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Abstract. Root zone soil moisture is a key variable in many
land surface hydrology models. Often, however, there is
a mismatch in the spatial scales at which models simulate
soil moisture and at which soil moisture is observed. This
complicates model validation. The increased availability of
detailed datasets on space-time variability of root-zone soil
moisture allows for a posteriori analysis of the uncertain-
ties in the relation between point-scale observations and the
spatial mean. In this paper we analyze three comprehen-
sive datasets from three different regions. We identify differ-
ent strategies to select observation sites. For instance, sites
can be located randomly or according to the rank stability
concept. For each strategy, we present methods to quan-
tify the uncertainty that is associated with this strategy. In
general there is a large correspondence between the differ-
ent datasets with respect to the relative uncertainties for the
different strategies. For all datasets, the uncertainty can be
strongly reduced if some information is available that relates
soil moisture content at that site to the spatial mean. How-
ever this works best if the space-time dynamics of the soil
moisture field are known. Selection of the site closest to the
spatial mean on a single random date only leads to minor re-
duction of the uncertainty with respect to the spatial mean
over seasonal timescales. Since soil moisture variability is
the result of a complex interaction between soil, vegetation,
and landscape characteristics, the soil moisture field will be
correlated with some of these characteristics. Using avail-
able information, we show that the correlation with leaf area
index or a wetness coefficient alone is insufficient to predict
if a site is representative for the spatial mean soil moisture
content.

Correspondence to:A. J. Teuling
(ryan.teuling@wur.nl)

1 Introduction

Soil moisture controls several processes at or near the land
surface. The partitioning of rainfall into infiltration and
runoff; the partitioning of available energy into latent and
sensible heat; the drainage of water to groundwater and/or
surface water; the growth of vegetation: all these processes
are strong and nonlinear functions of soil moisture. Many
forecasting applications rely on accurate soil moisture obser-
vations to predict these processes. However soil moisture ob-
servations are often available at the point-scale, while most
models utilize effective parameters representative for the av-
erage soil and vegetation. Similar problems arise when point
scale soil moisture observations are combined with flux mea-
surements. Vertical fluxes of water and/or energy at several
meters above the surface might be affected by spatial average
soil moisture conditions at the scale of the flux footprint. At
many stations, for instance in the FLUXNET network (Bal-
docchi et al., 2001), root zone soil moisture is monitored at
a scale several orders of magnitude smaller than the corre-
sponding flux footprint. When validating model simulations
with point-scale soil moisture observations, or when assimi-
lating these observations in models, attention should be paid
to the uncertainty that results from upscaling the point-scale
observations to areal average soil moisture.

One of the first reports of soil moisture variability was
made byReynolds(1970). Other early reports on extensive
studies of soil moisture variability were made byBell et al.
(1980) andHawley et al.(1983). Several authors have noted
that, despite the large spatial variability, the soil moisture
patterns themselves remain relatively stable over time (e.g.
Vachaud et al., 1985; Mohanty and Skaggs, 2001). This tem-
poral persistence in the spatial pattern of soil moisture was
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Fig. 1. Location of the study areas and observation sites.
(a) Louvain-la-Neuve (0.5 m interval contour lines),(b) Tarrawarra
(2 m interval contour lines),(c) R-5 (∼3 m interval contour lines).
For Louvain-la-Neuve and R-5 the numbering of sites is continu-
ous along rows. Open circles indicate sites that were omitted in the
analysis.

used byVachaud et al.(1985) to show that some sites main-
tain a similar rank throughout the year, i.e. that some sites are
more representative of the spatial mean than others.Vachaud
et al.(1985) called these sites “time stable”. In this paper, we
will use the term “rank” stability rather than “temporal” sta-
bility, following the arguments ofChen(2006). Rank stabil-
ity has been used in many other studies to investigate space-
time dynamics of soil moisture fields and the potential of us-
ing a limited number of sites to observe the mean response
(e.g.Kachanoski and de Jong, 1988; Comegna and Basile,
1994; Grayson and Western, 1998; Gómez-Plaza et al., 2000;
Mohanty and Skaggs, 2001; Grant et al., 2004; Jacobs et al.,
2004; Petrone et al., 2004; Mart́ınez-Ferńandez and Cebal-
los, 2005). Pachepsky et al.(2005) reported rank stability to
exist also in the vertical soil moisture distribution.

Several authors have reported that soil moisture patterns
reflect patterns in vegetation (e.g.Hupet and Vanclooster,
2002; Schume et al., 2003; Hupet and Vanclooster, 2005),

soil texture (e.g.Price and Bauer, 1984; Vachaud et al., 1985;
Seyfried, 1998; Grant et al., 2004) and/or landscape char-
acteristics (e.g.Anderson and Kneale, 1980; Nyberg, 1996;
Crave and Gascuel-Odoux, 1997; Bárdossy and Lehmann,
1998; Famiglietti et al., 1998; Qiu et al., 2001). It is also
known from field observations that soil moisture patterns can
reflect patterns in landscape and/or soil characteristics in a
wet state, while reflecting vegetation and/or soil characteris-
tics in a dry state (Grayson et al., 1997; Fitzjohn et al., 1998;
Gómez-Plaza et al., 2000). Recent advances in the theoreti-
cal understanding of these empiral findings have been made
by Albertson and Montaldo(2003). They showed that the
temporal evolution of soil moisture variability is driven by
the sum of the covariances between soil moisture and differ-
ent fluxes. In a simulation study,Teuling and Troch(2005)
showed how the temporal dynamics of these different covari-
ance terms can be used to explain the different observed re-
lationships between mean soil moisture and its spatial vari-
ability. The fact that different controls operate on the spa-
tial soil moisture pattern depending on the mean moisture
content (e.g.Teuling and Troch, 2005; Wilson et al., 2005)
has important implications for soil moisture sampling and
the applicability of the rank stability concept. For instance,
Mart́ınez-Ferńandez and Ceballos(2005) concluded that it
might take a year of sampling (a complete seasonal cycle) to
correctly identify the most rank stable site.

