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Abstract. Root zone soil moisture is a key variable in many 1 Introduction
land surface hydrology models. Often, however, there is

a T|smgtch in the spart:.alhsca_lles qt wh|ch models smqut%O" moisture controls several processes at or near the land
soil moisture and at which soil moisture is observed. T 'Ssurface. The partitioning of rainfall into infiltration and

complicates model validation. The increased availability of runoff, the partitioning of available energy into latent and

detfailed datasets on space—ti_m(_a variabi_lity of root-zone §°i|sensible heat; the drainage of water to groundwater and/or
moisture allows for a posteriori analysis of the uncertain- g, e water; the growth of vegetation: all these processes
ties in the relation between point-scale observations and th%re strong and nonlinear functions of soil moisture. Many

spatial mean.f In tfrllls papf(rar we analyze three Co_mpr%he”forecasting applications rely on accurate soil moisture obser-
sive datasets from three different regions. We identify differ-, 5ions t predict these processes. However soil moisture ob-
ent strategies to select observation sites. For instance, Sit€S,ations are often available at the point-scale, while most
can be located rar;]domly or according to the rr]ar(ljk stability o qels utilize effective parameters representative for the av-
concept. For each strategy, we present methods t0 quanspqe sojl and vegetation. Similar problems arise when point
tify the uncertgmty that is associated with this strategy. ) IN scale soil moisture observations are combined with flux mea-
general there is a large correspondence between the diffe o nents. Vertical fluxes of water and/or energy at several
ent datasets with respect to the relative uncertainties for th?neters above the surface might be affected by spatial average
different strategies. For all datasets, the uncertainty can bgq yoisture conditions at the scale of the flux footprint. At
strongly reduced if some information is available that reIatesmany stations, for instance in the FLUXNET netwoBa(-

soil moisture content at that site to the spatial mean. HOW-4occhi et al, 2002, root zone soil moisture is monitored at

ever this works best if the space-time dynamics of the SO'la scale several orders of magnitude smaller than the corre-

moisture field are known. Selection of the site closest to theSponding flux footprint. When validating model simulations

spatial mean on a single random date only leads to minor rég s, yaintscale soil moisture observations, or when assimi-
duction of the uncertainty with respect to the spatial mean;iing these observations in models, attention should be paid
over seasonal timescales. Since soil moisture variability i, ye yncertainty that results from upscaling the point-scale
the result of a complex interaction between soill, vegetation, ;. «anations to areal average soil moisture.

and landscape characteristics, the soil moisture field will be i . ) o
correlated with some of these characteristics. Using avail- One Of the first reports of soil moisture variability was
able information, we show that the correlation with leaf areaMade byReynolds(1970. Other early reports on extensive

index or a wetness coefficient alone is insufficient to predictStudies of soil moisture variability were made Bgll et al.
if a site is representative for the spatial mean soil moisture(1980 andHawley et al(1983. Several authors have noted
that, despite the large spatial variability, the soil moisture

content.

patterns themselves remain relatively stable over time (e.qg.
Correspondence toA. J. Teuling Vachaud et a).1985 Mohanty and Skagg20017). This tem-
(ryan.teuling@wur.nl) poral persistence in the spatial pattern of soil moisture was
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756 A. J. Teuling et al.: Estimating spatial mean soil moisture from point observations

soil texture (e.gPrice and Bauel984 Vachaud et a).1985
Seyfried 1998 Grant et al, 2004 and/or landscape char-
acteristics (e.gAnderson and Kneald98Q Nyberg 1996
Crave and Gascuel-Odou%997 Bardossy and Lehmann
1998 Famiglietti et al, 1998 Qiu et al, 2001). It is also
known from field observations that soil moisture patterns can
reflect patterns in landscape and/or soil characteristics in a
wet state, while reflecting vegetation and/or soil characteris-
tics in a dry stateGrayson et a).1997, Fitzjohn et al, 1998
Gomez-Plaza et al2000. Recent advances in the theoreti-
cal understanding of these empiral findings have been made
by Albertson and Montald§2003. They showed that the
temporal evolution of soil moisture variability is driven by
the sum of the covariances between soil moisture and differ-
ent fluxes. In a simulation studyeuling and Troch{2005
showed how the temporal dynamics of these different covari-
ance terms can be used to explain the different observed re-
lationships between mean soil moisture and its spatial vari-
ability. The fact that different controls operate on the spa-
tial soil moisture pattern depending on the mean moisture
content (e.gTeuling and Troch2005 Wilson et al, 2009

has important implications for soil moisture sampling and
the applicability of the rank stability concept. For instance,
Martinez-Ferandez and Ceballo@009 concluded that it
might take a year of sampling (a complete seasonal cycle) to
correctly identify the most rank stable site.

Spatial soil moisture fields are known to exhibit a corre-
lation structure. Western et al(1998 provide an compre-
hensive table listing different geostatistical analyses of soil
moisture fields. In general, correlation lengths for soil mois-

- .

/ Belgium
/

/

Fig. 1. Location of the study areas and observation sites.t I with val f onlv 10-25 m bei
(a) Louvain-la-Neuve (0.5 m interval contour line€)) Tarrawarra ure are small, with values or only 1U=com being common

