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Abstract. In this paper catchments are conceptualised as lintant role in aquifer assessment and sampling design (e.g.,
ear space-time filters. Catchment aress interpreted as the James and Freeze, 1993). The second group of geostatisti-
spatial support and the catchment response fihig inter- cal methods consists of spatial estimation methods where the
preted as the temporal support of the runoff measurements/ariogram obtained in the structural analysis step is used to
These two supports are relatedby A* which embodiesthe estimate the variable of interest at locations where no mea-
space-time connections of the rainfall-runoff process fromsurements are available. Spatial estimation methods based on
a geostatistical perspective. To test the framework, spatiogeostatistical concepts are widely used in many geosciences
temporal variograms are estimated from about 30 years oincluding subsurface hydrology (Renard et al., 2005).

quarter hourly precipitation and runoff data from about 500 |n catchment hydrology, geostatistical concepts have been
catchments in Austria. In a first step, spatio-temporal vari-used more sparingly. This is because of the nested struc-
ogram models are fitted to the sample variograms for threqure of catchments which makes geostatistical analyses more
catchment size classes independently. In a second step, vafoemplicated as compared to the usual analysis of point sam-
iograms are fitted to all three catchment size classes jointlyles or blocks. However, a number of recent studies have
by estimating the parameters of a point/instantaneous spatiafemonstrated that geostatistical methods can indeed account
temporal variogram model and aggregating (regularising) itfor the nested catchment structure. This applies to both the
to the spatial and temporal scales of the catchments. The extructural analysis step of understanding the spatial structure
ponential, Cressie-Huang and product-sum variogram modand the spatial estimation step of estimating variables such
els give good fits to the sample variograms of runoff with di- as streamflow at locations where no data are available. The
mensionless errors ranging from 0.02 to 0.03, and the moddhtter addresses the ungauged catchment problem (Sivapalan
parameters are plausible. This indicates that the first ordegt al., 2003). Based on the work of Gottschalk (1993a, b);
effects of the spatio-temporal variability of runoff are indeed Sauquet et al. (2000) presented a spatial estimation method
captured by conceptualising catchments as linear space-tim@r annual streamflow. A similar spatial estimation method,
filters. The scaling exponertis found to vary between 0.3 termed TOPKRIGING, was presented by Skaien et al. (2005)
and 0.4 for different variogram models. who showed that accounting for the nested catchment struc-
ture improved the spatial estimates of flood frequency over
a method that did not account for nested catchments. Reli-
able variograms are needed for applying this type of spatial
estimation methods.

Geostatistical methods fall into two groups. The first focuses Runoff is a process that varies in both space and time.
on the characterisation of spatial variability and is termed!t iS therefore appealing to extend the spatial analyses of
structural analysis. It provides a representation of the spaS@uduet et al. (2000) and Skaien et al. (2005) to the spatio-
tial structure of the variables of interest in terms of the var-€mporal case, i.e. to analyse and estimate runoff as a func-
iogram and sheds light on the continuity of the processedion of both space and time. Spatio-temporal variograms

involved. In hydrology, structural analysis plays an impor- &€ needed for this. At the same time, spatio-temporal vari-
ograms of runoff may shed light on the nature of hydrolog-

Correspondence tal. O. Skgien ical variability in space and time. Skgien et al. (2003) anal-
(skoien@hydro.tuwien.ac.at) ysed the effect of different catchment sizes on the spatial and
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646 J. O. Skgien and G. 88chl: Catchments as space-times filters

measurements are associated with both a spatial support (the
catchment area) and a temporal support (the response time of
the catchment).

The objective of this paper is to analyse spatio-temporal
variograms of runoff and examine the potential of estimat-
ing these from point variograms of runoff by spatio-temporal
aggregation. For comparison and for testing the aggrega-
tion procedure, spatio-temporal variograms of precipitation
are analysed as well. This study uses a similar data set as
Skgien et al. (2003) but goes beyond their study in two ways.
First, Skgien et al. (2003) analysed the variograms in space
and time separately while, here, a joint analysis is performed
to shed light on the connection of space and time scale vari-
ability. Second, Skgien et al. (2003) used a data set of daily
values while, here, a data set of quarter hourly values is
used. This allows us to perform a more detailed analysis of
the short term characteristics of runoff that are important for
space-time connections.

2 Data

. o ) ~_ The data used in this paper stem from a comprehensive hy-
Fig. 1. Network of measurement stations in Austria used in this drographic data set of Austria. Austria has a varied climate

paper. Precipitation gauges (top); centroids of gauged C.atChmen\ﬁlith mean annual precipitation ranging from 500 mm in the
(bottom) (small catchments shown as plusses, medium sized CatChe-astern lowland reqions up to about 3000 mm in the western
ments as diamonds, large catchments as squares). . . 9 P

alpine regions. Runoff depths range from less than 50 mm
per year in the eastern part of the country to about 2000 mm

per year in the Alps. Potential evapotranspiration is on the
sults indicated that variograms of observed runoff were con-Order of 600-900 mm per year. Precipitation data from 991

sistent with variograms obtained by aggregating variograms'Stations for the period 1981-1997 were used in this study

of hypothetical point runoff. However, their study examined (Friﬁ' %s)' 1fl of tge_lstati_ons were _ﬁ]co;di_rllg rain 36‘“963
spatial and temporal variograms independently. It is IikelyW lie the rest were dally raingauges. 1he daily records were

that the spatial and temporal variabilities of runoff are re- disaggregated toqtlme s'Fep of 1§m|n based on the temporal
lated given that it takes longer for water to move through patterns of the neighbouring stations (Merz et al., 2006). In

large catchments than through small catchments. Woods eqrderto be. a.ble. to examine spatial aggregatiqn effects, catch-
al. (1995) analysed catchments in the range of 0.04-50 kmMent precipitation was calculated for each time step by ex-

and found the variance of streamflow to decrease moréernal drift kriging interpolation of the point data for a total

strongly with catchment area than what would be expecte F 573 gatchments using topogra_phlc glevat|9n asan a!JX'I'
for the spatial aggregation of a random process. Woods Jary variable. The catchment precipitation series so obtained

al. (1995) noted that this may be due to the presence of orvere divided into three size classes (Table 1). Runoff data

ganisation at large scales that is not present at small scaleI om 591 catchments for the period 1971-2000 were used

but Skgien et al. (2003) suggested that this may be related t at a_lll_had z_;\tlme resolution of 15 min. The catchments were
spatio-temporal aggregation effects instead subdivided into three classes according to catchment size —