Spatial soil moisture fields are known to exhibit a corre-
lation structure.Western et al.(1998) provide an compre-
hensive table listing different geostatistical analyses of soil
moisture fields. In general, correlation lengths for soil mois-
ture are small, with values of only 10–25 m being common
(Loague, 1992). Even in experiments with a relatively dense
network, spatial correlation is often non-existent (Comegna
and Basile, 1994; Hupet and Vanclooster, 2002). When ter-
rain has a significant impact on the soil moisture pattern, the
larger correlation lengths can mainly be attributed to terrain
indexes (Western et al., 1998). In Tarrawarra, the spatial
structure of the soil moisture field is known to be governed
by topographic features in the wet state, while there is little
spatial correlation in the dry state (Western et al., 1999).

In this paper we investigate the relationship between the
dynamics of individual soil moisture observations and those
of the spatial mean at the field- or small catchment scale. We
perform this exercise for three different datasets, each having
its own typical geographic and climatic conditions. By doing
so, (dis)similarities between the datasets can be identified.
Different sampling strategies are identified and methods are
presented to quantify the corresponding uncertainties.

2 Data

The datasets were selected based on three criteria: a) obser-
vations on multiple depths so that a root-zone average soil
moisture content can be estimated, b) a sufficient number of
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sites that allows for accurate estimation of the spatial mean
root zone soil moisture content, and c) sufficient temporal
dynamics so that the temporal variability over a complete
seasonal cycle is well represented. For the depth of the root
zone we used the upper∼70 cm of the soil, which represents
most (if not all) of the temporal dynamics of the soil mois-
ture that is available for root water uptake. Typically, 50% of
the roots are already located in the upper decimeters of soil
(Schenk and Jackson, 2002). The depth is partly constrained
by the observations, since we choose to include the obser-
vations made at 60 cm depth (see below). Furthermore we
choose a constant depth for all datasets, so that the results
can be compared directly. It should be noted that the tempo-
ral dynamics of soil moisture strongly decrease with depth,
so that our results are not very sensitive to the exact depth
over which soil moisture is averaged.

The 10.5 ha Tarrawarra catchment is located in southeast-
ern Australia (Fig.1b). The catchment has been subject to
several intensive monitoring campaigns that aimed at inves-
tigating the soil moisture spatial pattern at the small catch-
ment scale. The soil texture in the catchment varies from
silty-loam to clay, and the topography is undulating with a
maximum relief of 27 m. The climate is temperate. Land
use is perennial pastures used for grazing. At 59 dates be-
tween 20 September 1995 and 10 June 1997, soil moisture
was monitored at 20 locations by means of a Neutron Mois-
ture Meter (NMM). Observations were made at depths of 15,
30, 45, 60, 90, 120, and 150 cm, or to the depth of the access
tube. Root zone soil moisture is taken as the average value
of the observations at 15, 30, 45, and 60 cm depth. Site 20
was excluded from the analysis since this data is suspected
to be erroneous (Grayson and Western, 1998). Furthermore
days with missing observations for one or more sites were ex-
cluded, leaving observations at 54 days at 19 sites. The time
series of the spatial mean and standard deviation are shown
in Fig.2a. The NMM data was extracted from the Tarrawarra
database (Western and Grayson, 1998).

The R-5 experimental catchment is located northeast of
Chickasha, Oklahoma (USA). The USDA Agricultural Re-
search Service intensively monitored R-5 from 1966 to 1978.
The 10 ha catchment is a native grassland pasture used for
grazing. The surface is gently sloping with an average slope
of 3% (Fig.1c). At 84 dates between 21 January 1971 and 24
June 1974, NMM observations of soil moisture were made
at 34 sites and at 8 different depths. Here we use the aver-
age value of the observations made at 15, 30, 45, and 60 cm
depth. One site (21) was excluded from the analysis since
soil moisture at this site exhibited a suspicious drift, leav-
ing observations at 84 days and 33 sites. The time series of
the spatial mean and standard deviation are shown in Fig.2b.
The R-5 dataset is described in detail byLoague(1992).

Soil moisture variability was measured in an 0.65 ha agri-
cultural field in Louvain-la-Neuve (Belgium) as part of a
campaign that aimed at investigating the within-field spatial
variability of evapotranspiration. Observations were made on
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Fig. 2. Time series of spatial mean and variability. Error bars in-
dicate± one standard deviation.(a) Tarrawarra (10.5 ha, 19 sites),
(b) R-5 (10 ha, 33 sites),(c) Louvain-la-Neuve (0.65 ha, 28 sites).
The downward triangle indicates the date of LAI observations.

45 days between 30 May 1999 and 13 September 1999. The
observations were made on a regular 4×7 grid (see Fig.1a)
at different depths. He we use the average value of the Time
Domain Reflectometry (TDR) observations (0–20 cm), and
the NMM observations at depths of 25 and 50 cm. The soil
in the field is classified as well-drained silty-loam and there
is little relief. During the campaign the field was cropped
with maize. The climate is moderate humid. The time se-
ries of the spatial mean and standard deviation are shown in
Fig. 2c. In this paper we also employ the Leaf Area Index
(LAI) measurements that were taken at each site on 12 July
1999. The dataset is described in detail byHupet and Van-
clooster(2002).