(2m interval contour lines)c) R-5 (~3 m interval contour lines). ~ (L0ague 1992. Even in experiments with a relatively dense
For Louvain-la-Neuve and R-5 the numbering of sites is continu- N€twork, spatial correlation is often non-existe@b(negna
ous along rows. Open circles indicate sites that were omitted in thednd Basile 1994 Hupet and Vanclooste2002. When ter-
analysis. rain has a significant impact on the soil moisture pattern, the
larger correlation lengths can mainly be attributed to terrain
indexes Western et aJ.1998. In Tarrawarra, the spatial
used byVachaud et al(1989 to show that some sites main- structure of the soil moisture field is known to be governed
tain a similar rank throughout the year, i.e. that some sites ar@y topographic features in the wet state, while there is little
more representative of the spatial mean than othérshaud  spatial correlation in the dry staté/estern et a).1999.
et al.(1989 called these sites “time stable”. In this paper, we  |n this paper we investigate the relationship between the
will use the term “rank” stability rather than “temporal” sta- dynamics of individual soil moisture observations and those
bility, following the arguments o€hen(2006. Rank stabil-  of the spatial mean at the field- or small catchment scale. We
ity has been used in many other studies to investigate spacgyerform this exercise for three different datasets, each having
time dynamics of soil moisture fields and the potential of us-its own typical geographic and climatic conditions. By doing
ing a limited number of sites to observe the mean responsgo, (dis)similarities between the datasets can be identified.
(e.g.Kachanoski and de Jong988 Comegna and Basile Different sampling strategies are identified and methods are
1994 Grayson and Wester©998 Gomez-Plaza et gl200Q presented to quantify the corresponding uncertainties.
Mohanty and Skagg2001; Grant et al.2004 Jacobs et al.

2004 Petrone et al.2004 Martinez-Ferandez and Cebal-
los, 2005. Pachepsky et a(2005 reported rank stabilityto 2 Data
exist also in the vertical soil moisture distribution.

Several authors have reported that soil moisture pattern¥he datasets were selected based on three criteria: a) obser-
reflect patterns in vegetation (e.gupet and Vanclooster vations on multiple depths so that a root-zone average soil
2002 Schume et al.2003 Hupet and Vanclooste005), moisture content can be estimated, b) a sufficient number of
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sites that allows for accurate estimation of the spatial mean T T T

root zone soil moisture content, and c) sufficient temporal -4 [ ﬁi ? Eﬁm EHIEE

dynamics so that the temporal variability over a complete 03l EEH %% %I |
seasonal cycle is well represented. For the depth of the root % I {
zone we used the upper70 cm of the soil, which represents 02t E I E I 1

most (if not all) of the temporal dynamics of the soil mois-

ture that is available for root water uptake. Typically, 50% of 0.1

the roots are already located in the upper decimeters. of soil_ Oct95 Jan96 Apr96 Jul96 Oct96 Jan97 Apro7

(Schenk and Jacksp®002. The depth is partly constrained T

by the observations, since we choose to include the obser-£ g4}

vations made at 60 cm depth (see below). Furthermore Wefg ﬁ[l
ﬂ%

(A)

choose a constant depth for all datasets, so that the result$ 0.3 1
can be compared directly. It should be noted that the tempo-3
ral dynamics of soil moisture strongly decrease with depth, £ I
so that our results are not very sensitive to the exact depthg 4| (B)
over which soil moisture is averaged. §
The 10.5 ha Tarrawarra catchment is located in southeast-~ Jan71
ern Australia (Fig.lb). The catchment has been subject to ' —
several intensive monitoring campaigns that aimed at inves- |
tigating the soil moisture spatial pattern at the small catch- 5|
ment scale. The soil texture in the catchment varies from
silty-loam to clay, and the topography is undulating with a 0.2}
maximum relief of 27 m. The climate is temperate. Land
use is perennial pastures used for grazing. At 59 dates be- %[ .(C) . . .
tween 20 September 1995 and 10 June 1997, soil moisture Jun99 Julog Aug99 Sep99
was monitored at 20 locations by means of a Neutron Mois-
ture Meter (NMM). Observations were made at depths of 15,Fig. 2. Time series of spatial mean and variability. Error bars in-
30, 45, 60, 90, 120, and 150 cm, or to the depth of the accesdicate+ one standard deviatiorfa) Tarrawarra (10.5 ha, 19 sites),
tube. Root zone soil moisture is taken as the average valué) R-5 (10 ha, 33 sites)c) Louvain-la-Neuve (0.65 ha, 28 sites).
of the observations at 15, 30, 45, and 60 cm depth. Site 2@J he downward triangle indicates the date of LAl observations.
was excluded from the analysis since this data is suspected

to be erroneous@rayson and Westeri998. Furthermore
days with missing observations for one or more sites were ex#> days between 30 May 1999 and 13 September 1999. The

cluded, leaving observations at 54 days at 19 sites. The tim@Pservations were made on a regular7agrid (see Figla)

series of the spatial mean and standard deviation are showd different depths. He we use the average value of the Time

in Fig. 2a. The NMM data was extracted from the Tarrawarra Domain Reflectometry (TDR) observations (0-20cm), and
databaseWestern and Graysoa998. the NMM observations at depths of 25 and 50 cm. The soil

The R-5 experimental catchment is located northeast ofn the field is classified as well-drained silty-loam and there
Chickasha, Oklahoma (USA). The USDA Agricultural Re- is'little rglief. During the.campaign the fie'ld was cropped
search Service intensively monitored R-5 from 1966 to 1978 With maize. The climate is moderate humid. The time se-
The 10 ha catchment is a native grassland pasture used féles of the spgﬂal mean and standard deviation are shown in
grazing. The surface is gently sloping with an average slopd 19- 2¢- In this paper we also employ the Leaf Area Index
of 3% (Fig.1c). At 84 dates between 21 January 1971 and 24(LAl) measurements that were taken at each site on 12 July
June 1974, NMM observations of soil moisture were madel999- The dataset is described in detailiypet and Van-
at 34 sites and at 8 different depths. Here we use the ave(€/00Ster(2003.
age value of the observations made at 15, 30, 45, and 60cm
depth. One site (21) was excluded from the analysis sincey \ethod
soil moisture at this site exhibited a suspicious drift, leav-
ing observations at 84 days and 33 sites. The time series a1 Notation
the spatial mean and standard deviation are shown ir2Big.