It is therefore time to follow the suggestion of Skaien et small (3-71km), medium (72-250kd) and large (250

al. (2003) to analyse runoff in space and time jointly, and 131000ki) (Fig. 1b). Catchments smaller than 10%m

. o . . as well as catchments with short records, significant anthro-
to examine the joint spatial and temporal aggregation effects .
of runoff. As a central concept, we adopt the description ofPogenic effects or lake effects were excluded from the data

Woods and Sivapalan (1999), where runoff from a catchmen et. This resglted in a total of 48.8 stream gauges ava||ab|_e
r the analysis. Table 1 summarises the data series used in

is represented as the convolution of the local runoff generate<£. .
s " ) . L : is paper. The runoff data set consists of a total of.6°
within the catchment within a time period. This is consis-

tent with the filter concept of Skgien et al. (2003) where themdl\”d%II data values.
catchment area is interpreted as the geostatistical support of

the runoff measurements. In a joint spatio-temporal analysis

the catchments then operate as space-time filters and runoff

temporal variograms of precipitation and runoff. Their re-
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Table 1. Data series used in this paper.

Data type Sizeclass  Sizerange Median size  Number of Extent of domain  Time resolution Period
(km?) (km?) stations (km) (min)
Point precipitation - Point Point 991 700 15 1981-1997
Catchment precipitation Small 3-71 35 193 700 15 1981-1997
Medium 72-236 125 193 700 15 1981-1997
Large  241-131000 670 193 700 15 1981-1997
Runoff Small 10-71 42 142 700 15 1971-2000
Medium 72-248 119 178 700 15 1971-2000
Large  251-131000 605 168 700 15 1971-2000
3 Method Rodifiguez-lturbe and Mé& (1974) presented an example of
a separable model. Cressie and Huang (1999) proposed a se-
3.1 Spatio-temporal sample variograms ries of non-separable models. De Cesare et al. (2001) and

De laco et al. (2001) extended some of the earlier models
Spatio-temporal sample variograms were calculated from thento a product-sum model. Kyriakidis and Journel (1999) re-
runoff data Sepal’ately for the three catchment size Classe%jewed Spatio_tempora| Variogram mode's and discussed ad_
and from catchment precipitation separately for the threeyantages and disadvantages of different model types. Fuentes
catchment size classes as well as for point precipitation:  (2006) and Mitchell et al. (2005) proposed methods for test-

1 ing if a process can be modelled by a separable model. They
Vst (hs, hy)= p— noted that for some spatio-temporal modelling applications,
2 ZS n;(he) the computational burden can be reduced considerably by us-
j=1 ing separable models. Cressie and Huang (1999), however,
mhg) i (he) suggested that non-separable models are necessary for many
Yo D @+ b i+ he) = 2(xj, 1) (1) ~ natralcases. s
=1 = Four models are compared in this paper that are all non-

_ separable: a spatio-temporal exponential model, a model
whereh,= |hs| andh, are the spatial and temporal lags, re- proposed by Cressie and Huang (1999), the product-sum
spectively,z(x, ;) is precipitation or runoff at time; and  model (De Cesare et al., 2001; De laco et al., 2001), to all

spatial locationx ; of stationj, m (hy) is the number of pairs - of which a fractal component was added (Eq. 8), as well as a
of stations with distancé,, and nj (hy) is the number of pure fractal model. The exponential model is:

pairs of points in time with time lag, within a spatial or , o
temporal bin.z, was taken as the distance between the cen¥1s: (ts; )=a1(1—exp(—((c1hr + hs)/d)™)) 2
tres of gravity of the catchments for the cases of runoff andg, is the sill or the variance for infinite lagy is a scaling

catchment precipitation and as the station distance for th%arameter for t|meil is aspatio-tempora| correlation |ength
case of point precipitation. The spacings of the bins were seande; defines the slope of the short distance part of the var-
lected approximately logarithmically (with the exception of jogram. The model is consistent with the Taylor hypothesis
zero lags). The variograms of precipitation were calculatedwhich assumes that a constant characteristic velocity exists,
on the basis of precipitation intensity, those of runoff on the S0 space and time are interchangeab|e (Tay|or, 1938; Skgien
basis of specific discharge. The physical units of the pre-et al., 2003). Cressie and Huang (1999) derived a number of
cipitation and runoff variograms hence are (fwih—2?) and  models from Bochner's theorem (Bochner, 1955). We tested

(mPxkm=*xs72) with 1 mPxkm=*xs72=12.96 M xh™2. 3 number of them and focus in this paper on:

The space and time units used are kilometres and hours, re- 1 252

spectively. ' (he hy=ar [1-——— = _expl——25 3
VZst( S [) al (C2h1+1)(d+l)/2 p (,'2]’1["‘1 ( )

3.2 Spatio-temporal variogram models az is the sill, b andcz are scaling parameters for space and

; ; time, respectively, and is the spatial dimension.
Numerous spatio-temporal variogram models have been pro- . : Lo .
b b g P The third model is the product-sum model which is derived

posed in the literature. There are two types, separable an . del that bi duct q
non-separable models. In separable models, the covarian Kom a covariance model that combines products and sums
(De Cesare et al., 2001; De laco et al., 2001):

can be factorised into two components, one component con
taining time lag only and the other containing space lag only.ys,, (hs, h;)=y3, (hs)+y3, (he)—kys (hs)ys, (hy) (4)
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wherek is a parameter.y; (hy) and y;, (h;) represent the Cressie-Huang model:
spatial and temporal variograms, respectively:

