

Figure 2a: Rundle et al 2006, HESS

Event Time: 266370.0  Years

Maximum Slip: 12.65 Meters

 RED  => RIGHT Lateral Slip

 BLUE => LEFT Lateral Slip

 DARK => Epicenter

Epicenter

Figure 2b: Rundle et al 2006, HESS

Fig. 2. Illustration of simulated earthquakes on the San Andreas
fault. Two large earthquakes are shown. Panel(a) is an event that is
reminiscent of the San Francisco earthquake of 1906 on the northern
San Andreas fault. Panel(b) is an event that is similar to the Fort
Tejon earthquake of 1857 on the southern San Andreas fault near
the Big Bend between Fort Tejon and Wrightwood.

California and is illustrated in Fig. 1. In this version of the
model, Virtual California is composed of 650 fault segments,
each of which has a width of 10 km and a depth of 15 km.
A much more detailed treatment and explanation of the dy-
namics and equations solved numerically for Virtual Califor-
nia simulations can be found in (Rundle et al., 2004, 2005,
2006a,b, and references therein).

An example of results from Virtual California is shown in
Figs. 2a, b in which we show two large earthquakes, one rem-
iniscent of the San Francisco earthquake of 1906 (Fig. 2a)
on the northern San Andreas fault, and one similar to the
Fort Tejon earthquake of 1857 on the southern San Andreas
fault near the Big Bend between Fort Tejon and Wrightwood
(Fig. 2b). In both Figs. 2a, b, red vertical bars represent “right
lateral slip” (opposite side of the fault moves to the right) and
blue vertical bars represent “left lateral slip”.

It can be seen in Fig. 2a that the earthquake on the North-
ern San Andreas fault, where most of the slip occurs, also
involves triggered slip on the Hayward, Rogers Creek and
Maacama faults (these are the faults to the east of – “behind”
– the main trace of the San Andreas fault). The dark bar on
the San Andreas fault represents the epicentral segment, the
segment that was the first to slip in the event. The maximum
amplitude of slip, as shown in the figure, is 9.3 m.

Hydrol. Earth Syst. Sci., 10, 789–796, 2006 www.hydrol-earth-syst-sci.net/10/789/2006/



J. B. Rundle et al.: Pattern dynamics, pattern hierarchies, and forecasting 793

Figure 2b shows a large event in southern California sim-
ilar in extent and magnitude to the 1857 Fort Tejon earth-
quake. It can be seen that while most of the slip occurs on
the main trace of the San Andreas fault, where the maximum
amplitude of slip is 12.6 m, other triggered slip occurs on
the Big Pine fault, the Garlock fault, the San Gabriel fault,
and faults in the Mojave desert and Owens Valley to the east.
In fact, it is extremely interesting that all of this activity be-
gan with initial slip on a small fault in the Mojave desert, as
shown by the location of the dark epicentral vertical slip bar.

4 Patterns in Virtual California

We used 10 000 years of simulation data from Virtual Cal-
ifornia to compute theN = 650 spatial patterns of activ-
ity for the simulation. These patterns reveal which are the
most dominant and important modes of correlated activity,
and which are less important. The eigenvectors (spectrum)
indicate the fraction of the eigenvectors that are present, on
average, in the activity during the simulation. More specifi-
cally,pn = λ2

n , is the fraction of eigenvectorqn(x) of the or-
thonormalN ×N matrixQ of Eq. (4) is present, on average,

in the activity. Note that
N∑
n=1

pn = 1. Using a frequency in-

terpretation for probability, we can say that on average, over
the 10 000 years of simulation data, the probability of finding
eigenvectorqn(x) in the data is on averagepn.