3 Method

3.1 Notation

In this paper, we study aspects of the spatial and temporal dy-
namics of the volumetric soil moisture fieldθ(x, t). Obser-
vations of this field are available at discrete intervals in space
and time, namelyx={x1, x2, . . . , xn} and t={t1, t2, . . . , tk}

wheren andk refer to the number of observation sites resp.
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Table 1. Summary of the observation strategies used in this paper.
In the “Goal” column, “Abs” refers to absolute value of the spatial
average volumetric soil moisture content, and “Dyn” refers to the
dynamics of the spatial average.

Goal Number Location of site(s)
of sites

I Abs Single Random
II Abs Single On average closest

to spatial mean
III Abs Single Best regression with spatial mean
IV Abs Single At single date closest

to spatial mean
V Abs Multiple Random
VI Dyn Single Random
VII Dyn Single Smallest variability in

difference to spatial mean
VIII Dyn Single Smallest RMSE
IX Dyn Multiple Random

dates. The indexesi andj refer to selected locations in space
and/or time. The numberm refers to the number of observa-
tions used in calculations when not all available observations
are used (m<n). We will analyse different strategies to es-
timate average soil moisture from point scale observations.
Two main classes of strategies can be distinguished: those
where the interest is in the soil moisture content itself (strate-
gies I–V, see Sect.3.3), and those where the interest is only
in observing the dynamics of the spatial mean (strategies VI–
IX, see Sect.3.4). An overview of these strategies is given in
Table1.

3.2 Soil moisture distribution

In this paper we will focus on the question if a set of soil
moisture observations in space can, on average, be expected
to follow a normal distribution. From other field experiments
it is known that, while most sets are approximately normally
distributed, individual sets of observations can show signifi-
cant skewness and/or kurtosis (Famiglietti et al., 1998). Al-
though there is no fundamental reason why soil moisture
should follow a normal distribution, the use of this distribu-
tion has obvious advantages. Since soil moisture is bounded
between residual moisture content and saturation, bounded
distributions might be more appropriate for some applica-
tions (Wood, 1997; Ryu and Famiglietti, 2005).

Here we only perform a visual test for normality. For all
k observation dates, the individual samplesθ(x, tj ) are nor-
malized by subtracting the observed spatial meanθ j and di-
viding by the observed standard deviations(θj ). These are
estimated by:

Ê
[
θ(tj )

]
= θ j =

1

n

n∑
i=1

θ(xi, tj ) (1)

and

V̂ar
[
θ(tj )

]
= s(θj )

2
=

1

n − 1

n∑
i=1

[
θ(xi, tj ) − θ j

]2
(2)

These normalized values are then ranked from dry to wet
and plotted with their corresponding cumulative probability
level. The probability axis is transformed such that a normal
distribution yields a straight line. Furthermore the relation
between the mean soil moisture content and the standard de-
viation is investigated.

3.3 Mean soil moisture estimation

In practice, the spatial average soil moisture content is of-
ten assumed to equal that at a single observation site (strat-
egy I). For this strategy, the uncertainty of this estimate is
controlled by the spatial variability. This spatial variability
might depend on the mean moisture content, which is gen-
erally unknown (since this is to be estimated). Therefore
we define the “expected” spatial variability for each dataset,
i.e. the variance that can be expected at a given moment in
time without prior knowledge ofθ j (see Appendix A):

E[Var(θ)] =
1

k

k∑
j=1

Var
[
θ(tj )

]
(3)

With the a priori knowledge that soil moisture patterns are
persistent, some sites are more representative of the spatial
mean than others. FollowingVachaud et al.(1985), we de-
fine the spatial differenceδ(x, tj ) between the soil moisture
contentθ(x, tj ) and the spatial mean water contentθ j as:

δ(x, tj ) = θ(x, tj ) − θ j (4)

In contrast to previous studies on rank stability whereδ

was normalized byθ j , we expressδ in the same units asθ .
Note that sinceδ is corrected for the spatial mean soil mois-
ture at alltj , it reflects the persistence in the spatial pattern
of θ rather than in its actual magnitude. The temporal mean
difference for every siteδi is estimated as:

Ê [δ(xi)] = δi =
1

k

k∑
j=1

δ(xi, tj ) (5)

and the temporal variability ofδ at sitei, V̂ar [δ(xi)], as:

V̂ar [δ(xi)] = s(δi)
2

=
1

k − 1

k∑
j=1

(
δ(xi, tj ) − δi

)2
(6)

Although various definitions can be found in the literature
for the most rank stable site8, the most straightforward defi-
nition is the site having the smallest absolute mean difference
so that this site can be used directly to estimate the mean soil
moisture content (e.g.Grayson and Western, 1998):

8 = {i | |δi | < |δm| ∀ m 6= i} (7)
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Through this definition, the most rank stable site can only
be selected if the spatial and temporal dynamics of the soil
moisture field are known. This applies to cases where an
area was first subjected to an intensive monitoring campaign,
and where monitoring is continued only at the site which,
on average, is closest to the spatial mean (strategy II). For
strategy II we will assume E(δ8)=0.

If the space-time variability of a soil moisture field is
known from a preceding campaign, the spatial mean might
also be predicted from a regression between soil moisture at
an individual site and the spatial mean. Since the soil mois-
ture differences at individual locations might be a function
of θ j , this strategy can be expected to yield more accurate
estimates ofθ j than strategy II. Since in general the best site
will be chosen, we quantify the uncertainty associated with
this approach as the minimum of the variances around the
regressions for the individual sites (strategy III).