The R-5 dataset is described in detailllyague(1992. In this paper, we study aspects of the spatial and temporal dy-

Soil moisture variability was measured in an 0.65 ha agri-namics of the volumetric soil moisture fiefdx, ¢). Obser-
cultural field in Louvain-la-Neuve (Belgium) as part of a vations of this field are available at discrete intervals in space
campaign that aimed at investigating the within-field spatialand time, namely={x1, x2, ..., x,} andt={r1, to, . . ., t}
variability of evapotranspiration. Observations were made onwheren andk refer to the number of observation sites resp.
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Table 1. Summary of the observation strategies used in this paper.ar'd
In the “Goal” column, “Abs” refers to absolute value of the spatial ___ n _ 2
average volumetric soil moisture content, and “Dyn” refers to the Var[6(t;)] = s(0)? = —— Z [0(xi,t;) — 6] 2
dynamics of the spatial average. n—1 i=1
These normalized values are then ranked from dry to wet
Goal  Number  Location of site(s) and plotted with their corresponding cumulative probability
of sites level. The probability axis is transformed such that a normal
| Abs  Single Random distribution yields a straight line. Furthermore the relation
I Abs  Single On average closest between the mean soil moisture content and the standard de-
to spatial mean viation is investigated.
Il Abs  Single Best regression with spatial mean
IV  Abs Single At single date closest 3.3 Mean soil moisture estimation
to spatial mean
\% Abs  Multiple Random In practice, the spatial average soil moisture content is of-
VI Dyn Single  Random ten assumed to equal that at a single observation site (strat-
VIl Dyn Single  Smallest variability in egy |). For this strategy, the uncertainty of this estimate is
difference to spatial mean controlled by the spatial variability. This spatial variability

VIl Dyn  Single Smallest RMSE

IX Dyn Muliple Random might depend on the mean moisture content, which is gen-

erally unknown (since this is to be estimated). Therefore
we define the “expected” spatial variability for each dataset,
i.e. the variance that can be expected at a given moment in
time without prior knowledge of ; (see Appendix A):

dates. The indexesand; refer to selected locations in space
and/or time. The numben refers to the number of observa-
tions used in calculations when not all available observation€[Var (9)] = ZVar e(tj)] 3
are usedfi<n). We will analyse different strategies to es- /
timate average soil moisture from point scale observations. |, . . . .
Two main classes of strategies can be distinguished: those W'.th the a priori knowledge that soll m0|stu.re patterns are
persistent, some sites are more representative of the spatial
where the interest is in the soil moisture content itself (strate-
mean than others. Followingachaud et al(1985, we de-
gies I-V, see SecB.3), and those where the interest is only
fine the spatial differencé(x, ¢;) between the soil moisture
in observing the dynamics of the spatial mean (strategies VI-
contentd (x, ¢;) and the spatlal mean water conténtas
IX, see Sect3.4). An overview of these strategies is given in

Tablel. 8(x,1j) =0(x,1;) — 6 (4)

3.2 Soil moisture distribution In contrast to previous studies on rank stability whére
was normalized by ;, we express in the same units a.

In this paper we will focus on the question if a set of soil Note that since is corrected for the spatial mean soil mois-

moisture observations in space can, on average, be expectggre at alls;, it reflects the persistence in the spatial pattern

to follow a normal distribution. From other field experiments of g rather than in its actual magnitude. The temporal mean

itis known that, while most sets are approximately normally gifference for every sit8; is estimated as:

distributed, individual sets of observations can show signifi-

cant skewness and/or kurtosiagniglietti et al, 1998. Al- . 1
though there is no fundamental reason why soil moisture® [8Cxi)] = T x4 Zg(x“tf ®)
should follow a normal distribution, the use of this distribu- =1
tion has obvious advantages. Since soil moisture is boundegnq the temporal variability of at sitei, Var[5(x;)], as:
between residual moisture content and saturation, bounded
distributions might be more appropriate for some applica- — k 2
tions (Wood 1997 Ryu and Famiglieti2005. Var[3(xi)] = s(5)? Z 8(xi,t)) = 8i) )
Here we only perform a visual test for normality. For all j=1
k observation dates, the individual samples, ;) are nor- Although various definitions can be found in the literature
malized by subtracting the observed spatial meaand di-  for the most rank stable site, the most straightforward defi-
viding by the observed standard deviatia#l;). These are nition is the site having the smallest absolute mean difference
estimated by: so that this site can be used directly to estimate the mean soil
moisture content (e.gsrayson and Westert998:
o(t = O(x;,t; 1 — —
Elpe) Z(” & D o | <P v om#d ™
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Through this definition, the most rank stable site can onlythe standard deviation of the estimated means. This proce-
be selected if the spatial and temporal dynamics of the soidure was repeated 20 times to reduce sampling effects, and
moisture field are known. This applies to cases where arthe results were averaged.
area was first subjected to an intensive monitoring campaign,
and where monitoring is continued only at the site which, 3.4 Mean soil moisture time series estimation
on average, is closest to the spatial mean (strategy II). For
strategy Il we will assume @¢)=0. One might argue that for_a particular sitéhe bias with re-

If the space-time variability of a soil moisture field is SPect to the spatial meas;) is of little importance as long
known from a preceding campaign, the spatial mean migh@s the dynamics of the spatial mean are well represented. In
also be predicted from a regression between soil moisture dfis case the goal of soil moisture monitoring might be to es-
an individual site and the Spatia| mean. Since the soil mois.timate the Spatial mean soil moisture dynamiCS rather than its
ture diﬁ:erences at individua' |Ocations m|ght be a function aCtual Value. The Var|ab|l|ty Of the diﬂ:erence betWeen atime
of §;, this strategy can be expected to yield more accurateseries at one site and the time series of the spatial mean is ex-
estimates of ; than strategy II. Since in general the best site Pressed by Veis (x;)]. This quantity expresses the temporal
will be chosen, we quantify the uncertainty associated withvariability of a site with respect to the spatial mean, similar
this approach as the minimum of the variances around thd0 Var[é(z)] for the spatial mean. If a site is randomly se-
regressions for the individual sites (strategy Il). lected (strategy VI), the “expected” temporal variance with