2h2
2'"s
v4s (hs)=azs (1— exp(—(hy /da;)™)) Tt (1 (c2hy + 1)\@H+D/2 exp{ cahs +1 }>
o B
Vi (hy)=az (1— exp(—(h, [d3)**)) 6) Fashs + aihy (19)
Product-sum model (using Egs. 5 and 6):
with parameters similar to Eq. (2). The product-sum model
reduces to the separable model proposed by igode- vast (s, he) =
lturbe and Meja (1974) forag,=ag=1/k. The three vari- 5 (hy) + 14, (he) — kv (hs)yh (he) + ash® +ahf  (11)
ogram models (Egs. 2, 3, 4) are stationary, i.e., they are finite
for infinite lags. Skaien et al. (2003) showed that daily pre- Fractal model:
cipitation can be regarded as stationary in time, daily mean,, , = a,h% + a,h” (12)
runoff is almost stationary in time, while neither of the pro-
cesses can be regarded as stationary in space within the spa-3 Spatio-temporal regularisation
tial extent of the data set used. The variograms were there-
fore modified to account for non-stationarity in both spa- 3-3.-1 Concept of catchments as space-time filters

tial and temporal directions. Although Skgien et al. (2003)
Measurements are strongly affected by the measurement

noted that runoff was almost stationary in time, a small non- ) :
stationary part was found to be necessary for the regularisa§cale' Bbschl and S|vapala_n (1995) fqrmulated the mea-
tion procedure in this paper. For application in spatial (andsurement scale asa scale Frlplet: the d|§tance betvv_een mea-
urements (spacing); the size of the region over which mea-
surements are available (extent); and the area or volume that
n each measurement represents (support). Skgien drsdidl
the typeY'=}_ e;z(x;, #;) is equal to zero or positive. This (2006a) and Skgien and &ichl (2006b) performed coher-
ent studies of measurement scale effects on parametric and
non-parametric estimates of spatial correlation, respectively.
As the support increases, the variable of interest becomes
- tj) >0 (7) increasingly_ smoother._ Because of this, the variance (a_nd
- hence the sill of the variogram) decreases and the correlation
lengths increase.
n In this paper, we interpret the catchment area as the spa-
with > ;=0.—ys (hs, h;) is then by definition said to be  ta) support of the runoff measurements and conceptualise lo-

i=1 . . .
a “conditional positive definite function” (Journel and Hui- €&l runoff as a point process following Woods and Sivapalan

joregts, 1978; Cressie, 1991). To ensure conditional positivd1999) and Skgien et al. (2005). In a joint spatio-temporal
definiteness of-y,, (hs, k), it is common to specify the var- analyses both the spatial and the temporal supports need to
iogram as a sum or a product of models that are known tdoe taken into account. In this paper, we therefore interpret
have this property. We have therefore added spatial and tenf€ response time of a catchment as the temporal support.

poral fractal components that are positive definite to the thred?Unoff at the catchment outlet is then assumed to be some
variogram models’,; of Egs. (2, 3, 4): sort of aggregated value of local runoff over the catchment

area (spatial support) over the catchment response time (tem-
®) poral support).

The concept starts with local runoff or rainfall exceBsy,
wherea, anda, are parameters that adjust the level of the Y: 7). To account for routing on the hillslopes and in the
fractal part, an& and8 are the spatial and temporal fractali- channels within the catchment, a weighting functian, y,
ties, O<a<2 and < <2. Although this model ensures con- t) is introduced which allows to combine local instantaneous
ditional positive definiteness, the non-stationary part (Eq. 8)funoff into runoff at the catchment outleg; :
does not include space-time interactions. In addition to the '
three variogram models, we examined a pure fractal model, () — // / R, y. Dyulx. y, t)drdxdy (13)
for comparison (Eqg. 12 below). In summary, the following
variogram models were used in this paper: Ai t=1,

spatio-temporal) estimation a variogram needs to be such th
the variance of any linear combinati@nof the variablez of

i=1
requirement is fullfilled by Egs. (2, 3, 4). If the variogram is
non-stationary, the following condition has to be fulfilled:

Var(Yy=—Y_ Y aiajys (|xi — x;
J

i

Vst = Vs/t + ash? + athfj

Exponential model: where4; is the area of catchmentT; is the time interval that
influences the outpuk, andy are the space coordinateds

Vast (hs, he) = time andr is the temporal integration variable. The weight-

a1(1 — exp(—((c1h; + hs) /d1))) + ashS + a,hf (9) ing functionu(x, y, t) represents the routing processes within
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the catchment and varies in space. For example, runoff gen- A

erated close to the outlet or close to the streams will reach the_g 7ot o7\
outlet faster than runoff generated further away. AlsQ;, . SRR R

v, t) will be a function of catchment characteristics such as /) iTz
hill slope orientation, catchment slope and soil typesr, — = U

y, 1), for a certa!q point in space, also che_mges with time T, 4/47 h

as the flow velocities change with changes in the catchment NP '

state. As an approximation, we assume in this paper that, for e X h,

a given catchment, the weighting function is constant within >

the integration limits both in space and time, i®+=1/T;. space

For a constant weighting function, Eq. (13) becomes a linear

filter or a convolution integral. In time, the weighting func- g 5 schematic of variance estimation between two catchments 1
tion is equivalent to a unit hydrograph that is constant _be'and 2 and a range of time lags. Thin arrows represent some of the
tween 0 andI}- and zero elsewhere. In space, the Welghtlng spatio-temporal pairs of data points.

function is constant within the catchment area and zero else-

where which is consistent with the assumptions of Sauquet

et al. (2000) and Skgien et al. (2003). The specific runoff at )
the catchment outlet (runoff divided by catchment area) ther-3-2  Implementation

becomes:
; The variogram value, given a certain distance, represents the
1 expected variance of a process within an extent equal to this
a0 =% // / R, y,1 = )drdxdy (14) " distance. If a variable is linearly aggregated, each measure-