A serious drawback for application of strategy II is that
a priori knowledge on the space-time dynamics of the soil
moisture field is required. This requires intensive sampling.
As was suggested in previous studies (e.g.Vachaud et al.,
1985; Comegna and Basile, 1994), a more practical method
would be to select the most rank stable site from one ini-
tial field survey at timetj . With this strategy (strategy IV),
the most rank stable site8j is the one that is closest to
θ j . We therefore determine8j for all k spatial soil mois-
ture fields. The effective uncertainty associated with the ap-
proach of taking8j to representθ j is influenced both byδi

and Var[δ(xi)]. The expression for this “overall” variance is
derived in Appendix A.

If the mean soil moisture can be estimated from multiple
measurements located randomly (strategy V), the uncertainty
of the mean will decrease with the number of observations
m. Whereas in previous studies the focus was mainly on the
relative accuracy of the mean estimated from multiple obser-
vations (or the numbers of observations needed to achieve
a required level of relative accuracy), we focus here on the
absolute uncertainty since this is a more relevant parameter
for many modeling purposes. In the idealized case where the
observations are completely independent, the standard error
of the meansm is given by:

sm =
s

√
m

(8)

wheres is the standard deviation of the individual observa-
tions. Since the soil moisture field exhibits spatial correla-
tion, the actual dependence ofsm on the number of obser-
vations will differ from Eq. (8). To investigate whether the
actual dependence differs from Eq. (8), we derived this de-
pendence from the observations. For all observation dates
and for 1≤m≤n/2, the spatial mean was estimated for all
independent sets of observations of sizem. These sets of ob-
servations were selected randomly, but every site was only
allowed to occur once, yielding a maximum number ofn/m

sets. The standard error of the mean was then calculated as

the standard deviation of the estimated means. This proce-
dure was repeated 20 times to reduce sampling effects, and
the results were averaged.

3.4 Mean soil moisture time series estimation

One might argue that for a particular sitei the bias with re-
spect to the spatial mean (δi) is of little importance as long
as the dynamics of the spatial mean are well represented. In
this case the goal of soil moisture monitoring might be to es-
timate the spatial mean soil moisture dynamics rather than its
actual value. The variability of the difference between a time
series at one site and the time series of the spatial mean is ex-
pressed by Var[δ(xi)]. This quantity expresses the temporal
variability of a site with respect to the spatial mean, similar
to Var

[
θ(tj )

]
for the spatial mean. If a site is randomly se-

lected (strategy VI), the “expected” temporal variance with
respect to the spatial mean is (see Appendix A):

E{Var
[
δ(xi) − δi

]
} =

1

m

m∑
j=1

Var
[
δ(xi, tj )

]
(9)

If the goal is to capture the temporal dynamics of the spa-
tial mean from a single observation site, a different defini-
tion of rank stability might be more appropriate. In this case
(strategy VII) one would prefer the site with the smallest tem-
poral variance ofδ:

8 = {i | s(δi)
2 < s(δm)2

∀ m 6= i} (10)

Note that through this definition, the most rank stable site
can only be identified if the complete space-time dynamics
are known. This is different from strategy IV, where only one
spatial field is needed to identify the site closest to the mean.
Other definitions for the most rank stable site can also be
found. For instance,Jacobs et al.(2004) account for both the
bias and variance of the soil moisture difference time series
in the definition of the most rank stable site by minimizing
the root mean square error:

RMSEi = {δ
2
i + Var[δ(xi, t)]}

1
2 = E{[δ(xi)]

2
}

1
2 (11)

This case (strategy VIII) will be analyzed in addition to the
other definitions of rank stable sites. As was already men-
tioned in the preceding paragraph, the soil moisture differ-
ences might depend onθ j . This means that a better estimate
of the mean response can be obtained by regression of soil
moisture at an individual site to the spatial mean. Since un-
certainty around a regression is not affected by bias, this is
the same as strategy III. The uncertainty in the soil mois-
ture time series at a single site with respect to the spatial
mean time series might be reduced by taking the time se-
ries of soil moisture averaged over different randomly lo-
cated sites (strategy IX). To quantify this reduction, we used
an approach similar to that for strategy V. For all observation
dates and for 1≤m≤n/2, the spatial mean was estimated for
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ture fields. Dots indicate the median value, error bars indicate 25%
and 75% percentiles of time variability. The inset shows the same
procedure applied to randomly generated fields from a lognormal
distribution, withn=25 andk=60.

all independent sets of observations of sizem. The uncer-
tainty was then calculated as the variability in the difference
between the time series of these estimates and the time series
of the “true” spatial mean.

3.5 A priori site selection

Important advances can be made in the observation of mean
soil moisture if the sites that best represent the mean condi-
tions can be identified a priori; i.e. if the location of these
sites can be explained by a land surface property that is
known to influence soil moisture dynamics (soil texture, veg-
etation). For instance,Vachaud et al.(1985) already dis-
cussed the relation between rank stability and soil texture.
They stated that “there is a high probability that if a location
is the most wet at a given time, it will remain the most wet
at other times because it has the highest clay content”. For
more hilly areas,Grayson and Western(1998) argued that
these sites “are in areas that are neither strongly convergent
nor divergent, tend to be near the mid-slopes and are in areas
that have topographic aspect close to average for the catch-
ment”. Detailed observations of land surface properties are
often not available at the exact location of the soil moisture
sites. A detailed 5×5 m Digital Elevation Model is available
for the Tarrawarra catchment (Western and Grayson, 1998).
For the Louvain-la-Neuve, observations of Leaf Area Index
(LAI) at all 28 soil moisture sites are available (Hupet and
Vanclooster, 2002).