A serious drawback for application of strategy Il is that respect to the spatial mean is (see Appendix A):

a priori knowledge on the space-time dynamics of the soil m

moisture field is required. This requires intensive sampling.E{\ar [6C) —&]) = 1 Z\/ar [8(xi,1))] (9)

As was suggested in previous studies (&achaud et aJ. mi

1985 Comegna and Basild994), a more practical method

would be to select the most rank stable site from one ini- If the goalis to capture the temporal dynamics of the spa-
tial field survey at time;. With this strategy (strategy IV), t!al mean from q.smg!e observation site, a dlfferent.deﬂm—
the most rank stable sitd; is the one that is closest to tion of rank stability might be more appropriate. In this case
6,. We therefore determing; for all k spatial soil mois- (strategy VII) one would prefer the site with the smallest tem-
ture fields. The effective uncertainty associated with the aporal variance oé:

proach of takingd ; to represeng ; is influenced both by; . ,

and Vars(x;)]. Th‘ie expression fé)r this “overall” variance is C={i | sG)?<s6n)? ¥ m#Ei (10)

derived in Appendix A. _ _ Note that through this definition, the most rank stable site
If the mean soil moisture can be estimated from multiple -5, only be identified if the complete space-time dynamics
measurements located randomly (strategy V), the uncertaintyye known. This is different from strategy IV, where only one
of the mean will decrease with the number of observationsspatia| field is needed to identify the site closest to the mean.
m. Whereas in previous studies the focus was mainly on thegiher definitions for the most rank stable site can also be
relative accuracy of the mean estimated from multiple obserty,nd. For instancelacobs et al2004) account for both the
vations (or the numbers of observations needed to achievgjas and variance of the soil moisture difference time series

a required level of relative accuracy), we focus here on thep the definition of the most rank stable site by minimizing
absolute uncertainty since this is a more relevant parametéfe root mean square error:

for many modeling purposes. In the idealized case where the
observations are completely independent, the standard erggmsg = (57 + Var[s(x;, )]} 2 = E{[6(x;)]%} 2 (11)
of the meary,, is given by:
s This case (strategy VIII) will be analyzed in addition to the
Sm = —= (8)  other definitions of rank stable sites. As was already men-
tioned in the preceding paragraph, the soil moisture differ-
wheres is the standard deviation of the individual observa- ences might depend @. This means that a better estimate
tions. Since the soil moisture field exhibits spatial correla-of the mean response can be obtained by regression of soil
tion, the actual dependence gf on the number of obser- moisture at an individual site to the spatial mean. Since un-
vations will differ from Eq. 8). To investigate whether the certainty around a regression is not affected by bias, this is
actual dependence differs from E®&),(we derived this de- the same as strategy Ill. The uncertainty in the soil mois-
pendence from the observations. For all observation dateture time series at a single site with respect to the spatial
and for I<xm<n/2, the spatial mean was estimated for all mean time series might be reduced by taking the time se-
independent sets of observations of sizeThese sets of ob- ries of soil moisture averaged over different randomly lo-
servations were selected randomly, but every site was onlgated sites (strategy 1X). To quantify this reduction, we used
allowed to occur once, yielding a maximum number: i an approach similar to that for strategy V. For all observation
sets. The standard error of the mean was then calculated amtes and for £m<n/2, the spatial mean was estimated for
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0.99 - on topography (as represented by a Digital Elevation Model,
— Tarrawarra DEM). Several of these indexes were employed/gstern
095F| — RS et al.(1999 to study the degree in which they can be predict
Louvain—la—Neuve

the spatial organization of soil moisture at Tarrawarra. In this
study we employ a wetness index developedhgtlitchnyi

et al. (2003. The (semi-)empirical model accounts for the
effects of slope profile shape, slope aspect, distance from the
divide, and slope gradient on the soil moisture distribution in
the top 0.5 m of the soi]vetlitchnyi et al.2003. In this way

°
©
a

o©
3

Cumulative probability [-]
o
(6]

031 1] both effects of subsurface flow and exposure are accounted
0.15 for. The relative wetness coefficient at any point is defined as
T the ratio of expected soil moisture at that point (as influenced
0.05} 1 by topography alone) and the expected soil moisture for a
— i flat surface (without effects of topography). Details of the
0.01 model and how it can be derived from a DEM can be found

-3 2 -1 o ! 2 in Svetlitchnyi et al.(2003. Following this approach, sites
Normalized soil moisture [-] . .
that accurately represent the dynamics of the spatial mean
Fig. 3. Normal probability plot of the normalized spatial soil mois- S,hOUId have a Weltness coefficient near unity. ngg We Inves-
ture fields. Dots indicate the median value, error bars indicate 250i9ate the: corr.elatlon petwee_n the wetness coefficient and the
and 75% percentiles of time variability. The inset shows the samgMean soil moisture differende.
procedure applied to randomly generated fields from a lognormal Leaf area index is known to influence evapotranspiration:
distribution, withn=25 andk=60. higher LAl leads to higher evapotranspiration rates (Alg.
Kaisi et al, 1989 Hupet and VancloosteP004. This means
that sites with higher than average LAI will have evaporated
all independent sets of observations of size The uncer-  more in the preceding period. At this site, one should expect
tainty was then calculated as the variability in the differenceg pelow-average soil moisture. In this way, a site with aver-

between the time series of these estimates and the time Serigge LAI m|ght be associated with average evapotranspiration

of the “true” spatial mean. rates, and average soil moisture. In this paper, we investigate
the correlation between LAI and the mean soil moisture dif-
3.5 A priori site selection ferences; .