Ai t=T; ment is the average of the point process within the support

The runoff routing process is hence conceptualised as a linef the measurement. If we assume that the variance of catch-
space-time filter in this paper. For simplicity, we assume thatMent runoff is both dependent on the spatial and temporal
the filter kernel in space is a square with arga(catchment ~ SUPPorts 4 and7', respectively, dropping the index), for two
size), and in time the filter kernel is a block unit hydrograph catchmer)ts of equal size the spatial regularisation technique
with time basel; as mentioned above. We assume a simple®f (Cressie, 1991, 66) can be extended to:

relationship between catchment response time and catchment

area: vsi(hsla, h|T) =

1
T = MA:.‘ (15) W///[anrl‘f‘hs —r2|, |t1+ hy — 12]) dridradtidTo—

wherep andk are parameters to be estimated from the data. et
For x>0 the response time increases with catchment sizemff//m(lrrrz\, |t1 — t2)) dridraduide,
Eq. (15) embodies the space-time connections of the rainfall- AAaTT
runoff process from a linear filter perspective. Note that (16)
Eq. (15) applies to runoff. For comparison, we also analysed
catchment precipitation for which we used the same aggrewhere y, (r, 7) is the spatio-temporal variogram of the in-
gation procedure in space but a constant temporal support gitantaneous point process; is the separation vector be-
7;=15 min, as consistent with the raingauge data. tween two catchments (with space |ag= |hs|), &, is the

In a geostatistical framework, the linear aggregation oftime lag andu is the side length of the square that approxi-
Eq. (14) is represented by the second moments. A poininates a catchment, i.ei=+/A. The catchment sizd has
variogram of runoff represents the second moment of lo-been taken as the median catchment size for all catchments
cal, instantaneous runoff. From the point variogram with Of & given size class (Table 1). Eq. 16 indicates that the reg-
zero support in space and zero support in time (i.e. instanularised variogram value between two catchments of gize
taneous) one can estimate variograms that are valid for fiwith response timd" is the variance integrated in time and
nite support areas and finite support times by a procedurépace between the two catchments, minus the integrated vari-
that is usually referred to as regularisation (Journel and Hui-ance within one catchment. This concept is illustrated in
jbregts, 1978). Conversely, it is possible to back-calculateFig. 2. Each catchment is visualised as a spatio-temporal
the point/instantaneous variogram from variograms based orvolume” separated by spatio-temporal distances.
finite supports (Skgien et al., 2003). The point variograms The number of integrals has been reduced here by using
are the basis of spatial estimation methods such as those difie distribution function of spatio-temporal distances within
Sauquet et al. (2000) and Skgien et al. (2005). In additionand between catchments in a similar way as Western and
the point variogram sheds light on the spatio-temporal strucBloschl (1999) and Skaien et al. (2003) but extended to space
ture of instantaneous runoff generated at the local scale.  and time:
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where py; (hy;, h;j)is the sample variogram for one of the

hy+T R max three catchment size classes or that of point rainfall (Eq. 1),
Vs la hn |T) = / / V(2 T fou (1 (hss @) 7 | (e, T))dTdr— yst (hsi, hej)is one of the variogram models (Egs. 9-12),
wiT B andh;; are the spatial and temporal lags, arshndnt are
T Rmax the number of bins in space and time(, j) is the weight of
/ / Vet T fran (s @) 7 [(he, TY)drdr (17)  each bin, with the indicesand j in spatial and temporal di-
U rections, respectively. We used the square root of the number

] N ] ] of pairs in each bin as the weight, except that we increased
fise(rla,T|T) is the probability density function g \veight by a factor of 10 foh,; =0 andh,;;j=0. These
(pdf) of distances in space and time within a catch-|a4s represent the marginal variograms in space and time. In
ment with spatial suppor and temporal supporf. 5 gpatio-temporal estimation procedure, the marginal vari-
fast(r |(hs, a) , T |(he, T)) is the pdf of distances in space qrams will be important. As the bins on the margins only
and time between points in two catchments with a centre-to4qongtitute approximately one tenth of the total number of
centre distance; in space and, intime. Rmaxis a practical  pingin the spatio-temporal variograms, the increased weights
integration limit. We can assume the distances in space anfgjance the importance of the margins with the rest of the
time to be independent, so thf; and f2,, can be separated \5riogram. The SCEUA-method (Duan et al., 1992) was

into spatial and temporal parts: used to search for the best parameter set. The search was

hy+T Rmax carried out ten times for each model type and catchment size
Ysr(hsla b |T) = / / Yo (r T) fas (r 1(hg, @) f2 (7 |(he, T))dedr— class with different starting values, to reduce the probabil-
h=T 0 ity of finding local minima. The variogram models associ-
T Rmax ated with the smallest objective function of the ten trials are
/ / Vst (r, T) fis(r @) fu (x| T )dwdr (18) shown. The procedure was repeated for each catchment size
“T 0 class (including point precipitation), each variogram model
f15 andfa, are the pdfs in space which have been evaluateci"d for precipitation and runoff separately.
as in Western and Bkchl (1999) and Skeien and @chl In the second part, the parameters of a point variogram

(2006ab).f1, and f2, are the pdfs of the temporal distances, Were estimated instead. For a certain point variogram, we es-
within and between catchments, respectively, which for atimated spatio-temporal variograms for the three catchment

block unit hydrograph are: size classes by regularisation (Sect. 3.3). These regularised
1 variograms were jointly compared to the sample variograms
7(1-7) >0 fthe th h ize cl h bjective func-
fu@|T)y={T T (19) of the three catchment size classes. The same objective func
T (1+ %) <0 tion was used as above, but the summation was over all catch-
and: ment size classes. Regularised variogram models associated
with the smallest objective function of ten trials are shown.
Ja(Tl(h, T)) = The procedure was repeated for each variogram model and

P 2o for precipitation and runoff separately. The parametesiad
(1—7‘—1—7)/(}1,—%4—7) O<t<h,0<h; <T

I 2 u of Eq. (15) were also simultaneously fitted by this pro-
(1+7’—%T)/h(h,—ﬁ+%) h <t <h+T,0<h <T (0)