Terrain is known to influence the spatial distribution of soil
moisture. Many different wetness indexes found in the liter-
ature predict zones of below/above average wetness based

on topography (as represented by a Digital Elevation Model,
DEM). Several of these indexes were employed byWestern
et al.(1999) to study the degree in which they can be predict
the spatial organization of soil moisture at Tarrawarra. In this
study we employ a wetness index developed bySvetlitchnyi
et al. (2003). The (semi-)empirical model accounts for the
effects of slope profile shape, slope aspect, distance from the
divide, and slope gradient on the soil moisture distribution in
the top 0.5 m of the soil (Svetlitchnyi et al., 2003). In this way
both effects of subsurface flow and exposure are accounted
for. The relative wetness coefficient at any point is defined as
the ratio of expected soil moisture at that point (as influenced
by topography alone) and the expected soil moisture for a
flat surface (without effects of topography). Details of the
model and how it can be derived from a DEM can be found
in Svetlitchnyi et al.(2003). Following this approach, sites
that accurately represent the dynamics of the spatial mean
should have a wetness coefficient near unity. Here we inves-
tigate the correlation between the wetness coefficient and the
mean soil moisture differenceδi .

Leaf area index is known to influence evapotranspiration:
higher LAI leads to higher evapotranspiration rates (e.g.Al-
Kaisi et al., 1989; Hupet and Vanclooster, 2004). This means
that sites with higher than average LAI will have evaporated
more in the preceding period. At this site, one should expect
a below-average soil moisture. In this way, a site with aver-
age LAI might be associated with average evapotranspiration
rates, and average soil moisture. In this paper, we investigate
the correlation between LAI and the mean soil moisture dif-
ferenceδi .

4 Results

4.1 Soil moisture distribution

Figure3 shows the normalized soil moisture versus the cu-
mulative probability for the three datasets. The straight line
indicates the standard normal distribution. In this plot, any
structural deviation from a normal distribution will result in
a deviation from the straight line. From the scatter in the
points (indicated by error bars) it can be seen that individual
distributions can deviate significantly from normal. However
on average the points tend to cluster around the normal line.
This shows that, if no a priori information on the spatial soil
moisture distribution is available, the assumption of normal-
ity is reasonable. R-5 shows the least temporal variability in
the shape of the soil moisture distribution. These findings are
in agreement with previous studies (Cosh et al., 2004).

To illustrate that the clustering around the straight line is
not the result of sampling or the Central Limit Theorem,
we performed the same analysis on randomly generated spa-
tial fields drawn from a lognormal distribution. The inset in
Fig. 3 shows that sampling has a minor impact on the results.
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Table 2. Effective uncertainties for the different sampling strate-
gies. Values are expressed as one standard deviation (volumetric
moisture content).

Tarrawarra R-5 Louvain-
Strategy la-Neuve

Climate 0.0639 0.0726 0.0471

I 0.0274 0.0263 0.0167
II 0.0079 0.0122 0.0067
III 0.0014 0.0055 0.0025
IV 0.0166 0.0187 0.0150
V 0.0128* 0.0128* 0.0083*

0.0072** 0.0078** 0.0048**
VI 0.0162 0.0163 0.0115
VII 0.0076 0.0088 0.0042
VIII 0.0079 0.0099 0.0067
IX 0.0075* 0.0077* 0.0054*

0.0042** 0.0045** 0.0031**

*Estimated uncertainty for 4 randomly located sites.
**Estimated uncertainty for 9 randomly located sites.

The randomly generated data from a non-normal distribution
clearly deviates from a straight line.

It is well known from numerous field- and theoretical stud-
ies that spatial soil moisture variability might vary with the
mean soil moisture content (for an overview, seeFamiglietti
et al., 1998). Figure2 shows the observed mean and stan-
dard deviation of the spatial soil moisture fields. The stan-
dard deviation ranges from 0.01 to 0.05, while most values
are between 0.02 and 0.03. All three datasets show an in-
crease in variability with decreasing moisture content, with
Tarrawarra showing the strongest trend and R-5 the weak-
est. Louvain-la-Neuve exhibits the lowest variability. This is
likely due to the smaller size of the area (more than an order
of magnitude), the little variation in topography and/or soils
as compared to the other sites.

4.2 Mean soil moisture estimation

With only one observation site located randomly (strategy I),
the uncertainty associated with estimates of the mean soil
moisture is controlled by the spatial variability. Effective
variability values are listed in Table2. Tarrawarra and R-
5 have comparable standard deviations of 0.027 and 0.026,
while Louvain-la-Neuve has a somewhat smaller value of
0.017. Since the spatial distribution of soil moisture is ap-
proximately normal, 95% confidence intervals can be con-
structed with a width of twice the expected spatial standard
deviation. It is interesting to compare these values to vari-
ability in the climate signal itself, that is the temporal vari-
ability of the spatial meanθ j (see Fig.2). Since this is the
signal that one actually wants to observe, a comparison with
the uncertainty (or noise) provides something that can be in-
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Fig. 4. Rank stability plots for the three datasets. The sites have
been ranked according to their mean difference with the spatial
mean. The error bars indicate temporal variability (standard devia-
tion). The numbers refer to sites in Fig.1. (a) Tarrawarra,(b) R-5,
(c) Louvain-la-Neuve. Downward triangles at the top indicate the
most rank stable site (filled for strategy II, open for strategy VII,
red for strategy III, green for strategy VIII), upward triangles at the
bottom indicate most rank stable sites for strategy III with the most
probable one(s) filled.

terpreted as a signal-to-noise ratio. The variability of the cli-
mate signal is also listed in Table2.