Important advances can be made in the observation of mean

soil moisture if the sites that best represent the mean condi-

tions can be identified a priori; i.e. if the location of these 4 Results

sites can be explained by a land surface property that is

known to influence soil moisture dynamics (soil texture, veg-4.1 ~ Soil moisture distribution

etation). For instanceyachaud et al(1985 already dis-

cussed the relation between rank stability and soil textureFigure 3 shows the normalized soil moisture versus the cu-

They stated that “there is a high probability that if a location mulative probability for the three datasets. The straight line

is the most wet at a given time, it will remain the most wet indicates the standard normal distribution. In this plot, any

at other times because it has the highest clay content”. Fostructural deviation from a normal distribution will result in

more hilly areasGrayson and Wester(1998 argued that a deviation from the straight line. From the scatter in the

these sites “are in areas that are neither strongly convergemoints (indicated by error bars) it can be seen that individual

nor divergent, tend to be near the mid-slopes and are in areadstributions can deviate significantly from normal. However

that have topographic aspect close to average for the catctpn average the points tend to cluster around the normal line.

ment”. Detailed observations of land surface properties arelhis shows that, if no a priori information on the spatial soil

often not available at the exact location of the soil moisturemoisture distribution is available, the assumption of normal-

sites. A detailed 55 m Digital Elevation Model is available ity is reasonable. R-5 shows the least temporal variability in

for the Tarrawarra catchmenfestern and Graysoii998. the shape of the soil moisture distribution. These findings are

For the Louvain-la-Neuve, observations of Leaf Area Indexin agreement with previous studigsdsh et al.2004).

(LAI) at all 28 soil moisture sites are availablelpet and To illustrate that the clustering around the straight line is

Vancloostey2002). not the result of sampling or the Central Limit Theorem,
Terrain is known to influence the spatial distribution of soil we performed the same analysis on randomly generated spa-

moisture. Many different wetness indexes found in the liter-tial fields drawn from a lognormal distribution. The inset in

ature predict zones of below/above average wetness basdeg. 3 shows that sampling has a minor impact on the results.
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Table 2. Effective uncertainties for the different sampling strate- 3 1,1 6 15 13 ‘,‘ 5 1,7 2

gies. Values are expressed as one standard deviation (volumetric ' A) vV v {
moisture content). 0.03 E 1 } E 1
0 T - T E { % { E ? —{
Tarrawarra R-5 Louvain- ~0.03} J J E 11 I |
Strategy la-Neuve l
-0.06 1
Climate  0.0639 0.0726 0.0471 _0.00 L A AAAADANDLAADA A ‘
| 0.0274 0.0263  0.0167 16 18 9 8 19 12 1 14 7 10
I 0.0079 0.0122  0.0067 T 15246 5 7111826231716 127 2 8 4
i 0.0014 0.0055  0.0025 g 000 & 7 v ]
IV 0.0166 00187  0.0150 S 003l Hﬁ
\% 0.0128* 0.0128* 0.0083* 3_;; TIIIIMHHEEH{
0.0072** 0.0078** 0.0048** o 0 im TiTEEllllllLlLLL
VI 0.0162 0.0163 0.0115 g 003l { J } I t |
Vil 0.0076 0.0088 0.0042 g ™ {IH
VIl 0.0079 0.0099 0.0067 S 006t .,  DOLLALLAAAL AMADAAADL A A
IX 0.0075* 0.0077*  0.0054* @ 14192031 3 33303425 9 28 12 22 10 32 29 13
0.0042**  0.0045**  0.0031* 27 12 13 23 17 18 20 25 3 16 15 6 8 28
004 L ' ' ' ' ' ' ' v ' ' ' ' \Y% ' ' ;A
*Estimated uncertainty for 4 randomly located sites. ©
**Estimated uncertainty for 9 randomly located sites. 0.02 :
0
The randomly generated data from a non-normal distribution ~ =0-02¢ 1
clearly deviates from a straight line. —004FBL AN AAA AAAANAN A AAA ]
Itis well known from numerous field- and theoretical stud- 24521 7 10 2 2226111419 9 1 4
ies that spatial soil moisture variability might vary with the Location (sorted)

mean soil moisture content (for an overview, s@eniglietti
et al, 1999. Figure2 shows the observed mean and stan-Fig- 4. Rank stability plots for the three datasets. The sites have
dard deviation of the spatial soil moisture fields. The Stan-bee” ranked according to their mean difference with the spatial

dard deviation ranges from 0.01 to 0.05, while most valuesmean. The error bars indicate temporal variability (standard devia-
' o tion). The numbers refer to sites in Fiy. (a) Tarrawarra(b) R-5,

are between 0.02 and 0.03. All three datasets show an in: . . -
. N . . . .., (c) Louvain-la-Neuve. Downward triangles at the top indicate the

crease in varlabll.lty with decreasing moisture content, with most rank stable site (filled for strategy 1l open for strategy VII,

Tarrawarra showing the strongest trend and R-5 the weakgeq for strategy I, green for strategy Vll), upward triangles at the

est. Louvain-la-Neuve exhibits the lowest variability. This is pottom indicate most rank stable sites for strategy Il with the most

likely due to the smaller size of the area (more than an ordeprobable one(s) filled.

of magnitude), the little variation in topography and/or soils

as compared to the other sites.

terpreted as a signal-to-noise ratio. The variability of the cli-
mate signal is also listed in Tab®

With only one observation site located randomly (strategy 1), A much more precise estimate of the mean soil moisture
the uncertainty associated with estimates of the mean sofifom a single site can be obtained if this site is on average
moisture is controlled by the spatial variability. Effective Closest to the spatial mean (strategy Il). These sites are indi-
variability values are listed in Tabl2. Tarrawarra and R- cated in Fig.4 by the downward triangles. With this strat-

5 have comparable standard deviations of 0.027 and 0.02629Y the uncertainty reduces to the temporal variability of the
while Louvain-la-Neuve has a somewhat smaller value ofdifference between soil moisture at this site and the spatial
0.017. Since the spatial distribution of soil moisture is ap-Mean. These values vary between 0.007 and 0.012 (see Ta-

proximately normal, 95% confidence intervals can be con-ble2).