In Figs. 3a, b, c, d we show the first four orthonormal cor-
relation eigenvectorsqn(x), again for the same 10 000 years
of simulation data. In these figures, the red and blue bars cor-
respond to locations where the value ofqn(x) is significantly
different from 0. The heights of the red and blue bars repre-
sent the values ofqn(x), and can take on values between−1.
and+1. Red bars represent positive values ofqn(x) between
10−3 and 1, and blue bars represent negative values ofqn(x)
between−1 and−10−3. Green dashed lines are locations
where|qn(x)| has a value less than 10−3, which is roughly
the amplitude of the numerical error. The physical meaning
of the red and blue colors for a particular eigenvectorqn(x),
which represents a particular fundamental pattern of activity
is:

– Red sites tend to be active when other red sites are ac-
tive, so that activity at red sites is positively correlated
with activity at other red sites;

– Blue sites tend to be active when other blue sites are ac-
tive, so that activity at blue sites is positively correlated
with activity at other blue sites;

– Red sites tend to be inactive when the blue sites are ac-
tive and vice-versa, so that activity at red sites is nega-
tively correlated with activity at other blue sites.

Figure 3a is an eigenvector that represents the most important
pattern of activity in the 10 000 years of simulation data. This

Figure 3a: Rundle et al 2006, HESS

Figure 3b: Rundle et al 2006, HESS

Figure 3c: Rundle et al 2006, HESS

Figure 3d: Rundle et al 2006, HESS

Fig. 3. This figure shows the first (and most important) four corre-
lation eigenvectors for 10 000 years of simulation data. The color-
coding of the vertical bars is that: 1) Red sites tend to be active when
other red sites are active, so that activity at red sites is positively cor-
related with activity at other red sites; 2) Blue sites tend to be active
when other blue sites are active, so that activity at blue sites is posi-
tively correlated with activity at other blue sites; 3) Red sites tend to
be inactive when the blue sites are active and vice-versa, so that ac-
tivity at red sites is negatively correlated with activity at other blue
sites.

www.hydrol-earth-syst-sci.net/10/789/2006/ Hydrol. Earth Syst. Sci., 10, 789–796, 2006
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Figure 4: Rundle et al 2006, HESS

Fig. 4. Plot of the eigenvalue spectrumpn on a log-log plot.
Log10pn is plotted as a function of Log10n, wheren is the index
number of the eigenvector (n=1 has the largest value ofpn, and the
rest are ordered by descending values ofpn).

pattern of activity comprisesp1 = 3.5%, on average, of the
activity over 10 000 years of simulations. It bears a strong
resemblance to Fig. 2b, the 1857-type event. From Fig. 3a,
it can be seen that this pattern is associated with correlated
activity on the San Andreas, the Garlock and Big Pine, the
Northern Mojave, the Owens Valley and Death Valley faults.
If one were to expand the pattern of slip in Fig. 2b as a sum of
the eigenvectorsqn(x), the expansion coefficientq1(x)would
represent the most important term.

Figure 3b shows the second-most important eigenvector
q2(x). Here we primarily see strongly correlated activity
on the northern San Andreas, the Hayward-Rogers Creek-
Maacama, the Calaveras and Bartlett Springs fault systems.
This pattern of activity is seen in 3.1% of the activity over the
10 000 years of simulations. This eigenvector also resembles
the event shown in Fig. 2a, the 1906-type event.

It is interesting that these first two patterns of activity are
effectively decoupled between northern and southern Cali-
fornia. The physical explanation for the decoupling is proba-
bly related to the existence of the creeping zone of the central
San Andreas fault. This zone is the∼ 100 km long part of
the San Andreas fault just to the north of the large slipped
region in Fig. 2b. Earthquakes do not occur in the creeping
zone, rather a steady aseismic slip is observed at a rate cor-
responding to the long-term rate of plate motion across the
fault, 35 mm/yr (Table 1). The creeping zone appears to act
as a kind of “shock absorber” for the largest events, effec-
tively eliminating the correlation of these events in the north
and south.