A much more precise estimate of the mean soil moisture
from a single site can be obtained if this site is on average
closest to the spatial mean (strategy II). These sites are indi-
cated in Fig.4 by the downward triangles. With this strat-
egy the uncertainty reduces to the temporal variability of the
difference between soil moisture at this site and the spatial
mean. These values vary between 0.007 and 0.012 (see Ta-
ble2).

Even more precise estimates of the mean soil moisture
from a single site are obtained with a linear regression of soil
moisture at any site with the mean (strategy III). Table2 lists
the minimum values of this observation strategy. The corre-
sponding sites are identified in Fig.4. For all three datasets,
these sites differ from the sites that are on average closest
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Fig. 5. Relative standard error as a function of the number of obser-
vations that is used to estimate the spatial mean. The black line is
the theoretical curve for independent observations.

to the mean. These sites also have a large time variability,
indicating that the corresponding regression not only has an
offset, but also that the slope differs from 1. The low uncer-
tainty (0.0014 to 0.0055) indicates that accurate soil moisture
estimation from a single site is possible over a range of wet-
ness conditions; but only if the space-time dynamics of the
soil moisture field are known from a preceding campaign.

As noted before, the site closest to the mean might in prac-
tice be identified from a single spatial survey (strategy IV).
If there would exist perfect rank stability, this would give
the same result as strategy II. However careful analysis re-
veals that the site that is on average closest to the mean has
a low probability of being identified at a given moment in
time. These probabilities are only 7% (4/54), 10% (8/84),
and 4% (2/45) for Tarrawarra, R-5, and Louvain-la-Neuve,
respectively. On individual dates, between 60 to 70% of all
the sites would be identified as being closest to the spatial
mean. These sites are identified in Fig.4 by the upward tri-
angles. The site(s) that is (are) most likely to be identified
as being closest to the mean on individual dates (indicated
by filled upward triangles) differ in all three cases from the
site that is on average closest to the mean. For Tarrawarra,
R-5, and Louvain-la-Neuve these sites are resp. 15, 30, and
1(22), with probabilities of 19% (10/54), 14% (12/84), and
11% (5/45).

The large variation in sites being closest to the mean on
individual dates adds considerable uncertainty to strategy II.
For Louvain-la-Neuve, this uncertainty is almost equal to the
spatial variability (0.0150 vs. 0.0167). This is caused by the
selection of some sites with a large temporal variability of the
soil moisture difference. For the other two datasets, the un-
certainty for strategy IV is still 61% (Tarrawarra) resp. 71%
(R-5) of the effective spatial standard deviation.

Wetness coefficient [−]
0.8 1.0 1.2 1.4

Fig. 6. Distribution of the wetness coefficient for the Tarrawarra
catchment. Circles indicate the soil moisture sites.

The uncertainty of the estimated mean from point-scale
observations is reduced if the mean can be estimated from
multiple observations. Figure5 shows how the relative (to
the spatial variability) uncertainty decreases with the number
of randomly located observation sites. In spite of any pos-
sible spatial correlation, the empirical relationships for the
different datasets are close to the theoretical relation for fully
independent samples (1/

√
m). For all datasets, this relation

slightly overestimates the actual uncertainty. When the mean
of 4 independent samples is used to estimated the “true” spa-
tial mean, the uncertainty reduces to approximately 50% of
the spatial variability. For 9 sites, this reduction is 70 to 75%.
For independent samples, this reduction should be 50% for
four samples, and 66.7% for nine samples.

4.3 Mean soil moisture time series estimation

One might expect the uncertainty associated with the esti-
mation of the temporal dynamics of the spatial mean from
a single site to be much less than that associated with the
estimation of the mean itself. The effective values of the un-
certainty on the time series range between 0.0115 and 0.0163
(see Table2). It is interesting to compare the values in Ta-
ble 2 for strategies I and VI. Strategy I represents the effec-
tive (for all sampling dates) uncertainty caused by spatial het-
erogeneity, while strategy VI represents the effective (for all
sampling sites) uncertainty due to temporal or process het-
erogeneity. The ratios of the temporal and spatial standard
deviation around the spatial mean range between 0.59 and
0.68. While the spatial variability is known to be large, lit-
tle attention has been paid so far in soil moisture research to
temporal variability with respect to the spatial mean.

There are large differences in the temporal variability be-
tween the different sites. For some sites, the temporal vari-
ability exceeds the spatial variability, while other sites show
little temporal variability in their difference to the spatial
mean. The sites with minimum temporal variability are in-
dicated in Fig.4. In all the three datasets, these sites do not
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Fig. 7. Wetness coefficient versus the mean soil moisture difference
for all sites at Tarrawarra. Error bars indicate the temporal variabil-
ity in soil moisture difference for each site, similar to Fig.4.

correspond to the optimal sites for the other strategies. In
two datasets (R-5 and Louvain-la-Neuve), these sites even
differ from all the sites that are closest to the spatial mean at
individual dates. The uncertainty for these sites is small: be-
tween 0.0042 and 0.0088. However even for the “best” site,
the standard deviation is still 10% of the climate signal.

The site with the lowest RMSE is indicated in Fig.4. In
two datasets (Tarrawarra and Louvain-la-Neuve) the site with
the lowest RMSE is on average also closest to the spatial
mean, showing that in practice there might be little difference
between the definitions. The uncertainties for strategy VIII
(0.0053 to 0.0080) are comparable to the values for strategies
II and VII.