= cedure, separately for each variogram model. The response
% hy —T <t <h,hy 2T

A time of the catchments is hence a result of the fitting proce-
o h<t<h+T,hy 2T
72 dure.
3.4 Parameter estimation of variograms The scales of the diagrams of the spatio-temporal vari-

ograms are scaled linearly in terms of the bin spacing. As the
The analyses are organised into two parts. In the first partbins have been selected approximately logarithmically (with
variogram models are fitted to the sample variograms of thehe exception of zero lags) the axes are close to logarithmical.
small, medium and large catchment size classes indepen-
dently (Sects. 4.1 and 4.2). In the second part, one point
variogram model is fitted jointly to the three catchment size4 Results
classes based on regularisation (Sects. 4.3 and 4.4).
In the first part we used a version of the weighted least-4-1 Separately fitted variograms of precipitation
squares (WLS) method (Cressie, 1985) to estimate the pa- . ]
rameters of the variogram models by minimizing the objec- The left column of Fig. 3 shows the spatio-temporal sam-

tive function: ple variograms of point and catchment precipitation, sorted
ns ot . 2 by catchment size class. The total variance of precipitation

d = - Z Z w(, j) - [M _ 1] (21) s similar in time and space within the spatial and temporal
”XS: i’: w(i, j) =11 Vst (sis hej) extents of the data set (300 km, 1000 h shown here). The
bR variogram values increase with increasing spatial and tem-
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Fig. 3. Spatio-temporal variograms of catchment precipitation. Sample variograms (left column) and independently fitted variogram models
(columns 2-5). The rows relate to different catchment size classes (small, medium, large) including point precipitation in the top row. The
horizontal axes are space lag, the vertical axes are time lag.

poral distances which indicates the presence of spatial ancthodel and catchment size class as well as the average over
temporal correlations as would be expected. There is a rethe three size classes. We have also included the number
duction in the variogram values as one moves from pointsof parameters to be fitted, including the two parameters of
to larger catchments which reflects the smoothing as a rekEqg. 15. The table indicates that the product-sum model can
sult of an increasing support. Columns two to five of Fig. 3 be best fitted to the sample variograms of precipitation. It
show the spatio-temporal variogram models that have beeshould be noted that the product-sum model has the largest
independently fitted to the sample variograms. For all mod-number of parameters, so the good fits may be both a result
els, with the exception of the fractal model, the visual fits of a suitable model structure and the large number of degrees
are very good and the differences between the models aref freedom.

small. Fig. 4 shows the margins of the sample variograms

and the fitted variogram models for precipitation. The mar-4.2 Separately fitted variograms of runoff

gins of a spatio-temporal variogram are equivalent to the spa-

tial and temporal variograms. The sample variograms arelhe left column of Fig. 5 shows the spatio-temporal sam-
represented by points, while the fitted variograms are repreple variograms of runoff, sorted by catchment size class.
sented by lines. For a certain catchment size class, point§he variograms indicate that there is a higher variance in
and lines are of the same colour. All models, except for thespace than there is in time within the spatial and tempo-
fractal model, provide close fits. The shortest spatial lagsal extents of the data set. The spatio-temporal variograms
show some differences between the models as this is wheri@crease monotonously with spatial and temporal distances.
the models have been extrapolated beyond the data. TablePhere is a much stronger variance reduction effect between

gives the values of the objective function for each variogramthe variograms of the different catchment size classes than
for precipitation. It is obvious that the catchment size has
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Fig. 4. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of catchment precipitation as in Fig. 3. Sample
variograms are shown as points, fitted variogram models as lines.

Table 2. Objective function (Eq. 21) for the variogram models of precipitation fitted independently to spatio-temporal sample variograms
for small, medium and large catchment size classes. Average refers to the average of the objective functions from the three catchment size
classes. The number of parameters fitted consists of the parameters of the point variogram models and the two parameters of Eq. 15.

Variogram model Point Small Medium Large Average  Number of
catchments catchments catchments parameters
Exponential model 0.0036 0.0132 0.0122 0.0123 0.0126 10
Cressie-Huang model  0.0121 0.0122 0.0125 0.0062 0.0103 9
Product-sum model 0.0036 0.0094 0.0062 0.0042 0.0066 13
Fractal model 0.0992 0.1285 0.1310 0.1307 0.1301 6

an efficient smoothing effect. Columns two to five of Fig. 5 the fitted variogram models. The figure shows in more detail
show the variogram models that have been fitted separatelthe much stronger variance reduction from smaller to larger
for each catchment size class. All models can be fitted wellcatchments than that of precipitation. Table 3 gives the val-
to the sample variograms, with the exception of the fractalues of the objective functions for the fitted variogram mod-
model, and the differences between the models are smalkls. The product-sum model offers a slightly better fit than
Figure 6 shows the margins of the sample variograms andhe exponential and the Cressie-Huang models.
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Fig. 5. Spatio-temporal variograms of runoff. Sample variograms (left column) and independently fitted variogram models (columns 2-5).
The rows relate to different catchment size classes (small, medium, large). The horizontal axes are space lag, the vertical axes are time lag.

Table 3. Objective function (Eq. 21) for variogram models of runoff fitted independently to spatio-temporal sample variograms for small,
medium and large catchment size classes. Average relates to the average of the objective functions for the three catchment size classes.

Variogram model Small Medium Large Average
catchments catchments catchments
Exponential model 0.0094 0.0095 0.0151 0.0113
Cressie-Huang model 0.0135 0.0209 0.0216 0.0186
Product-sum model 0.0082 0.0083 0.0110 0.0092
Fractal model 0.0851 0.0878 0.0982 0.0904
4.3 Jointly fitted variograms of precipitation tal model. The top row of Fig. 7 shows the back-calculated

point variograms valid for zero temporal and zero spatial sup-
ports, i.e. instantaneous point variograms. These do differ
Figure 7 shows the results of jointly fitting the variograms of petween the variogram models with the fractal and Cressie-
precipitation to the three catchment size classes. The variyyang models giving larger sills than the other models. The

ograms in the left column are again the sample variogramsexponential and product sum models are rather similar.
The letters on the left side of the figure relate to the respective

rows and denote estimation (E), verification (V) and fitting The margins of the variograms of Fig. 7 are shown in
(F). The sample variograms of rows three, four and five haveFig. 8. The margins more clearly show that the overall fits
been used for the fitting of the models in columns two to five. are good to very good. The margins of the fractal model are
With the exception of the fractal model, there are only smallless biased than the rest of the spatio-temporal variogram, es-
visual differences between the fitted variograms. The sampecially along the spatial axis. As all catchment size classes
ple variogram of row two (point data of precipitation with have the same temporal support (15 min) the fractal model
a temporal support of 15min) can be used for verification.does not estimate any temporal variance reduction with in-
For this case, the differences between the models are slightlgreasing catchment size. The temporal variograms indicate
larger than for the fitting but the models are still rather closethat the Cressie-Huang and product-sum models slightly un-
to the sample variogram, again with the exception of the frac-derestimate the temporal variance of point precipitation with
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Fig. 6. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of runoff as in Fig. 5. Sample variograms are shown as
points, fitted variogram models as lines.