structed with a width of twice the expected spatial standard Even more precise estimates of the mean soil moisture
deviation. It is interesting to compare these values to vari-from a single site are obtained with a linear regression of soil
ability in the climate signal itself, that is the temporal vari- moisture at any site with the mean (strategy Ill). Tablests
ability of the spatial meaﬁj (see Fig.2). Since thisisthe the minimum values of this observation strategy. The corre-
signal that one actually wants to observe, a comparison witlsponding sites are identified in Fid. For all three datasets,
the uncertainty (or noise) provides something that can be inthese sites differ from the sites that are on average closest

4.2 Mean soil moisture estimation
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Fig. 6. Distribution of the wetness coefficient for the Tarrawarra
0 . : : catchment. Circles indicate the soil moisture sites.
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Number of observations [-]

The uncertainty of the estimated mean from point-scale
Fig. 5. Relative standard error as a function of the number of obser-4yservations is reduced if the mean can be estimated from
vations thaF is used to e;tlmate the spatial mean. The black line '?nultiple observations. Figur shows how the relative (to
the theoretical curve for independent observations. . s . .
the spatial variability) uncertainty decreases with the number
of randomly located observation sites. In spite of any pos-
to the mean. These sites also have a large time variabilitysible spatial correlation, the empirical relationships for the
indicating that the corresponding regression not only has anlifferent datasets are close to the theoretical relation for fully
offset, but also that the slope differs from 1. The low uncer-independent samples(¥m). For all datasets, this relation
tainty (0.0014 to 0.0055) indicates that accurate soil moistureslightly overestimates the actual uncertainty. When the mean
estimation from a single site is possible over a range of wet-of 4 independent samples is used to estimated the “true” spa-
ness conditions; but only if the space-time dynamics of thetial mean, the uncertainty reduces to approximately 50% of
soil moisture field are known from a preceding campaign. the spatial variability. For 9 sites, this reduction is 70 to 75%.
As noted before, the site closest to the mean might in pracfor independent samples, this reduction should be 50% for
tice be identified from a single spatial survey (strategy IV). four samples, and 66.7% for nine samples.
If there would exist perfect rank stability, this would give
the same result as strategy Il. However careful analysis re4.3 Mean soil moisture time series estimation
veals that the site that is on average closest to the mean has
a low probability of being identified at a given moment in One might expect the uncertainty associated with the esti-
time. These probabilities are only 7% (4/54), 10% (8/84), mation of the temporal dynamics of the spatial mean from
and 4% (2/45) for Tarrawarra, R-5, and Louvain-la-Neuve, a single site to be much less than that associated with the
respectively. On individual dates, between 60 to 70% of allestimation of the mean itself. The effective values of the un-
the sites would be identified as being closest to the spatiatertainty on the time series range between 0.0115 and 0.0163
mean. These sites are identified in Fdoy the upward tri-  (see Table?). It is interesting to compare the values in Ta-
angles. The site(s) that is (are) most likely to be identifiedble 2 for strategies | and VI. Strategy | represents the effec-
as being closest to the mean on individual dates (indicatedive (for all sampling dates) uncertainty caused by spatial het-
by filled upward triangles) differ in all three cases from the erogeneity, while strategy VI represents the effective (for all
site that is on average closest to the mean. For Tarrawarrsgampling sites) uncertainty due to temporal or process het-
R-5, and Louvain-la-Neuve these sites are resp. 15, 30, androgeneity. The ratios of the temporal and spatial standard
1(22), with probabilities of 19% (10/54), 14% (12/84), and deviation around the spatial mean range between 0.59 and
11% (5/45). 0.68. While the spatial variability is known to be large, lit-
The large variation in sites being closest to the mean ortle attention has been paid so far in soil moisture research to
individual dates adds considerable uncertainty to strategy Ilfemporal variability with respect to the spatial mean.
For Louvain-la-Neuve, this uncertainty is almost equal to the There are large differences in the temporal variability be-
spatial variability (0.0150 vs. 0.0167). This is caused by thetween the different sites. For some sites, the temporal vari-
selection of some sites with a large temporal variability of the ability exceeds the spatial variability, while other sites show
soil moisture difference. For the other two datasets, the unfittle temporal variability in their difference to the spatial
certainty for strategy IV is still 61% (Tarrawarra) resp. 71% mean. The sites with minimum temporal variability are in-
(R-5) of the effective spatial standard deviation. dicated in Fig4. In all the three datasets, these sites do not
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Fig. 7. Wetness coefficient versus the mean soil moisture differenceFig. 8. Leaf area index versus the mean soil moisture difference
for all sites at Tarrawarra. Error bars indicate the temporal variabil-for all sites at Louvain-la-Neuve. Error bars indicate the temporal
ity in soil moisture difference for each site, similar to Fg. variability in soil moisture difference for each site, similar to Fg.

correspond to the optimal sites for the other strategies. In
two datasets (R-5 and Louvain-la-Neuve), these sites even

;jr:gsi;rorr dal![the_?l;es ;hatr?rﬁlflc;m:f;to thﬁtSp?t'aln:n?I?T) a[ributed according to topography, one might expect a clear
ual dates. the uncertainty 1or tNese SItes 1S Small: Deoion with the wetness coefficient. Ideally, the sites that

tween 0.0042 an_d (.)‘00.88‘ _However even _for the . best Slte’are closest to the spatial mean would have a wetness coeffi-
the standard deviation is still 10% of the climate signal.