If the time series of the spatial mean is estimated from
the time series of the mean of several randomly located sites
(strategy IX), then the relative uncertainty (with respect to the
“expected” temporal variability) decreases with the number
of sites in a similar fashion to Fig.5 (not shown). Table2 lists
the uncertainties in the case that four resp. nine sites are used
to estimate the spatial mean. These values are roughly 45%
resp. 25 to 30% of the variability in the individual time series
(strategy VI), which again is only slightly less than would
follow from Eq. (8).

4.4 A priori site selection

Figure6 shows the distribution of the wetness coefficient for
the Tarrawarra catchment. This coefficient is indicative for
the distribution of soil moisture in the upper 0.5 m of the
soil (Svetlitchnyi et al., 2003). The distribution of the wet-
ness coefficient closely resembles the observed detailed soil
moisture patterns at Tarrawarra (e.g.Western and Grayson,
1998). Above average wetness is encountered along the
drainage lines, and below average wetness on the exposed
north-facing slope. If point-scale soil moisture is only dis-
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Fig. 8. Leaf area index versus the mean soil moisture difference
for all sites at Louvain-la-Neuve. Error bars indicate the temporal
variability in soil moisture difference for each site, similar to Fig.4.

tributed according to topography, one might expect a clear
relation with the wetness coefficient. Ideally, the sites that
are closest to the spatial mean would have a wetness coeffi-
cient near unity. However the actual correlation between the
mean soil moisture differenceδi and the wetness coefficient
(Fig. 7) is close to zero. The low correlation is illustrated by
the fact that the site which has a wetness coefficient closest
to unity is on average the driest! This result is both surpris-
ing and contradicting: while the pattern of the wetness co-
efficient seems very similar to detailed observed soil mois-
ture patterns at Tarrawarra, there is hardly any correlation
between the individual NMM sites and the wetness coeffi-
cient. This is in line with the findings byWilson et al.(2004),
who showed that even in catchments with significant topo-
graphic variability, the topographic component might not be
the largest contributor to the overall spatial variance.

For Louvain-la-Neuve, vegetation rather than topography
can be expected to have the largest impact on the spatial soil
moisture pattern. Figure8 shows the relation between LAI
and the mean soil moisture differenceδi for each site. Al-
though the correlation is higher than for the wetness coeffi-
cient at Tarrawarra, it is still low (R2

=0.18). This might be
due to the fact that LAI was observed only once under rela-
tively wet soil moisture conditions early in the growing sea-
son. The soil moisture pattern under these conditions might
reflect the pattern of soil texture rather than vegetation (LAI).
However the correlation with the yield, which was measured
at the end of the growing season (Hupet and Vanclooster,
2002), is even lower (R2

=0.16). These correlations are too
weak to predict the location of rank stable sites from LAI
alone.
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Fig. 9. Differences between local soil moisture and the spatial mean
(δ(x, t)) for Louvain-la-Neuve. The sites have been ranked accord-
ing to their mean difference (the same as in Fig.4), and the dates
according to their mean soil moisture content. Three domains can
be distinguished with corresponding spatial patterns: a wet domain
in which soil moisture variability reflects soil properties, a transition
domain, and a dry domain in which the variability reflects vegeta-
tion properties. The leftward triangle indicates the site that is on av-
erage closest to the mean (strategy II), rightward triangles indicate
sites that on single dates are closest to the mean, and the downward
triangle indicates the date of LAI observations.

5 Discussion

The results presented in this paper are based on analysis of
three datasets only. The large consistency in the relative un-
certainties between the different observation strategies (Ta-
ble2) suggest they might be indicative for other areas as well.

So far, the local soil moisture differencesδi to the spatial
mean have only been discussed in terms of their expected
distribution. It is also interesting to look at their temporal
correlation. Figure9 shows the space-time distribution of
δ(x, t) for Louvain-la-Neuve sorted by the temporal mean
difference for every site and the spatial mean soil moisture
for every date. This reveals an interesting property of the
soil moisture field. For a large part of the mean soil mois-
ture range (indicated by “wet”), the local soil moisture differ-
ences remain nearly constant, indicating a similar spatial pat-
tern. Similarly, another (different!) spatial pattern exists in
the “dry” domain, with a less defined transition in between.
These patterns likely reflect properties of the soil in the “wet”
domain, and vegetation in the “dry” domain. The apparent
switch between two preferred spatial patterns is similar to the
one observed in Tarrawarra (Grayson et al., 1997). It should
be noted that the LAI observations were made in the “wet”
domain, while the impact on the soil moisture pattern might
be more pronounced in the “dry” domain. This might partly
explain the low correlation in Fig.8.

An interesting question not yet discussed in this paper
is what is the uncertainty introduced by measurement er-
ror? From a geostatistical analysis of Tarrawarra TDR soil
moisture,Western et al.(1998) report nugget values rang-
ing from 0.020 to 0.024 (standard deviation) including both
effects of small scale heterogeneity and measurement er-
ror. Western and Grayson(1998) report the NMM obser-
vations to have an error standard deviation of 2.5 volumetric
moisture percent, i.e. 0.025. These values seem to overesti-
mate the actual random error. Table2 shows that the scat-
ter around the regression between soil moisture at individ-
ual sites and the spatial mean (strategy III) can be as low as
0.0014. This is probably a better estimate of the true ran-
dom error. For Louvain-la-Neuve,Hupet et al.(2004) re-
port total measurement uncertainties for the NMM and TDR
of 0.0091 to 0.0095 resp. 0.0158 to 0.0176 (standard devia-
tion of the volumetric moisture content). The contribution of
the instrument alone is estimated as 0.005801 resp. 0.0021
to 0.0028. This is very close to the value for strategy III in
Table2 (0.0025). This suggests that it is possible to monitor
spatial average soil moisture with approximately the same
accuracy as point-scale soil moisture, provided that the re-
gression between the two is known.