Table 4. Objective function (Eq. 21) for regularised variograms of slightly better fit than thg e)fponentlal and the C.re'SSI.e-Hu'ang
precipitation fitted jointly to the spatio-temporal sample variogramsmOdeIS but for the verification case (point precipitation with

for small, medium and large catchment size classes, denoted as "tg€mporal support of 15 min) the exponential model is the best
tal”. Point refers to the objective function for point precipitation model. The objective function for the goodness of fit (small,

with 15 min temporal support which is the verification case. medium, large catchment sizes classes) is around 0.01 (with
the exception of the fractal model) which is similar to the
Variogram model Total (fitted) ~ Point (verification) separate fitting (Table 2). This indicates that the regularisa-
Exponential model 0.0113 0.0098 tion is fully cor_ws_iste_nt_ with the catchment precipita_tion data.
. . : Note that the joint fitting (Table 4) has only one third of the
Cressie-Huang model 0.0145 0.0191 free parameters of the separate fitting. This comparison tests
Product-sum model 0.0094 0.0304 ’

Fractal model 0.1210 0.2549 the assumptions of regularisation in space, i.e., the approx-
imation of the catchments by squares with an area equal to
the median of each size class. It is clear that this approxima-
tion is sufficiently accurate for the purposes of regularisation.
In the verification case (Table 4, right column) the errors are
somewhat larger (0.01-0.03 depending on the model, exclud-
ing the fractal model) but in absolute terms this is still a small
number.

a temporal support of 15min. The exponential model per-
forms best on the margins.

Table 4 shows the values of the objective function for the
fitted variogram models. The product-sum model offers a
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Fig. 7. Spatio-temporal variograms of catchment precipitation. Sample variograms (left column) and jointly fitted variogram models
(columns 2-5, rows 3-5). Row 2 (point precipitation, temporal support of 15min) has not been used in the fitting and is used for veri-
fication. Top row shows the back-calculated variograms for zero spatial and temporal supports (instantaneous point precipitation). Letters
“E”, “V" and “F” stand for estimation, verification and fitting, respectively. The horizontal axes are space lag, the vertical axes are time lag.

4.4 Jointly fitted variograms of runoff the catchment scale variogram models. The point variogram
models differ in terms of their sills (i.e. the overall levels).

Regularised spatio-temporal variogram models were fitted to>Milar to precipitation, the Cressie-Huang and fractal mod-

the sample variograms of runoff jointly for all catchment els havg the Iarge_st S|Ils._ It is clear that there is substantial
size classes and are shown in rows two to four of Fig. g uncertainty associated with these variograms. However, for
There are only minor differences between the regularisedPractical applications this may not be important if the spatio-

variograms from the different models, and they are all sim-{€mporal estimation of runoff is applied to catchments of a
ilar to the sample variograms. The exception is the fractalSiZ€ range similar to that used here, as the regularised vari-
model which cannot be fitted as well. It should be noted that°9rams based on these point variograms are all very similar.
this is the model with the smallest number of parameters, so Figure 10 shows the margins of the sample variograms
a poorer fit would be expected. The point variogram mod-and the fitted regularised models for runoff. There are only

els back-calculated by the procedure (Fig. 9, top row) exhibitsmall differences between the exponential, Cressie-Huang
significantly shorter spatial correlation lengths than any ofand the product sum models. The temporal margins are al-
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Fig. 8. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of catchment precipitation as in Fig. 7. Sample
variograms are shown as points, jointly fitted variogram models (small, medium, large catchment size classes) as well as estimated variograrr

models (point 15 min, point instantaneous) as lines.

Table 5. Objective function (Eq. 21) for regularised variograms of almost eq“a”y_gf’?d fits W_ith the exception Of_ the fraCt‘_”ll
runoff fitted jointly to the spatio-temporal sample variograms for Model. The objective functions of the exponential, Cressie-

small, medium and large catchment size classes.

Huang and product sum models range between 0.02 and 0.03.
This is larger than those of the separately fitted variograms
(around 0.01 in Table 3) which is likely related to the simpli-

Variogram model Total At >/ ! ] .
. fications of the analysis including the assumptions on the unit
Exponential model 0.0269 hydrograph and the general assumption of linearity. How-
gre33|et-Huang r:lo?el 8&2:77 ever, the absolute values of the objective functions for the
roduct-sum mode : three models are still very small indicating overall excellent
Fractal model 0.1544

consistency.

All variogram models have been fitted ten times with dif-
ferent starting values which produced somewhat different pa-
rameter sets. This is because of local minima in the objective
most perfectly modelled, while there are minor deviationsfunction. For the presentation we have selected the param-
between the spatial sample variograms and the estimated vaeter sets with the smallest objective functions. To illustrate
iograms. The point variograms are shown in light blue. Forthe uncertainty around these best fits we selected, for each
the fractal model, the point variogram is larger than the rangamodel, the five best parameter sets and computed the aver-
shown. Table 5 indicates that the variogram models giveage and the coefficient of variation (CV) for each parameter.
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Fig. 9. Spatio-temporal variograms of runoff. Sample variograms (left column) and jointly fitted variogram models (columns 2-5, rows
2—4). Top row shows the back-calculated variograms for zero spatial and temporal supports (instantaneous point runoff ). Letters “E” and
“F” stand for estimation and fitting, respectively. The horizontal axes are space lag, the vertical axes are time lag.