Eigenvectors 3 and 4 are shown in Figs. 3c and d. Fig-
ure 3c shows a pattern, representing 2.4% of the activity,
characterized by correlated slip on the southernmost part of
the faults of the San Andreas system, together with slip ac-

tivity on the eastern Garlock fault. Figure 3d is an interest-
ing pattern, in which a kind of higher “pattern harmonic” of
the activity on the faults of the northern San Andreas fault.
Comparing Figs. 3b and d, eigenvector 4 (1.8% of the activ-
ity) shows an anticorrelation between activity on the extreme
northern end of the San Andreas system with the faults near
the San Francisco Bay region (refer to Fig. 1 for locations
relative to San Francisco). Eigenvector 4 also shows the be-
ginnings of correlations between activity in northern Califor-
nia with activity south of the creeping zone, on the eastern
Garlock fault in the Mojave desert. Evidently the decoupling
effect of activity in the north and south by the creeping zone
of the San Andreas decreases as the higher pattern harmonics
appear.

Figure 4 shows the eigenvalue spectrumpn. An indexn
enumerates all eigenmodes with decreasing importance asn

increases. Here we plot log10(pn) as a function of log10(n).
We observe that there is a region of scaling or power-law
behavior at values ofn in the interval betweenn ∼ 10 and
n ∼ 200:

log10(pn) ∝ −.75 log10(n) (10 ≤ n ≤ 200) (5)

To understand this, we suppose that we can define a “char-
acteristic wavelength”λn for each pattern according to the
approximateansatz:

λn ∼
2πL

n
(6)

whereL represents the linear size (length) of the largest
events in the simulations. Then the scaling region shown in
Fig. 4 must be an expression of the hierarchical nature of the
spatial scale of the patterns generated by the fault system dy-
namics:

pn ∼ λαn ∼ n−α (7)

The reason for the particular value of the scaling exponent
α = 0.745 ± 0.004 ≈ 0.75 is not at present known, but
its value, which is nearly equal to the ratio of integers 3/4,
would lead to the conjecture that it is related to the mean field
nature of the dynamics (Rundle, 1989; Rundle and Klein,
1993; Tiampo et al., 2002a). In mean field dynamics, it is
frequently the case that the scaling exponents are ratios of
integers (see Klein et al., 2000).

We note that similar types of overall behavior for patterns
has been observed in seismicity data (Tiampo et al., 2002b).

5 Conclusions

Forecasting in systems such as ENSO and earthquakes de-
pends on the interpretation of observable space-time patterns,
since the true stress-strain rate and stress-strain dynamics
cannot be observed. It is likely that similar methods can be
used for both systems, based upon the identification of pat-
terns as eigenvectors of a dynamical correlation operator. We
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note that these are linear descriptions of fundamentally non-
linear dynamical systems. However, there are important ex-
amples of probability distributions for nonlinear systems that
are known to obey linear Fokker-Planck equations (Haken,
1983). Moreover, Klein et al. (2006)4 show that the evolution
of patterns in driven threshold systems can be characterized
by correlation functions that have the properties discussed
above.

We may speculate that hierarchical patterns that are ob-
served in other nonlinear earth systems may be described in
by similar methods. For example, it is known that in hydrol-
ogy, river networks are observed to display scaling patterns
that arise from purely local dynamics. These local dynam-
ics include hill slope and topography, surface winds and ero-
sion, and rainfall. Yet these local effects are often the product
of long range interactions, i.e., correlation of hill slope and
topography, and rainfall patterns over long distances (Tur-
cotte, 1997). Moreover, the tree-like nature of river networks
leads also to the conjecture that pattern hierarchies may have
a mean field character, inasmuch as tree-like networks are of-
ten found to be mean field constructs, such as the Bethe lat-
tice in percolation theory (Stauffer and Aharony, 1994). Un-
derstanding how these hierarchies of pattern scales develop
and evolve doubtless holds the key to forecasting the future
dynamical states of these systems.
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