The relative uncertainties can be used to make a first-order
cost-benefit analysis when planning a field campaign. De-
pending on the length of the campaign, a trade off can be
made between the costs associated with continuous moni-
toring at multiple randomly located sites (depending on the
accuracy that is required), and monitoring at a single site that
is known to yield accurate estimates of average soil moisture
from initial extensive spatial variability surveys. Depending
on the observation strategy that is chosen, a higher accuracy
might be achieved at a lower cost. In terms of accuracy/cost
ratio, it might be more beneficial to estimate mean soil mois-
ture from several randomly located sites during shorter cam-
paigns, while for long-term monitoring it might be better to
establish a regression between the mean and the value at a
single site that is to be monitored over several years. Prefer-
ably, this regression should at least contain two points in the
dry and wet extremes.

The uncertainties in Table2 can also be used to construct
confidence bounds on the observations. These uncertainty
bounds can be used to make more quantitative statements on
how good model soil moisture (i.e. often with effective field-
or catchment-scale parameters) has to match with point-scale
observations. Figure10 shows an example of this for a wet-
dry transition in the R-5 dataset. The outer bounds in Fig.10
correspond to strategy I when no information is available
on how this site relates to the spatial mean. The middle
bounds correspond to the uncertainty on the dynamics alone
(i.e. strategy VI) when the site is located randomly. The inner
bounds represents the uncertainty of the best-case scenario
were the spatial average soil moisture is estimated from a
known regression with the mean.
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6 Conclusions

– It is shown that, on average, the spatial distribution of
soil moisture is well approximated by a normal distribu-
tion. This is true for all the three datasets. This property
can be used to construct confidence intervals on point-
scale soil moisture observations.

– The temporal dynamics of the spatial mean soil mois-
ture can be estimated more accurately from a randomly
located site than the mean soil moisture itself. How-
ever the standard deviation of the uncertainty on these
temporal dynamics is still∼66% of the effective spatial
variability.

– Rank stable sites exist for all three datasets. The uncer-
tainty on the estimated spatial mean is reduced consider-
ably (to∼40% of the effective spatial variability) if one
of these sites is used to monitor soil moisture. However
identification of these sites requires intensive sampling.
If such a site is selected from a single spatial survey, the
overall uncertainty is still∼75% of the effective spatial
variability.

– For many sites, the temporal correlation in the soil mois-
ture differences to the spatial mean results in an accu-
rate linear regression between soil moisture at that site
and the spatial mean. The accuracy of this regression is
close to the random observation error for a single soil
moisture observation.

– To first order, the relative (to the spatial variability) stan-
dard error of the spatial mean soil moisture reduces with
the inverse of the square root of the number of randomly
located sites used to estimate the mean. This means that
the uncertainty can be reduced by∼50% if the mean is
estimated from four sites rather than from a single site.

– Although the spatial soil moisture pattern is known to be
related to a combination of soil, vegetation, and land-
scape characteristics, neither a wetness coefficient de-
rived from a DEM or the LAI showed a high correlation
with the temporal mean soil moisture differences to the
spatial mean for the different sites. It should therefore
not be expected that a particular site with an average
wetness coefficient or average LAI has a close to aver-
age soil moisture.

Appendix A

Here, an expression is derived for the mean and variance of a
random selection fromn densities of the same random vari-
ableX, fi(X), with i={1, 2, . . . , n}. Each densityfi(X) has
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Fig. 10. Approximate 95% confidence bounds for the spatial mean
during a wet-dry transition at R-5, as estimated from soil moisture
at a single site (black dots, in this case site 31). The outer bounds
correspond to the spatial variability, the middle bounds to tempo-
ral variability, and the inner bounds give the uncertainty associated
with the best linear regression with the spatial mean.

a mean E[X|i]=µi and variance Var[X|i]=σ 2
i . Here we as-

sumei to be a discrete random variate with uniform proba-
bility of 1/n. The mean ofX is:

E[X] = E[E(X|i)] =
1

n

n∑
i=1

E[X|i] (A1)

The variance ofX can be calculated from:

Var [X] = E
[
X2

]
− E2 [X] (A2)

Since

E
[
X2

]
=

1

n

n∑
i=1

E
[
X2

|i
]

=
1

n

n∑
i=1

{Var[X|i] + E2 [X|i]} (A3)

the variance ofX can also be written as:

Var [X] =
1

n

n∑
i=1

Var[X|i] +
1

n

n∑
i=1

E2 [X|i]

−{
1

n

n∑
i=1

E[X|i]}2 (A4)

The last term of this equation is expanded as:

{
1

n

n∑
i=1

E[X|i]}2
=

1

n2

n∑
i=1

E2 [X|i]

+
2

n2

n∑
i=1

i−1∑
j=1

E[X|i] E[X|j ] (A5)
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so that combining (x) and (x) yields an expression that al-
lows Var[X] to be calculated from the individual E[X|i] and
Var [X|i]:

Var [X] =
1

n

n∑
i=1

σ 2
i +

n − 1

n2

n∑
i=1

µ2
i −

2

n2

n∑
i=1

i−1∑
j=1

µiµj (A6)

Finally, if E [X|i] = E[X|j ] ∀ j 6= i, then simply
Var [X] =

1
n

∑n
i=1 σ 2

i .
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