The CV is a measure of the uncertainty of the parametersof this parameter ranges between 1 and 38% depending on
These statistics are shown in Table 6, together with the valthe model. The order of magnitude ofis hence a mean-
ues of the corresponding objective functions. Overall, theingful estimate. With the exception of the fractal model, for
uncertainty depends on the parameter estimated. For somehich the fitting was not very good, thevalues of the dif-
parameters, the uncertainty is very small (elg. but for ferent models are similar and range between 0.3-0.4. The
other parameters the uncertainty is substantial. These difparameters of the non-stationary pats, @;, « andg) are
ferences are related to the sensitivity of the shape of the vamot well constrained as they are controlled by the large time
iogram to individual parameters. The parameters with thescale and space scale variability present in the data. For the
smallest sensitivity have the largest uncertainty but this mayexponential and Cressie-Huang models, the levels (or sills)
not be important for spatio-temporal estimation. It was moreof the point variograms are defined by parametgrandas,
difficult to find suitable parameter sets for the product-sumrespectively. The, value is significantly larger tham re-
model than for the other models. This is because it is theflecting the larger sills of the Cressie-Huang model as illus-
model with the largest number of parameters. In order to ob+rated in Figs. 9 and 10.

tain suitable parameters, the parameter search was initiated

with parameter sets found in previous optimisation runs. Be-

cause of the presence of local minima this tends to reduce thg Conclusions

variability of the estimated parameters. The CV values of the

parameters of the product-sum model in Table 6 hence tend.1  Sample variograms

to be smaller than those of the other models. A parameter

that is of particular interest is the exponent in the relation-aA comparison of the spatio-temporal variograms of runoff
ship between space and time suppoxts,The uncertainty  and precipitation indicates that, for a given catchment size
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Table 6. Statistics of the objective functiorpf) of the joint fitting of the runoff variograms; estimated parameters of the space-time
relationship of the supportg:( «); and estimated parameters of the point runoff variogram (remaining lines). CV is a measure of the
uncertainty of the estimates.

Exponential model  Cressie-Huang model  Product-sum model Fractal model

Average CcVv Average Ccv Average Ccv Average Ccv
Ok 0.0293 0.0786  0.0281 0.1176 0.0258 0.0158 0.1548 0.0020
m 1.8670 1.0422  2.5991 0.6058 2.0108 0.3027 0.3582 0.0710
K 0.4193 0.3841  0.3440 0.2777 0.3065 0.1298 0.7936 0.0123
as 0.0000 1.2773  0.0007 0.9102 0.0000 0.1613 0.0840 0.5811
a 0.0024  1.4488 0.0005 1.0493 0.0001 0.4936 0.0277 0.6813
o 0.5909 0.2939 0.2287 1.0096 0.6718 0.0385 0.0050 0.5056
B 0.1245 0.9893  0.0972 0.4798 0.1847 0.3471 0.0076  0.5847

al 0.0131  0.1046
c1 0.0295  0.3589
d1 1.0298 0.0198
e1 1.6427  0.0548

ay 0.0256  0.2456
2 0.1755  0.3966

dy 1.2517  0.0976

azs 0.0070 0.0773
az 0.0070 0.0798
da, 1.6841 0.0805
da, 31.6109 0.1490
e3s 1.6814 0.0090
e 0.5550 0.1742
k 142.8483 0.0780

class, the variograms are fundamentally different. The leftone would expect the estimated scales to be associated with
column of Fig. 5, as compared to the left column of Fig. 3, events. The slower characteristic velocities with increasing
suggests that the plots of the runoff variograms are muctcatchment size are likely related to the larger groundwater
more elongated in the time direction indicating that the time contribution in larger catchments.

correlations of runoff are much more persistent than those |ngependently fitting variogram models to each catchment
of precipitation. Obviously, this is because of the time de- sjze class gave excellent to good fits for all the variogram
lays as rainfall passes through the catchment system. Thigodels considered here with the exception of the fractal
is an effect of the catchment operating as a filter to the atyodel. The product-sum model was generally better than
mospheric forcing, with the time scale of the filter being di- the other models for both runoff and precipitation. The dif-
rectly related to the concentration time of the catchment. Theerences in the goodness of fit may be partly related to the
contour lines of the variogram values give an indication of yegrees of freedom:; the fractal model has the smallest num-
the characteristic velocities (Skgien et al., 2003). For pre{gr of parameters, the product-sum model the largest num-
cipitation of all catchment classes, a typical pair of length per of parameters. The objective function is dimensionless,
and times scales is 70km and 2h which suggests a typicadg a comparison of precipitation and runoff is meaningful.
characteristic velocity of 10 m/s. This is similar to the char- The gbjective functions for runoff and precipitation are sim-
acteristic velocities found in Skgien et al. (2003) and con-jjar (hoth around 0.01 in Tables 2 and 3) indicating that the

sistent with the schematic of space time scales @s8hl  yariogram models can be fitted equally well to runoff and
and Sivapalan (1995). For runoff, again for all catchmentprecipitation.

size classes, typical pairs of length and times scales are 2 km

and 2h, 20km and 20 h, and 50 km and 100 h. This trans- Th_e variograms change as one moves from small to
. . - o medium sized and large catchments. The catchment scale
lates into typical characteristic velocities of 0.27, 0.27 and

. L . ff re significantly larger for th f runoff than for
0.14m/s, respectively. These characteristic velocities aree ects are significantly larger for the case of runoff than fo

. . recipitation, i.e., in th f runoff the variance r ion

somewhat faster than those found in Skgien et al. (2003)? 'ecptato 1€ t. € caseotruno t e variance reductio
. . ) With catchment area is much larger (Figs. 3 and 5). Also, the
which may be related to the higher temporal resolution of the, . . .
: . temporal correlations increase more strongly with catchment
data. The data resolve the event scale in more detail, hence . o . .
area which, again, is related to the travel time of water in the
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Fig. 10. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of runoff as in Fig. 9. Sample variograms are
shown as points, jointly fitted variogram models (small, medium, large catchment size classes) as well as estimated variogram model (point
instantaneous) as lines.

catchments. The stronger time aggregation effects of runoffthat uses the same procedure, is also valid. The objective
as compared to precipitation, may explain the stronger varifunctions of the joint fitting (Table 4) are close to the aver-
ance reduction with spatial scale than that predicted by spaage objective functions obtained by the separate (direct) fit-

tial aggregation, found by Woods et al. (1995). ting (Table 2), i.e., around 0.01 in both cases (exponential,
Cressie-Huang and product-sum models). This further cor-
5.2 Space-time regularisation roborates the validity of the regularisation procedure.