) . C o ient near unity. However th | correlation between th
The site with the lowest RMSE is indicated in F&. In cient near unity. However the actual correlation between the

. . __.mean soil moisture differendg and the wetness coefficient
m’o ?e\lltas?tgl(\;lrgrléai\/var;a a\:\dr Louvalln-la-lNeU\iet) thtﬁ site Wg Fig. 7) is close to zero. The low correlation is illustrated by
mgag sisowing thatsinopra?:ti:?hee?esn(:ighﬁ)eeslittl(; dif?efé)r?c:the fact that the site which has a wetness coefficient closest
’ o 2 to unity is on average the driest! This result is both surpris-
between the definitions. The uncertainties for strategy VIII Y g P

._ing and contradicting: while the pattern of the wetness co-
f?é?\%S\?;ltlo 0.0080) are comparable to the values for Str"’“eg'egfl‘icient seems very similar to detailed observed soil mois-

. . . . . ture patterns at Tarrawarra, there is hardly any correlation
If the time series of the spatial mean is estimated from P y any

. . .._between the individual NMM sites and the wetness coeffi-
the time series of the mean of several randomly located site

. . . Bient. This is in line with the findings byilson et al.(2004),
Sstrategy IZ()’ then the rel_atlye_ uncertainty (W'th respectto theWho showed that even in catchments with significant topo-
expected” temporal variability) decreases with the number

of sites in a similar fashion to Fi§.(not shown). Tabl® lists graphic variability, the topographic component might not be

s ; . the largest contributor to the overall spatial variance.
the uncertainties in the case that four resp. nine sites are useg 9 P

to estimate the spatial mean. These values are roughly 45% . i
resp. 25 to 30% of the variability in the individual time series O Louvain-la-Neuve, vegetation rather than topography

(strategy V1), which again is only slightly less than would &0 be expected to have the largest impact on the spatial soil
follow from Eq. @©). moisture pattern. Figur® shows the relation between LAl

and the mean soil moisture differen&efor each site. Al-
4.4 A priori site selection though the correlation is higher than for the wetness coeffi-

cient at Tarrawarra, it is still lowK?=0.18). This might be
Figure6 shows the distribution of the wetness coefficient for due to the fact that LAl was observed only once under rela-
the Tarrawarra catchment. This coefficient is indicative for tively wet soil moisture conditions early in the growing sea-
the distribution of soil moisture in the upper 0.5m of the son. The soil moisture pattern under these conditions might
soil (Svetlitchnyi et al. 2003. The distribution of the wet-  reflect the pattern of soil texture rather than vegetation (LAI).
ness coefficient closely resembles the observed detailed soflowever the correlation with the yield, which was measured
moisture patterns at Tarrawarra (eWestern and Grayson at the end of the growing seasoHupet and Vanclooster
1998. Above average wetness is encountered along the€002), is even lower R2=0.16). These correlations are too
drainage lines, and below average wetness on the exposadeak to predict the location of rank stable sites from LAl
north-facing slope. If point-scale soil moisture is only dis- alone.
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| Wet | | Dry | An interesting question not yet discussed in this paper
_ 0.06 is what is the uncertainty introduced by measurement er-
§ ror? From a geostatistical analysis of Tarrawarra TDR soil
s 004 I moisture, Western et al(1998 report nugget values rang-
ES ' 9 ing from 0.020 to 0.024 (standard deviation) including both
§ o effects of small scale heterogeneity and measurement er-
€ 002 £ ror. Western and Grayso1998 report the NMM obser-
) E vations to have an error standard deviation of 2.5 volumetric
3 2 i - i
2 0 z moisture percent, i.e. 0.025. These values seem to overesti-
g £ mate the actual random error. Tal#eshows that the scat-
5 -0.02 E ter around the regression between soil moisture at individ-
S ual sites and the spatial mean (strategy Ill) can be as low as
3 0.04 0.0014. This is probably a better estimate of the true ran-

dom error. For Louvain-la-Neuvedjupet et al.(2004) re-

port total measurement uncertainties for the NMM and TDR
Fig. 9. Differences between local soil moisture and the spatial mean(?f 0.0091 to 0'0095_’ resp. 0.0158 t0 0.0176 (stanc_iard_ devia-
(5(x, 1)) for Louvain-la-Neuve. The sites have been ranked accord-tion of the volumetric moisture content). The contribution of
ing to their mean difference (the same as in Eyg.and the dates the instrument alone is estimated as 0.005801 resp. 0.0021
according to their mean soil moisture content. Three domains cai0 0.0028. This is very close to the value for strategy Il in
be distinguished with corresponding spatial patterns: a wet domainfable2 (0.0025). This suggests that it is possible to monitor
in which soil moisture variability reflects soil properties, a transition spatial average soil moisture with approximately the same

domain, and a dry domain in which the variability reflects vegeta- accuracy as point-scale soil moisture, provided that the re-
tion properties. The leftward triangle indicates the site that is on av-gression between the two is known.

erage closest to the mean (strategy Il), rightward triangles indicate ) o ]
sites that on single dates are closest to the mean, and the downward The relative uncertainties can be used to make a first-order

triangle indicates the date of LAl observations. cost-benefit analysis when planning a field campaign. De-
pending on the length of the campaign, a trade off can be
_ _ made between the costs associated with continuous moni-

5 Discussion toring at multiple randomly located sites (depending on the

o . accuracy thatis required), and monitoring at a single site that
The results presented in this paper are based on analysis f nown to yield accurate estimates of average soil moisture

three datasets only. The large consistency in the relative Ung,m initial extensive spatial variability surveys. Depending
certainties between the different observation strategies (Tagp, the observation strategy that is chosen, a higher accuracy
ble 2) suggest they might be indicative for other areas as well gt he achieved at a lower cost. In terms of accuracy/cost
So far, the local soil moisture differencésto the spatial 445 it might be more beneficial to estimate mean soil mois-
mean have only been discussed in terms of their expecteq,rq trom several randomly located sites during shorter cam-
dlstrlbut_lon. It_ is also interesting to Iook at thelr_ temporal paigns, while for long-term monitoring it might be better to
correlation. Figured shows the space-time distribution of oqapjish a regression between the mean and the value at a
8(x, 1) for Louvain-la-Neuve sorted by the temporal mean giqje site that is to be monitored over several years. Prefer-

difference for every site and the spatial mean soil moisture,p|, this regression should at least contain two points in the
for every date. This reveals an interesting property of thedry and wet extremes.