For the case of runoff, however, the objective functions of
The regularisation of precipitation is used here for two the joint fitting (Table 5) are larger than those of the sepa-
purposes; to separate the spatial aggregation effects (movate fitting (Table 3). For the joint fitting, the errors of the
ing from point rainfall to catchment rainfall) from spatio- exponential, Cressie-Huang and product-sum models range
temporal effects that involve runoff routing; and to test the between 0.02 and 0.03, depending on the model, while they
spatial aggregation procedure, in particular the assumption ofire around 0.01 for the separate fitting. This means that, for
approximating catchments by squares and the use of a comunoff, the space-time aggregation effects of catchments are
stant catchment size equal to the median in each size clasaot fully consistent with the assumptions made here. Specif-
The comparison of back-calculated point precipitation (zeroically, the simplifications include the assumptions of a block
spatial support, 15min temporal support) in Fig. 7, secondunit hydrograph, the general assumption of linearity and, per-
row suggests that the assumptions are indeed appropriate ftiaps most importantly, a single relationship between catch-
the data set used here, so the spatial regularisation of runoffnent size and catchment response time. However, the overall

www.hydrol-earth-syst-sci.net/10/645/2006/ Hydrol. Earth Syst. Sci., 10,68%52006



660 J. O. Skgien and G. 88chl: Catchments as space-times filters

magnitude of the objective functions are still very small (i.e., Table 6), approximately 7, 11 and 20h. This means that
errors of 0.02-0.03) indicating that the first order effects ofthe back-calculation procedure involves substantial extrap-
the spatio-temporal variability of runoff is indeed captured olation to smaller scales, so the differences between the var-
well by conceptualising catchments as linear space-time filiogram models are not surprising. The shapes of the three
ters. The stronger time aggregation effects of runoff, as compoint models are, however, not too different (Fig. 10 and
pared to precipitation, have been represented by a relationFig. 9 top row). It should also be noted that for estimation
ship between spatial and temporal supports (Eg. 15) whiclpurposes one is usually interested in catchment sizes that
seems essential in representing the change of spatio-temporate not much smaller than the smallest catchments consid-
runoff variograms with changing catchment size. ered here, e.g., 1 ki For these catchment sizes, the vari-

For precipitation, we found that the point scale product- ograms are much more similar. For the practical application
sum model provided slightly better variograms than the otherof spatio-temporal estimation methods in catchment hydrol-
models in terms of the goodness of fit to the small, mediumogy the differences in the point variograms may hence not be
and large catchment size classes but there was no advantageportant.
over the other models in the verification case of 15 min point The correlation lengths of the back-calculated point vari-
precipitation. The fit of the fractal model was poorest but ograms of runoff are on the order of a kilometre or less, while
it was the model with the smallest number of parametersthe small catchments showed correlation lengths of around
There are two reasons for the poor fit of the fractal model.10-20 km (Fig. 10 right column). Skgien et al. (2003) found
The obvious one is the smallest number of parameters among similar value of 0.7 km for point variograms of runoff. The
all variogram models, so the fractal model has the least flexshort correlation lengths are plausible as local runoff will
ibility. The other, probably equally important, reason is the likely vary much over short spatial scales because of the vari-
lack of space-time interaction of the spatio-temporal fractalability of local infiltration and soil moisture characteristics
variogram, i.e., the fact that the partial derivatives of the var-(Western et al., 2002, 2004). It is also of interest to com-
iogramg—}’l’[ andé’T’: only depend ork; andhy, respectively.  pare the sills or overall levels of the point precipitation and
This lack of space-time interaction also concerns the fracoint runoff variograms. For the exponential, Cressie-Huang
tal part of the other variograms, but to a lesser degree, agnd product sum models of point/instantaneous precipitation
it only relates to a component of the entire variogram. Forthe sills in space are 0.04, 0.15 and 0.065wih~2, respec-
runoff, the goodness of fit of the exponential, Cressie-Huandively (Fig. 8 right column). The corresponding values for
and product-sum models was good (0.02-0.03) suggestingunoff (Fig. 10 right column, with units adjusted) are 0.14,
that all three models are suitable for the spatio-temporal es0.26 and 0.12 mfxh=2, respectively. This means that the
timation of runoff in the study area. Because of the smalllocal variability of runoff is between twice and three times
differences between the models, the choice of model couldhe variability of local rainfall. This is plausible as temporal
be based on computational convenience. It is interesting thaand spatial soil moisture variability contributes to making lo-
the product-sum model reduces to a separable model witieal runoff more variable than rainfall. In time, local runoff
the fitted parameters, i.es;=a3,=0.0070 and=142, which  is more coherent than rainfall (Fig. 10 left column as com-
is very close to the condition for the product-sum model to pared to Fig. 8 left column). This, again, is plausible because
reduce to the separable model of Rigtez-Iturbe and Mé&  of the memory induced by soil moisture and local ponding.
(1974). Separable models are computationally more conveThe non-stationary (fractal) parts of the variograms are more
nient for some applications (Fuentes, 2006). The spatial vardifficult to interpret. The parameters differ between the vari-
iogram fits in this paper (Fig. 10 right column) are as good asogram models which is likely a result of the interdependence
or better than those of Skgien et al. (2003) (their Fig. 6b) whoof the parameters of the fractal part and the other parameters
used spatial aggregation only. In addition, we can represenef the variogram models. As the levels of the stationary parts
the temporal aggregation effects well (Fig. 10 left column). of the point variograms differ, so will the non-stationary parts

in the different models.
5.3 Interpretation of point variograms of runoff
5.4 Catchments as space-time filters

The point variograms of runoff, i.e. the variograms for a lo-
cal runoff generation process with zero spatial and temporalThe high temporal resolution of the data used here (15 min)
supports, differ between the models. The fractal model givesallowed us to analyse the connections of space-time vari-
the highest point variogram. This model, however, should beability in more detail than has been possible in Skgien et
treated with caution as the model fits are not very good. Foral. (2003) who used daily data. A time step of 15min re-
the Cressie-Huang model, the overall level or sill is highersolves individual events even in the small catchment class.
than for the exponential and product sum models. The poinfThe kernel or space-time filter characteristics shed light on
model has been estimated from catchment size classes of 4the space-time scaling behaviour of the rainfall-runoff trans-
119 and 605 krh These are the spatial supports. The associformation (Eq. 15). The parameter that is of particular in-
ated temporal supports are, depending on the model (Eq. 1%erest is the exponent of the relationship between space and
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