soil moisture field. For a large part of the mean soil mois- o
ture range (indicated by “wet”), the local soil moisture differ- ~ The uncertainties in Tab2 can also be used to construct

ences remain nearly constant, indicating a similar spatial patconfidence bounds on the observations. These uncertainty
tern. Similarly, another (different!) spatial pattern exists in Pounds can be used to make more quantitative statements on
the “dry” domain, with a less defined transition in between. how good model soil moisture (i.e. often with effective field-
These patterns likely reflect properties of the soil in the “wet” Or catchment-scale parameters) has to match with point-scale
domain, and vegetation in the “dry” domain. The apparentobservations. Figur&0 shows an example of this for a wet-
switch between two preferred spatial patterns is similar to thedry transition in the R-5 dataset. The outer bounds in £g.

one observed in Tarrawarr&(ayson et a).1997. It should correspond to strategy | when no information is available
be noted that the LAI observations were made in the “wet”on how this site relates to the spatial mean. The middle
domain, while the impact on the soil moisture pattern mightbounds correspond to the uncertainty on the dynamics alone

be more pronounced in the “dry" domain. This might parﬂy (|e strategy V|) when the site is located randomly. The inner
explain the low correlation in Fig. bounds represents the uncertainty of the best-case scenario

were the spatial average soil moisture is estimated from a
known regression with the mean.

Time (ranked by mean soil moisture)
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6 Conclusions

Strategy |

— It is shown that, on average, the spatial distribution of 2:?323 I\Illl
soil moisture is well approximated by a normal distribu-
tion. This is true for all the three datasets. This property T b o0 oVl
can be used to construct confidence intervals on point- £ A
scale soil moisture observations. ‘g ool .
E . :
— The temporal dynamics of the spatial mean soil mois- E - % .

ture can be estimated more accurately from a randomly ‘e
located site than the mean soil moisture itself. How-
ever the standard deviation of the uncertainty on these
temporal dynamics is stit-66% of the effective spatial

variability. Mar72 Apr72 May72 Jun72 Jul72 Aug72 Sep72

765

— Rank stable sites exist for all three datasets. The uncerrig. 10. Approximate 95% confidence bounds for the spatial mean
tainty on the estimated spatial mean is reduced considerduring a wet-dry transition at R-5, as estimated from soil moisture
ably (to~40% of the effective spatial variability) if one at a single site (black dots, in this case site 31). The outer bounds
of these sites is used to monitor soil moisture. Howevercorrespond to the spatial variability, the middle bounds to tempo-
identification of these sites requires intensive sampling.ral variability, and the inner bounds give the uncertainty associated

If such a site is selected from a single spatial survey, the"ith the best linear regression with the spatial mean.
overall uncertainty is stit~75% of the effective spatial

variability.

a mean [EX|i]=u; and variance VdX|i] _o

— For many sites, the temporal correlation in the soil mois-
ture differences to the spatial mean results in an accu-
rate linear regression between soil moisture at that site

bility of 1/n. The mean of is:

and the spatial mean. The accuracy of this regression i€ [X] = E[E(X[i)] = Z E[X|i] (A1)

close to the random observation error for a single soil

moisture observation. The variance of can be calculated from:

— Tofirst order, the relative (to the spatial variability) stan- var[X] = E [ XZ] — E?[X] (A2)

dard error of the spatial mean soil moisture reduces with

the inverse of the square root of the number of randomly  Since

located sites used to estimate the mean. This means that "

the uncertainty can be reduced 5%0% if the meanis [ [XZ] . Y E [X2|i]
n

estimated from four sites rather than from a single site. p)
1 n
— Although the spatial soil moisture pattern is known to be = - Z{Var[X|i] + E? [X1i1} (A3)
related to a combination of soil, vegetation, and land- i3

scape characteristics, neither a wetness coefficient de;
rived from a DEM or the LAI showed a high correlation
with the temporal mean soil moisture differences to theVar[X] _
spatial mean for the different sites. It should therefore -
not be expected that a particular site with an average
wetness coefficient or average LAI has a close to aver-

age soil moisture.

the variance of can also be written as:

1 n 1 n
= Var[X[i] + = Y E*[X]i]
n i=1 n i=1

The last term of this equation is expanded as:

1 13
D EIXI = = 3 E*[X1i]
=1 i=1
Here, an expression is derived for the mean and variance of a l :

random selection from densities of the same random vari-
ableX, f;(X),withi={1, 2, ..., n}. Each density/; (X) has

Appendix A
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. Here we as-
sumei to be a discrete random variate Wlth uniform proba-

33 ey (A%)
nia

n i—1
+n_22 Zl X;E[Xli] E[XIj]  (A5)
i=1j=
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so that combining (x) and (x) yields an expression that al-Famiglietti, J., Rudnicki, J., and Rodell, M.: Variability in sur-

lows Var[ X] to be calculated from the individual[X |i] and face moisture content along a hillslope transect: Rattlesnake Hill,
Var[X|i]: Texas, J. Hydrol., 210, 259-281, 1998.
Fitzjohn, C., Ternan, J., and Williams, A.: Soil moisture variabil-
1< 5 & ity in a semi-arid gully catchment: implications for runoff and
Var[X] = — Z My — 2 Z Z witej(AB) erosion control, Catena, 32, 55-70, 1998.
i=1j= Gomez-Plaza, A., Alvarez-Rogel, J., Albaladejo, J., and Castillo,
F|naIIy, if E[X|z] E[X|j] ¥ j # i, then simply V. Spatia][ pattlern§ and ten_wpo_:jal stability of fo|i_l| n:joisltl::)re across
a range of scales in a semi-arid environment, rol. Processes,
Var[X] =137 62 g y

14, 1261-1277, 2000.
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